/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #if ARCH(I386) static constexpr size_t CHUNK_SIZE = 32; #elif ARCH(X86_64) || ARCH(AARCH64) static constexpr size_t CHUNK_SIZE = 64; #else # error Unknown architecture #endif static_assert(is_power_of_two(CHUNK_SIZE)); static constexpr size_t INITIAL_KMALLOC_MEMORY_SIZE = 2 * MiB; // Treat the heap as logically separate from .bss __attribute__((section(".heap"))) static u8 initial_kmalloc_memory[INITIAL_KMALLOC_MEMORY_SIZE]; namespace std { const nothrow_t nothrow; } static RecursiveSpinlock s_lock; // needs to be recursive because of dump_backtrace() struct KmallocSubheap { KmallocSubheap(u8* base, size_t size) : allocator(base, size) { } IntrusiveListNode list_node; using List = IntrusiveList<&KmallocSubheap::list_node>; Heap allocator; }; class KmallocSlabBlock { public: static constexpr size_t block_size = 64 * KiB; static constexpr FlatPtr block_mask = ~(block_size - 1); KmallocSlabBlock(size_t slab_size) : m_slab_size(slab_size) , m_slab_count((block_size - sizeof(KmallocSlabBlock)) / slab_size) { for (size_t i = 0; i < m_slab_count; ++i) { auto* freelist_entry = (FreelistEntry*)(void*)(&m_data[i * slab_size]); freelist_entry->next = m_freelist; m_freelist = freelist_entry; } } void* allocate() { VERIFY(m_freelist); ++m_allocated_slabs; return exchange(m_freelist, m_freelist->next); } void deallocate(void* ptr) { VERIFY(ptr >= &m_data && ptr < ((u8*)this + block_size)); --m_allocated_slabs; auto* freelist_entry = (FreelistEntry*)ptr; freelist_entry->next = m_freelist; m_freelist = freelist_entry; } bool is_full() const { return m_freelist == nullptr; } size_t allocated_bytes() const { return m_allocated_slabs * m_slab_size; } size_t free_bytes() const { return (m_slab_count - m_allocated_slabs) * m_slab_size; } IntrusiveListNode list_node; using List = IntrusiveList<&KmallocSlabBlock::list_node>; private: struct FreelistEntry { FreelistEntry* next; }; FreelistEntry* m_freelist { nullptr }; size_t m_slab_size { 0 }; size_t m_slab_count { 0 }; size_t m_allocated_slabs { 0 }; [[gnu::aligned(16)]] u8 m_data[]; }; class KmallocSlabheap { public: KmallocSlabheap(size_t slab_size) : m_slab_size(slab_size) { } size_t slab_size() const { return m_slab_size; } void* allocate() { if (m_usable_blocks.is_empty()) { // FIXME: This allocation wastes `block_size` bytes due to the implementation of kmalloc_aligned(). // Handle this with a custom VM+page allocator instead of using kmalloc_aligned(). auto* slot = kmalloc_aligned(KmallocSlabBlock::block_size, KmallocSlabBlock::block_size); if (!slot) { // FIXME: Dare to return nullptr! PANIC("OOM while growing slabheap ({})", m_slab_size); } auto* block = new (slot) KmallocSlabBlock(m_slab_size); m_usable_blocks.append(*block); } auto* block = m_usable_blocks.first(); auto* ptr = block->allocate(); if (block->is_full()) m_full_blocks.append(*block); memset(ptr, KMALLOC_SCRUB_BYTE, m_slab_size); return ptr; } void deallocate(void* ptr) { memset(ptr, KFREE_SCRUB_BYTE, m_slab_size); auto* block = (KmallocSlabBlock*)((FlatPtr)ptr & KmallocSlabBlock::block_mask); bool block_was_full = block->is_full(); block->deallocate(ptr); if (block_was_full) m_usable_blocks.append(*block); } size_t allocated_bytes() const { size_t total = m_full_blocks.size_slow() * KmallocSlabBlock::block_size; for (auto const& slab_block : m_usable_blocks) total += slab_block.allocated_bytes(); return total; } size_t free_bytes() const { size_t total = 0; for (auto const& slab_block : m_usable_blocks) total += slab_block.free_bytes(); return total; } bool try_purge() { bool did_purge = false; // Note: We cannot remove children from the list when using a structured loop, // Because we need to advance the iterator before we delete the underlying // value, so we have to iterate manually auto block = m_usable_blocks.begin(); while (block != m_usable_blocks.end()) { if (block->allocated_bytes() != 0) { ++block; continue; } auto& block_to_remove = *block; ++block; block_to_remove.list_node.remove(); block_to_remove.~KmallocSlabBlock(); kfree_aligned(&block_to_remove); did_purge = true; } return did_purge; } private: size_t m_slab_size { 0 }; KmallocSlabBlock::List m_usable_blocks; KmallocSlabBlock::List m_full_blocks; }; struct KmallocGlobalData { static constexpr size_t minimum_subheap_size = 1 * MiB; KmallocGlobalData(u8* initial_heap, size_t initial_heap_size) { add_subheap(initial_heap, initial_heap_size); } void add_subheap(u8* storage, size_t storage_size) { dbgln_if(KMALLOC_DEBUG, "Adding kmalloc subheap @ {} with size {}", storage, storage_size); static_assert(sizeof(KmallocSubheap) <= PAGE_SIZE); auto* subheap = new (storage) KmallocSubheap(storage + PAGE_SIZE, storage_size - PAGE_SIZE); subheaps.append(*subheap); } void* allocate(size_t size) { VERIFY(!expansion_in_progress); for (auto& slabheap : slabheaps) { if (size <= slabheap.slab_size()) return slabheap.allocate(); } for (auto& subheap : subheaps) { if (auto* ptr = subheap.allocator.allocate(size)) return ptr; } // NOTE: This size calculation is a mirror of kmalloc_aligned(KmallocSlabBlock) if (size <= KmallocSlabBlock::block_size * 2 + sizeof(ptrdiff_t) + sizeof(size_t)) { // FIXME: We should propagate a freed pointer, to find the specific subheap it belonged to // This would save us iterating over them in the next step and remove a recursion bool did_purge = false; for (auto& slabheap : slabheaps) { if (slabheap.try_purge()) { dbgln_if(KMALLOC_DEBUG, "Kmalloc purged block(s) from slabheap of size {} to avoid expansion", slabheap.slab_size()); did_purge = true; break; } } if (did_purge) return allocate(size); } if (!try_expand(size)) { PANIC("OOM when trying to expand kmalloc heap."); } return allocate(size); } void deallocate(void* ptr, size_t size) { VERIFY(!expansion_in_progress); VERIFY(is_valid_kmalloc_address(VirtualAddress { ptr })); for (auto& slabheap : slabheaps) { if (size <= slabheap.slab_size()) return slabheap.deallocate(ptr); } for (auto& subheap : subheaps) { if (subheap.allocator.contains(ptr)) { subheap.allocator.deallocate(ptr); return; } } PANIC("Bogus pointer passed to kfree_sized({:p}, {})", ptr, size); } size_t allocated_bytes() const { size_t total = 0; for (auto const& subheap : subheaps) total += subheap.allocator.allocated_bytes(); for (auto const& slabheap : slabheaps) total += slabheap.allocated_bytes(); return total; } size_t free_bytes() const { size_t total = 0; for (auto const& subheap : subheaps) total += subheap.allocator.free_bytes(); for (auto const& slabheap : slabheaps) total += slabheap.free_bytes(); return total; } bool try_expand(size_t allocation_request) { VERIFY(!expansion_in_progress); TemporaryChange change(expansion_in_progress, true); auto new_subheap_base = expansion_data->next_virtual_address; Checked padded_allocation_request = allocation_request; padded_allocation_request *= 2; padded_allocation_request += PAGE_SIZE; if (padded_allocation_request.has_overflow()) { PANIC("Integer overflow during kmalloc heap expansion"); } auto rounded_allocation_request = Memory::page_round_up(padded_allocation_request.value()); if (rounded_allocation_request.is_error()) { PANIC("Integer overflow computing pages for kmalloc heap expansion"); } size_t new_subheap_size = max(minimum_subheap_size, rounded_allocation_request.value()); dbgln_if(KMALLOC_DEBUG, "Unable to allocate {}, expanding kmalloc heap", allocation_request); if (!expansion_data->virtual_range.contains(new_subheap_base, new_subheap_size)) { // FIXME: Dare to return false and allow kmalloc() to fail! PANIC("Out of address space when expanding kmalloc heap."); } auto physical_pages_or_error = MM.commit_physical_pages(new_subheap_size / PAGE_SIZE); if (physical_pages_or_error.is_error()) { // FIXME: Dare to return false! PANIC("Out of physical pages when expanding kmalloc heap."); } auto physical_pages = physical_pages_or_error.release_value(); expansion_data->next_virtual_address = expansion_data->next_virtual_address.offset(new_subheap_size); auto cpu_supports_nx = Processor::current().has_nx(); SpinlockLocker mm_locker(Memory::s_mm_lock); SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock()); for (auto vaddr = new_subheap_base; !physical_pages.is_empty(); vaddr = vaddr.offset(PAGE_SIZE)) { // FIXME: We currently leak physical memory when mapping it into the kmalloc heap. auto& page = physical_pages.take_one().leak_ref(); auto* pte = MM.pte(MM.kernel_page_directory(), vaddr); VERIFY(pte); pte->set_physical_page_base(page.paddr().get()); pte->set_global(true); pte->set_user_allowed(false); pte->set_writable(true); if (cpu_supports_nx) pte->set_execute_disabled(true); pte->set_present(true); } add_subheap(new_subheap_base.as_ptr(), new_subheap_size); return true; } void enable_expansion() { // FIXME: This range can be much bigger on 64-bit, but we need to figure something out for 32-bit. auto reserved_region = MUST(MM.allocate_unbacked_region_anywhere(64 * MiB, 1 * MiB)); expansion_data = KmallocGlobalData::ExpansionData { .virtual_range = reserved_region->range(), .next_virtual_address = reserved_region->range().base(), }; // Make sure the entire kmalloc VM range is backed by page tables. // This avoids having to deal with lazy page table allocation during heap expansion. SpinlockLocker mm_locker(Memory::s_mm_lock); SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock()); for (auto vaddr = reserved_region->range().base(); vaddr < reserved_region->range().end(); vaddr = vaddr.offset(PAGE_SIZE)) { MM.ensure_pte(MM.kernel_page_directory(), vaddr); } (void)reserved_region.leak_ptr(); } struct ExpansionData { Memory::VirtualRange virtual_range; VirtualAddress next_virtual_address; }; Optional expansion_data; bool is_valid_kmalloc_address(VirtualAddress vaddr) const { if (vaddr.as_ptr() >= initial_kmalloc_memory && vaddr.as_ptr() < (initial_kmalloc_memory + INITIAL_KMALLOC_MEMORY_SIZE)) return true; if (!expansion_data.has_value()) return false; return expansion_data->virtual_range.contains(vaddr); } KmallocSubheap::List subheaps; KmallocSlabheap slabheaps[6] = { 16, 32, 64, 128, 256, 512 }; bool expansion_in_progress { false }; }; READONLY_AFTER_INIT static KmallocGlobalData* g_kmalloc_global; alignas(KmallocGlobalData) static u8 g_kmalloc_global_heap[sizeof(KmallocGlobalData)]; static size_t g_kmalloc_call_count; static size_t g_kfree_call_count; static size_t g_nested_kfree_calls; bool g_dump_kmalloc_stacks; void kmalloc_enable_expand() { g_kmalloc_global->enable_expansion(); } static inline void kmalloc_verify_nospinlock_held() { // Catch bad callers allocating under spinlock. if constexpr (KMALLOC_VERIFY_NO_SPINLOCK_HELD) { VERIFY(!Processor::in_critical()); } } UNMAP_AFTER_INIT void kmalloc_init() { // Zero out heap since it's placed after end_of_kernel_bss. memset(initial_kmalloc_memory, 0, sizeof(initial_kmalloc_memory)); g_kmalloc_global = new (g_kmalloc_global_heap) KmallocGlobalData(initial_kmalloc_memory, sizeof(initial_kmalloc_memory)); s_lock.initialize(); } void* kmalloc(size_t size) { kmalloc_verify_nospinlock_held(); SpinlockLocker lock(s_lock); ++g_kmalloc_call_count; if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) { dbgln("kmalloc({})", size); Kernel::dump_backtrace(); } void* ptr = g_kmalloc_global->allocate(size); Thread* current_thread = Thread::current(); if (!current_thread) current_thread = Processor::idle_thread(); if (current_thread) { // FIXME: By the time we check this, we have already allocated above. // This means that in the case of an infinite recursion, we can't catch it this way. VERIFY(current_thread->is_allocation_enabled()); PerformanceManager::add_kmalloc_perf_event(*current_thread, size, (FlatPtr)ptr); } return ptr; } void* kcalloc(size_t count, size_t size) { if (Checked::multiplication_would_overflow(count, size)) return nullptr; size_t new_size = count * size; auto* ptr = kmalloc(new_size); // FIXME: Avoid redundantly scrubbing the memory in kmalloc() if (ptr) memset(ptr, 0, new_size); return ptr; } void kfree_sized(void* ptr, size_t size) { if (!ptr) return; VERIFY(size > 0); kmalloc_verify_nospinlock_held(); SpinlockLocker lock(s_lock); ++g_kfree_call_count; ++g_nested_kfree_calls; if (g_nested_kfree_calls == 1) { Thread* current_thread = Thread::current(); if (!current_thread) current_thread = Processor::idle_thread(); if (current_thread) { VERIFY(current_thread->is_allocation_enabled()); PerformanceManager::add_kfree_perf_event(*current_thread, 0, (FlatPtr)ptr); } } g_kmalloc_global->deallocate(ptr, size); --g_nested_kfree_calls; } size_t kmalloc_good_size(size_t size) { VERIFY(size > 0); // NOTE: There's no need to take the kmalloc lock, as the kmalloc slab-heaps (and their sizes) are constant for (auto const& slabheap : g_kmalloc_global->slabheaps) { if (size <= slabheap.slab_size()) return slabheap.slab_size(); } return round_up_to_power_of_two(size + Heap::AllocationHeaderSize, CHUNK_SIZE) - Heap::AllocationHeaderSize; } void* kmalloc_aligned(size_t size, size_t alignment) { Checked real_allocation_size = size; real_allocation_size += alignment; real_allocation_size += sizeof(ptrdiff_t) + sizeof(size_t); void* ptr = kmalloc(real_allocation_size.value()); if (ptr == nullptr) return nullptr; size_t max_addr = (size_t)ptr + alignment; void* aligned_ptr = (void*)(max_addr - (max_addr % alignment)); ((ptrdiff_t*)aligned_ptr)[-1] = (ptrdiff_t)((u8*)aligned_ptr - (u8*)ptr); ((size_t*)aligned_ptr)[-2] = real_allocation_size.value(); return aligned_ptr; } void* operator new(size_t size) { void* ptr = kmalloc(size); VERIFY(ptr); return ptr; } void* operator new(size_t size, std::nothrow_t const&) noexcept { return kmalloc(size); } void* operator new(size_t size, std::align_val_t al) { void* ptr = kmalloc_aligned(size, (size_t)al); VERIFY(ptr); return ptr; } void* operator new(size_t size, std::align_val_t al, std::nothrow_t const&) noexcept { return kmalloc_aligned(size, (size_t)al); } void* operator new[](size_t size) { void* ptr = kmalloc(size); VERIFY(ptr); return ptr; } void* operator new[](size_t size, std::nothrow_t const&) noexcept { return kmalloc(size); } void operator delete(void*) noexcept { // All deletes in kernel code should have a known size. VERIFY_NOT_REACHED(); } void operator delete(void* ptr, size_t size) noexcept { return kfree_sized(ptr, size); } void operator delete(void* ptr, size_t, std::align_val_t) noexcept { return kfree_aligned(ptr); } void operator delete[](void*) noexcept { // All deletes in kernel code should have a known size. VERIFY_NOT_REACHED(); } void operator delete[](void* ptr, size_t size) noexcept { return kfree_sized(ptr, size); } void get_kmalloc_stats(kmalloc_stats& stats) { SpinlockLocker lock(s_lock); stats.bytes_allocated = g_kmalloc_global->allocated_bytes(); stats.bytes_free = g_kmalloc_global->free_bytes(); stats.kmalloc_call_count = g_kmalloc_call_count; stats.kfree_call_count = g_kfree_call_count; }