/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "ProcFS.h" #include "KSyms.h" #include "Process.h" #include "Scheduler.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Kernel { enum ProcParentDirectory { PDI_AbstractRoot = 0, PDI_Root, PDI_Root_sys, PDI_Root_net, PDI_PID, PDI_PID_fd, }; enum ProcFileType { FI_Invalid = 0, FI_Root = 1, // directory __FI_Root_Start, FI_Root_mm, FI_Root_mounts, FI_Root_df, FI_Root_all, FI_Root_memstat, FI_Root_cpuinfo, FI_Root_inodes, FI_Root_dmesg, FI_Root_interrupts, FI_Root_pci, FI_Root_devices, FI_Root_uptime, FI_Root_cmdline, FI_Root_modules, FI_Root_profile, FI_Root_self, // symlink FI_Root_sys, // directory FI_Root_net, // directory __FI_Root_End, FI_Root_sys_variable, FI_Root_net_adapters, FI_Root_net_arp, FI_Root_net_tcp, FI_Root_net_udp, FI_Root_net_local, FI_PID, __FI_PID_Start, FI_PID_vm, FI_PID_vmobjects, FI_PID_stack, FI_PID_regs, FI_PID_fds, FI_PID_unveil, FI_PID_exe, // symlink FI_PID_cwd, // symlink FI_PID_root, // symlink FI_PID_fd, // directory __FI_PID_End, FI_MaxStaticFileIndex, }; static inline pid_t to_pid(const InodeIdentifier& identifier) { #ifdef PROCFS_DEBUG dbg() << "to_pid, index=" << String::format("%08x", identifier.index()) << " -> " << (identifier.index() >> 16); #endif return identifier.index() >> 16u; } static inline ProcParentDirectory to_proc_parent_directory(const InodeIdentifier& identifier) { return (ProcParentDirectory)((identifier.index() >> 12) & 0xf); } static inline ProcFileType to_proc_file_type(const InodeIdentifier& identifier) { return (ProcFileType)(identifier.index() & 0xff); } static inline int to_fd(const InodeIdentifier& identifier) { ASSERT(to_proc_parent_directory(identifier) == PDI_PID_fd); return (identifier.index() & 0xff) - FI_MaxStaticFileIndex; } static inline size_t to_sys_index(const InodeIdentifier& identifier) { ASSERT(to_proc_parent_directory(identifier) == PDI_Root_sys); ASSERT(to_proc_file_type(identifier) == FI_Root_sys_variable); return identifier.index() >> 16u; } static inline InodeIdentifier to_identifier(unsigned fsid, ProcParentDirectory parent, pid_t pid, ProcFileType proc_file_type) { return { fsid, ((unsigned)parent << 12u) | ((unsigned)pid << 16u) | (unsigned)proc_file_type }; } static inline InodeIdentifier to_identifier_with_fd(unsigned fsid, pid_t pid, int fd) { return { fsid, (PDI_PID_fd << 12u) | ((unsigned)pid << 16u) | (FI_MaxStaticFileIndex + fd) }; } static inline InodeIdentifier sys_var_to_identifier(unsigned fsid, unsigned index) { ASSERT(index < 256); return { fsid, (PDI_Root_sys << 12u) | (index << 16u) | FI_Root_sys_variable }; } static inline InodeIdentifier to_parent_id(const InodeIdentifier& identifier) { switch (to_proc_parent_directory(identifier)) { case PDI_AbstractRoot: case PDI_Root: return { identifier.fsid(), FI_Root }; case PDI_Root_sys: return { identifier.fsid(), FI_Root_sys }; case PDI_Root_net: return { identifier.fsid(), FI_Root_net }; case PDI_PID: return to_identifier(identifier.fsid(), PDI_Root, to_pid(identifier), FI_PID); case PDI_PID_fd: return to_identifier(identifier.fsid(), PDI_PID, to_pid(identifier), FI_PID_fd); } ASSERT_NOT_REACHED(); } #if 0 static inline u8 to_unused_metadata(const InodeIdentifier& identifier) { return (identifier.index() >> 8) & 0xf; } #endif static inline bool is_process_related_file(const InodeIdentifier& identifier) { if (to_proc_file_type(identifier) == FI_PID) return true; auto proc_parent_directory = to_proc_parent_directory(identifier); switch (proc_parent_directory) { case PDI_PID: case PDI_PID_fd: return true; default: return false; } } static inline bool is_directory(const InodeIdentifier& identifier) { auto proc_file_type = to_proc_file_type(identifier); switch (proc_file_type) { case FI_Root: case FI_Root_sys: case FI_Root_net: case FI_PID: case FI_PID_fd: return true; default: return false; } } static inline bool is_persistent_inode(const InodeIdentifier& identifier) { return to_proc_parent_directory(identifier) == PDI_Root_sys; } NonnullRefPtr ProcFS::create() { return adopt(*new ProcFS); } ProcFS::~ProcFS() { } Optional procfs$pid_fds(InodeIdentifier identifier) { KBufferBuilder builder; JsonArraySerializer array { builder }; auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier)); if (!handle) { array.finish(); return builder.build(); } auto& process = handle->process(); if (process.number_of_open_file_descriptors() == 0) { array.finish(); return builder.build(); } for (int i = 0; i < process.max_open_file_descriptors(); ++i) { auto description = process.file_description(i); if (!description) continue; bool cloexec = process.fd_flags(i) & FD_CLOEXEC; auto description_object = array.add_object(); description_object.add("fd", i); description_object.add("absolute_path", description->absolute_path()); description_object.add("seekable", description->file().is_seekable()); description_object.add("class", description->file().class_name()); description_object.add("offset", description->offset()); description_object.add("cloexec", cloexec); description_object.add("blocking", description->is_blocking()); description_object.add("can_read", description->can_read()); description_object.add("can_write", description->can_write()); } array.finish(); return builder.build(); } Optional procfs$pid_fd_entry(InodeIdentifier identifier) { auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier)); if (!handle) return {}; auto& process = handle->process(); int fd = to_fd(identifier); auto description = process.file_description(fd); if (!description) return {}; return description->absolute_path().to_byte_buffer(); } Optional procfs$pid_vm(InodeIdentifier identifier) { auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier)); if (!handle) return {}; auto& process = handle->process(); KBufferBuilder builder; JsonArraySerializer array { builder }; for (auto& region : process.regions()) { if (!region.is_user_accessible() && !Process::current->is_superuser()) continue; auto region_object = array.add_object(); region_object.add("readable", region.is_readable()); region_object.add("writable", region.is_writable()); region_object.add("executable", region.is_executable()); region_object.add("stack", region.is_stack()); region_object.add("shared", region.is_shared()); region_object.add("user_accessible", region.is_user_accessible()); region_object.add("purgeable", region.vmobject().is_purgeable()); if (region.vmobject().is_purgeable()) { region_object.add("volatile", static_cast(region.vmobject()).is_volatile()); } region_object.add("purgeable", region.vmobject().is_purgeable()); region_object.add("address", region.vaddr().get()); region_object.add("size", (u32)region.size()); region_object.add("amount_resident", (u32)region.amount_resident()); region_object.add("amount_dirty", (u32)region.amount_dirty()); region_object.add("cow_pages", region.cow_pages()); region_object.add("name", region.name()); StringBuilder pagemap_builder; for (size_t i = 0; i < region.page_count(); ++i) { auto page_index = region.first_page_index() + i; auto& physical_page_slot = region.vmobject().physical_pages()[page_index]; if (!physical_page_slot) pagemap_builder.append('N'); else if (physical_page_slot == MM.shared_zero_page()) pagemap_builder.append('Z'); else pagemap_builder.append('P'); } region_object.add("pagemap", pagemap_builder.to_string()); } array.finish(); return builder.build(); } Optional procfs$pci(InodeIdentifier) { KBufferBuilder builder; JsonArraySerializer array { builder }; PCI::enumerate_all([&array](PCI::Address address, PCI::ID id) { auto obj = array.add_object(); obj.add("seg", address.seg()); obj.add("bus", address.bus()); obj.add("slot", address.slot()); obj.add("function", address.function()); obj.add("vendor_id", id.vendor_id); obj.add("device_id", id.device_id); obj.add("revision_id", PCI::get_revision_id(address)); obj.add("subclass", PCI::get_subclass(address)); obj.add("class", PCI::get_class(address)); obj.add("subsystem_id", PCI::get_subsystem_id(address)); obj.add("subsystem_vendor_id", PCI::get_subsystem_vendor_id(address)); }); array.finish(); return builder.build(); } Optional procfs$interrupts(InodeIdentifier) { KBufferBuilder builder; JsonArraySerializer array { builder }; InterruptManagement::the().enumerate_interrupt_handlers([&array](GenericInterruptHandler& handler) { auto obj = array.add_object(); obj.add("purpose", "Interrupt Handler"); // FIXME: Determine the right description for each interrupt handler. obj.add("interrupt_line", handler.interrupt_number()); obj.add("cpu_handler", 0); // FIXME: Determine the responsible CPU for each interrupt handler. obj.add("device_sharing", (unsigned)handler.sharing_devices_count()); obj.add("call_count", (unsigned)handler.get_invoking_count()); }); array.finish(); return builder.build(); } Optional procfs$devices(InodeIdentifier) { KBufferBuilder builder; JsonArraySerializer array { builder }; Device::for_each([&array](auto& device) { auto obj = array.add_object(); obj.add("major", device.major()); obj.add("minor", device.minor()); obj.add("class_name", device.class_name()); if (device.is_block_device()) obj.add("type", "block"); else if (device.is_character_device()) obj.add("type", "character"); else ASSERT_NOT_REACHED(); }); array.finish(); return builder.build(); } Optional procfs$uptime(InodeIdentifier) { KBufferBuilder builder; builder.appendf("%u\n", (u32)(g_uptime / 1000)); return builder.build(); } Optional procfs$cmdline(InodeIdentifier) { KBufferBuilder builder; builder.appendf("%s\n", KParams::the().cmdline().characters()); return builder.build(); } Optional procfs$modules(InodeIdentifier) { extern HashMap>* g_modules; KBufferBuilder builder; JsonArraySerializer array { builder }; for (auto& it : *g_modules) { auto obj = array.add_object(); obj.add("name", it.value->name); obj.add("module_init", (u32)it.value->module_init); obj.add("module_fini", (u32)it.value->module_fini); u32 size = 0; for (auto& section : it.value->sections) { size += section.capacity(); } obj.add("size", size); } array.finish(); return builder.build(); } Optional procfs$profile(InodeIdentifier) { InterruptDisabler disabler; KBufferBuilder builder; JsonObjectSerializer object(builder); object.add("pid", Profiling::pid()); object.add("executable", Profiling::executable_path()); auto array = object.add_array("events"); bool mask_kernel_addresses = !Process::current->is_superuser(); Profiling::for_each_sample([&](auto& sample) { auto object = array.add_object(); object.add("type", "sample"); object.add("tid", sample.tid); object.add("timestamp", sample.timestamp); auto frames_array = object.add_array("stack"); for (size_t i = 0; i < Profiling::max_stack_frame_count; ++i) { if (sample.frames[i] == 0) break; u32 address = (u32)sample.frames[i]; if (mask_kernel_addresses && !is_user_address(VirtualAddress(address))) address = 0xdeadc0de; frames_array.add(address); } frames_array.finish(); }); array.finish(); object.finish(); return builder.build(); } Optional procfs$net_adapters(InodeIdentifier) { KBufferBuilder builder; JsonArraySerializer array { builder }; NetworkAdapter::for_each([&array](auto& adapter) { auto obj = array.add_object(); obj.add("name", adapter.name()); obj.add("class_name", adapter.class_name()); obj.add("mac_address", adapter.mac_address().to_string()); if (!adapter.ipv4_address().is_zero()) { obj.add("ipv4_address", adapter.ipv4_address().to_string()); obj.add("ipv4_netmask", adapter.ipv4_netmask().to_string()); } if (!adapter.ipv4_gateway().is_zero()) obj.add("ipv4_gateway", adapter.ipv4_gateway().to_string()); obj.add("packets_in", adapter.packets_in()); obj.add("bytes_in", adapter.bytes_in()); obj.add("packets_out", adapter.packets_out()); obj.add("bytes_out", adapter.bytes_out()); obj.add("link_up", adapter.link_up()); obj.add("mtu", adapter.mtu()); }); array.finish(); return builder.build(); } Optional procfs$net_arp(InodeIdentifier) { KBufferBuilder builder; JsonArraySerializer array { builder }; LOCKER(arp_table().lock()); for (auto& it : arp_table().resource()) { auto obj = array.add_object(); obj.add("mac_address", it.value.to_string()); obj.add("ip_address", it.key.to_string()); } array.finish(); return builder.build(); } Optional procfs$net_tcp(InodeIdentifier) { KBufferBuilder builder; JsonArraySerializer array { builder }; TCPSocket::for_each([&array](auto& socket) { auto obj = array.add_object(); obj.add("local_address", socket.local_address().to_string()); obj.add("local_port", socket.local_port()); obj.add("peer_address", socket.peer_address().to_string()); obj.add("peer_port", socket.peer_port()); obj.add("state", TCPSocket::to_string(socket.state())); obj.add("ack_number", socket.ack_number()); obj.add("sequence_number", socket.sequence_number()); obj.add("packets_in", socket.packets_in()); obj.add("bytes_in", socket.bytes_in()); obj.add("packets_out", socket.packets_out()); obj.add("bytes_out", socket.bytes_out()); }); array.finish(); return builder.build(); } Optional procfs$net_udp(InodeIdentifier) { KBufferBuilder builder; JsonArraySerializer array { builder }; UDPSocket::for_each([&array](auto& socket) { auto obj = array.add_object(); obj.add("local_address", socket.local_address().to_string()); obj.add("local_port", socket.local_port()); obj.add("peer_address", socket.peer_address().to_string()); obj.add("peer_port", socket.peer_port()); }); array.finish(); return builder.build(); } Optional procfs$net_local(InodeIdentifier) { KBufferBuilder builder; JsonArraySerializer array { builder }; LocalSocket::for_each([&array](auto& socket) { auto obj = array.add_object(); obj.add("path", String(socket.socket_path())); obj.add("origin_pid", socket.origin_pid()); obj.add("origin_uid", socket.origin_uid()); obj.add("origin_gid", socket.origin_gid()); obj.add("acceptor_pid", socket.acceptor_pid()); obj.add("acceptor_uid", socket.acceptor_uid()); obj.add("acceptor_gid", socket.acceptor_gid()); }); array.finish(); return builder.build(); } Optional procfs$pid_vmobjects(InodeIdentifier identifier) { auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier)); if (!handle) return {}; auto& process = handle->process(); KBufferBuilder builder; builder.appendf("BEGIN END SIZE NAME\n"); for (auto& region : process.regions()) { builder.appendf("%x -- %x %x %s\n", region.vaddr().get(), region.vaddr().offset(region.size() - 1).get(), region.size(), region.name().characters()); builder.appendf("VMO: %s @ %x(%u)\n", region.vmobject().is_anonymous() ? "anonymous" : "file-backed", ®ion.vmobject(), region.vmobject().ref_count()); for (size_t i = 0; i < region.vmobject().page_count(); ++i) { auto& physical_page = region.vmobject().physical_pages()[i]; builder.appendf("P%x%s(%u) ", physical_page ? physical_page->paddr().get() : 0, region.should_cow(i) ? "!" : "", physical_page ? physical_page->ref_count() : 0); } builder.appendf("\n"); } return builder.build(); } Optional procfs$pid_unveil(InodeIdentifier identifier) { auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier)); if (!handle) return {}; auto& process = handle->process(); KBufferBuilder builder; JsonArraySerializer array { builder }; for (auto& unveiled_path : process.unveiled_paths()) { auto obj = array.add_object(); obj.add("path", unveiled_path.path); StringBuilder permissions_builder; if (unveiled_path.permissions & UnveiledPath::Access::Read) permissions_builder.append('r'); if (unveiled_path.permissions & UnveiledPath::Access::Write) permissions_builder.append('w'); if (unveiled_path.permissions & UnveiledPath::Access::Execute) permissions_builder.append('x'); if (unveiled_path.permissions & UnveiledPath::Access::CreateOrRemove) permissions_builder.append('c'); obj.add("permissions", permissions_builder.to_string()); } array.finish(); return builder.build(); } Optional procfs$pid_stack(InodeIdentifier identifier) { auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier)); if (!handle) return {}; auto& process = handle->process(); return process.backtrace(*handle); } Optional procfs$pid_regs(InodeIdentifier identifier) { auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier)); if (!handle) return {}; auto& process = handle->process(); KBufferBuilder builder; process.for_each_thread([&](Thread& thread) { builder.appendf("Thread %d:\n", thread.tid()); auto& tss = thread.tss(); builder.appendf("eax: %x\n", tss.eax); builder.appendf("ebx: %x\n", tss.ebx); builder.appendf("ecx: %x\n", tss.ecx); builder.appendf("edx: %x\n", tss.edx); builder.appendf("esi: %x\n", tss.esi); builder.appendf("edi: %x\n", tss.edi); builder.appendf("ebp: %x\n", tss.ebp); builder.appendf("cr3: %x\n", tss.cr3); builder.appendf("flg: %x\n", tss.eflags); builder.appendf("sp: %w:%x\n", tss.ss, tss.esp); builder.appendf("pc: %w:%x\n", tss.cs, tss.eip); return IterationDecision::Continue; }); return builder.build(); } Optional procfs$pid_exe(InodeIdentifier identifier) { auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier)); if (!handle) return {}; auto& process = handle->process(); auto* custody = process.executable(); ASSERT(custody); return custody->absolute_path().to_byte_buffer(); } Optional procfs$pid_cwd(InodeIdentifier identifier) { auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier)); if (!handle) return {}; return handle->process().current_directory().absolute_path().to_byte_buffer(); } Optional procfs$pid_root(InodeIdentifier identifier) { auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier)); if (!handle) return {}; return handle->process().root_directory_relative_to_global_root().absolute_path().to_byte_buffer(); } Optional procfs$self(InodeIdentifier) { char buffer[16]; sprintf(buffer, "%u", Process::current->pid()); return KBuffer::copy((const u8*)buffer, strlen(buffer)); } Optional procfs$mm(InodeIdentifier) { InterruptDisabler disabler; KBufferBuilder builder; u32 vmobject_count = 0; MemoryManager::for_each_vmobject([&](auto& vmobject) { ++vmobject_count; builder.appendf("VMObject: %p %s(%u): p:%4u\n", &vmobject, vmobject.is_anonymous() ? "anon" : "file", vmobject.ref_count(), vmobject.page_count()); return IterationDecision::Continue; }); builder.appendf("VMO count: %u\n", vmobject_count); builder.appendf("Free physical pages: %u\n", MM.user_physical_pages() - MM.user_physical_pages_used()); builder.appendf("Free supervisor physical pages: %u\n", MM.super_physical_pages() - MM.super_physical_pages_used()); return builder.build(); } Optional procfs$dmesg(InodeIdentifier) { InterruptDisabler disabler; KBufferBuilder builder; for (char ch : Console::the().logbuffer()) builder.append(ch); return builder.build(); } Optional procfs$mounts(InodeIdentifier) { // FIXME: This is obviously racy against the VFS mounts changing. KBufferBuilder builder; VFS::the().for_each_mount([&builder](auto& mount) { auto& fs = mount.guest_fs(); builder.appendf("%s @ ", fs.class_name()); if (!mount.host().is_valid()) builder.appendf("/"); else { builder.appendf("%u:%u", mount.host().fsid(), mount.host().index()); builder.append(' '); builder.append(mount.absolute_path()); } builder.append('\n'); }); return builder.build(); } Optional procfs$df(InodeIdentifier) { // FIXME: This is obviously racy against the VFS mounts changing. KBufferBuilder builder; JsonArraySerializer array { builder }; VFS::the().for_each_mount([&array](auto& mount) { auto& fs = mount.guest_fs(); auto fs_object = array.add_object(); fs_object.add("class_name", fs.class_name()); fs_object.add("total_block_count", fs.total_block_count()); fs_object.add("free_block_count", fs.free_block_count()); fs_object.add("total_inode_count", fs.total_inode_count()); fs_object.add("free_inode_count", fs.free_inode_count()); fs_object.add("mount_point", mount.absolute_path()); fs_object.add("block_size", fs.block_size()); fs_object.add("readonly", fs.is_readonly()); fs_object.add("mount_flags", mount.flags()); if (fs.is_disk_backed()) fs_object.add("device", static_cast(fs).device().absolute_path()); else fs_object.add("device", fs.class_name()); }); array.finish(); return builder.build(); } Optional procfs$cpuinfo(InodeIdentifier) { KBufferBuilder builder; { CPUID cpuid(0); builder.appendf("cpuid: "); auto emit_u32 = [&](u32 value) { builder.appendf("%c%c%c%c", value & 0xff, (value >> 8) & 0xff, (value >> 16) & 0xff, (value >> 24) & 0xff); }; emit_u32(cpuid.ebx()); emit_u32(cpuid.edx()); emit_u32(cpuid.ecx()); builder.appendf("\n"); } { CPUID cpuid(1); u32 stepping = cpuid.eax() & 0xf; u32 model = (cpuid.eax() >> 4) & 0xf; u32 family = (cpuid.eax() >> 8) & 0xf; u32 type = (cpuid.eax() >> 12) & 0x3; u32 extended_model = (cpuid.eax() >> 16) & 0xf; u32 extended_family = (cpuid.eax() >> 20) & 0xff; u32 display_model; u32 display_family; if (family == 15) { display_family = family + extended_family; display_model = model + (extended_model << 4); } else if (family == 6) { display_family = family; display_model = model + (extended_model << 4); } else { display_family = family; display_model = model; } builder.appendf("family: %u\n", display_family); builder.appendf("model: %u\n", display_model); builder.appendf("stepping: %u\n", stepping); builder.appendf("type: %u\n", type); } { // FIXME: Check first that this is supported by calling CPUID with eax=0x80000000 // and verifying that the returned eax>=0x80000004. alignas(u32) char buffer[48]; u32* bufptr = reinterpret_cast(buffer); auto copy_brand_string_part_to_buffer = [&](u32 i) { CPUID cpuid(0x80000002 + i); *bufptr++ = cpuid.eax(); *bufptr++ = cpuid.ebx(); *bufptr++ = cpuid.ecx(); *bufptr++ = cpuid.edx(); }; copy_brand_string_part_to_buffer(0); copy_brand_string_part_to_buffer(1); copy_brand_string_part_to_buffer(2); builder.appendf("brandstr: \"%s\"\n", buffer); } return builder.build(); } Optional procfs$memstat(InodeIdentifier) { InterruptDisabler disabler; KBufferBuilder builder; JsonObjectSerializer json { builder }; json.add("kmalloc_allocated", (u32)sum_alloc); json.add("kmalloc_available", (u32)sum_free); json.add("kmalloc_eternal_allocated", (u32)kmalloc_sum_eternal); json.add("user_physical_allocated", MM.user_physical_pages_used()); json.add("user_physical_available", MM.user_physical_pages() - MM.user_physical_pages_used()); json.add("super_physical_allocated", MM.super_physical_pages_used()); json.add("super_physical_available", MM.super_physical_pages() - MM.super_physical_pages_used()); json.add("kmalloc_call_count", g_kmalloc_call_count); json.add("kfree_call_count", g_kfree_call_count); slab_alloc_stats([&json](size_t slab_size, size_t num_allocated, size_t num_free) { auto prefix = String::format("slab_%zu", slab_size); json.add(String::format("%s_num_allocated", prefix.characters()), (u32)num_allocated); json.add(String::format("%s_num_free", prefix.characters()), (u32)num_free); }); json.finish(); return builder.build(); } Optional procfs$all(InodeIdentifier) { InterruptDisabler disabler; auto processes = Process::all_processes(); KBufferBuilder builder; JsonArraySerializer array { builder }; // Keep this in sync with CProcessStatistics. auto build_process = [&](const Process& process) { auto process_object = array.add_object(); StringBuilder pledge_builder; #define __ENUMERATE_PLEDGE_PROMISE(promise) \ if (process.has_promised(Pledge::promise)) { \ pledge_builder.append(#promise " "); \ } ENUMERATE_PLEDGE_PROMISES #undef __ENUMERATE_PLEDGE_PROMISE process_object.add("pledge", pledge_builder.to_string()); switch (process.veil_state()) { case VeilState::None: process_object.add("veil", "None"); break; case VeilState::Dropped: process_object.add("veil", "Dropped"); break; case VeilState::Locked: process_object.add("veil", "Locked"); break; } process_object.add("pid", process.pid()); process_object.add("pgid", process.tty() ? process.tty()->pgid() : 0); process_object.add("pgp", process.pgid()); process_object.add("sid", process.sid()); process_object.add("uid", process.uid()); process_object.add("gid", process.gid()); process_object.add("ppid", process.ppid()); process_object.add("nfds", process.number_of_open_file_descriptors()); process_object.add("name", process.name()); process_object.add("tty", process.tty() ? process.tty()->tty_name() : "notty"); process_object.add("amount_virtual", (u32)process.amount_virtual()); process_object.add("amount_resident", (u32)process.amount_resident()); process_object.add("amount_dirty_private", (u32)process.amount_dirty_private()); process_object.add("amount_clean_inode", (u32)process.amount_clean_inode()); process_object.add("amount_shared", (u32)process.amount_shared()); process_object.add("amount_purgeable_volatile", (u32)process.amount_purgeable_volatile()); process_object.add("amount_purgeable_nonvolatile", (u32)process.amount_purgeable_nonvolatile()); process_object.add("icon_id", process.icon_id()); auto thread_array = process_object.add_array("threads"); process.for_each_thread([&](const Thread& thread) { auto thread_object = thread_array.add_object(); thread_object.add("tid", thread.tid()); thread_object.add("name", thread.name()); thread_object.add("times_scheduled", thread.times_scheduled()); thread_object.add("ticks", thread.ticks()); thread_object.add("state", thread.state_string()); thread_object.add("priority", thread.priority()); thread_object.add("effective_priority", thread.effective_priority()); thread_object.add("syscall_count", thread.syscall_count()); thread_object.add("inode_faults", thread.inode_faults()); thread_object.add("zero_faults", thread.zero_faults()); thread_object.add("cow_faults", thread.cow_faults()); thread_object.add("file_read_bytes", thread.file_read_bytes()); thread_object.add("file_write_bytes", thread.file_write_bytes()); thread_object.add("unix_socket_read_bytes", thread.unix_socket_read_bytes()); thread_object.add("unix_socket_write_bytes", thread.unix_socket_write_bytes()); thread_object.add("ipv4_socket_read_bytes", thread.ipv4_socket_read_bytes()); thread_object.add("ipv4_socket_write_bytes", thread.ipv4_socket_write_bytes()); return IterationDecision::Continue; }); }; build_process(*Scheduler::colonel()); for (auto* process : processes) build_process(*process); array.finish(); return builder.build(); } Optional procfs$inodes(InodeIdentifier) { extern InlineLinkedList& all_inodes(); KBufferBuilder builder; InterruptDisabler disabler; for (auto& inode : all_inodes()) { builder.appendf("Inode{K%x} %02u:%08u (%u)\n", &inode, inode.fsid(), inode.index(), inode.ref_count()); } return builder.build(); } struct SysVariable { String name; enum class Type : u8 { Invalid, Boolean, String, }; Type type { Type::Invalid }; Function notify_callback; void* address { nullptr }; static SysVariable& for_inode(InodeIdentifier); void notify() { if (notify_callback) notify_callback(); } }; static Vector* s_sys_variables; static inline Vector& sys_variables() { if (s_sys_variables == nullptr) { s_sys_variables = new Vector; s_sys_variables->append({ "", SysVariable::Type::Invalid, nullptr, nullptr }); } return *s_sys_variables; } SysVariable& SysVariable::for_inode(InodeIdentifier id) { auto index = to_sys_index(id); if (index >= sys_variables().size()) return sys_variables()[0]; auto& variable = sys_variables()[index]; ASSERT(variable.address); return variable; } static ByteBuffer read_sys_bool(InodeIdentifier inode_id) { auto& variable = SysVariable::for_inode(inode_id); ASSERT(variable.type == SysVariable::Type::Boolean); auto buffer = ByteBuffer::create_uninitialized(2); auto* lockable_bool = reinterpret_cast*>(variable.address); { LOCKER(lockable_bool->lock()); buffer[0] = lockable_bool->resource() ? '1' : '0'; } buffer[1] = '\n'; return buffer; } static ssize_t write_sys_bool(InodeIdentifier inode_id, const ByteBuffer& data) { auto& variable = SysVariable::for_inode(inode_id); ASSERT(variable.type == SysVariable::Type::Boolean); if (data.is_empty() || !(data[0] == '0' || data[0] == '1')) return data.size(); auto* lockable_bool = reinterpret_cast*>(variable.address); { LOCKER(lockable_bool->lock()); lockable_bool->resource() = data[0] == '1'; } variable.notify(); return data.size(); } static ByteBuffer read_sys_string(InodeIdentifier inode_id) { auto& variable = SysVariable::for_inode(inode_id); ASSERT(variable.type == SysVariable::Type::String); auto* lockable_string = reinterpret_cast*>(variable.address); LOCKER(lockable_string->lock()); return lockable_string->resource().to_byte_buffer(); } static ssize_t write_sys_string(InodeIdentifier inode_id, const ByteBuffer& data) { auto& variable = SysVariable::for_inode(inode_id); ASSERT(variable.type == SysVariable::Type::String); { auto* lockable_string = reinterpret_cast*>(variable.address); LOCKER(lockable_string->lock()); lockable_string->resource() = String((const char*)data.data(), data.size()); } variable.notify(); return data.size(); } void ProcFS::add_sys_bool(String&& name, Lockable& var, Function&& notify_callback) { InterruptDisabler disabler; SysVariable variable; variable.name = move(name); variable.type = SysVariable::Type::Boolean; variable.notify_callback = move(notify_callback); variable.address = &var; sys_variables().append(move(variable)); } void ProcFS::add_sys_string(String&& name, Lockable& var, Function&& notify_callback) { InterruptDisabler disabler; SysVariable variable; variable.name = move(name); variable.type = SysVariable::Type::String; variable.notify_callback = move(notify_callback); variable.address = &var; sys_variables().append(move(variable)); } bool ProcFS::initialize() { static Lockable* kmalloc_stack_helper; if (kmalloc_stack_helper == nullptr) { kmalloc_stack_helper = new Lockable(); kmalloc_stack_helper->resource() = g_dump_kmalloc_stacks; ProcFS::add_sys_bool("kmalloc_stacks", *kmalloc_stack_helper, [] { g_dump_kmalloc_stacks = kmalloc_stack_helper->resource(); }); } return true; } const char* ProcFS::class_name() const { return "ProcFS"; } KResultOr> ProcFS::create_inode(InodeIdentifier, const String&, mode_t, off_t, dev_t, uid_t, gid_t) { return KResult(-EROFS); } KResult ProcFS::create_directory(InodeIdentifier, const String&, mode_t, uid_t, gid_t) { return KResult(-EROFS); } InodeIdentifier ProcFS::root_inode() const { return { fsid(), FI_Root }; } RefPtr ProcFS::get_inode(InodeIdentifier inode_id) const { #ifdef PROCFS_DEBUG dbg() << "ProcFS::get_inode(" << inode_id.index() << ")"; #endif if (inode_id == root_inode()) return m_root_inode; LOCKER(m_inodes_lock); auto it = m_inodes.find(inode_id.index()); if (it == m_inodes.end()) { auto inode = adopt(*new ProcFSInode(const_cast(*this), inode_id.index())); m_inodes.set(inode_id.index(), inode.ptr()); return inode; } return (*it).value; } ProcFSInode::ProcFSInode(ProcFS& fs, unsigned index) : Inode(fs, index) { } ProcFSInode::~ProcFSInode() { LOCKER(fs().m_inodes_lock); fs().m_inodes.remove(index()); } InodeMetadata ProcFSInode::metadata() const { #ifdef PROCFS_DEBUG dbg() << "ProcFSInode::metadata(" << index() << ")"; #endif InodeMetadata metadata; metadata.inode = identifier(); metadata.ctime = mepoch; metadata.atime = mepoch; metadata.mtime = mepoch; auto proc_parent_directory = to_proc_parent_directory(identifier()); auto pid = to_pid(identifier()); auto proc_file_type = to_proc_file_type(identifier()); #ifdef PROCFS_DEBUG dbg() << " -> pid: " << pid << ", fi: " << proc_file_type << ", pdi: " << proc_parent_directory; #endif if (is_process_related_file(identifier())) { auto handle = ProcessInspectionHandle::from_pid(pid); metadata.uid = handle->process().sys$getuid(); metadata.gid = handle->process().sys$getgid(); } if (proc_parent_directory == PDI_PID_fd) { metadata.mode = 00120700; return metadata; } switch (proc_file_type) { case FI_Root_self: metadata.mode = 0120444; break; case FI_PID_cwd: case FI_PID_exe: case FI_PID_root: metadata.mode = 0120400; break; case FI_Root: case FI_Root_sys: case FI_Root_net: metadata.mode = 040555; break; case FI_PID: case FI_PID_fd: metadata.mode = 040500; break; default: metadata.mode = 0100444; break; } if (proc_file_type > FI_Invalid && proc_file_type < FI_MaxStaticFileIndex) { if (fs().m_entries[proc_file_type].supervisor_only) { metadata.uid = 0; metadata.gid = 0; metadata.mode &= ~077; } } #ifdef PROCFS_DEBUG dbg() << "Returning mode " << String::format("%o", metadata.mode); #endif return metadata; } ssize_t ProcFSInode::read_bytes(off_t offset, ssize_t count, u8* buffer, FileDescription* description) const { #ifdef PROCFS_DEBUG dbg() << "ProcFS: read_bytes " << index(); #endif ASSERT(offset >= 0); ASSERT(buffer); auto* directory_entry = fs().get_directory_entry(identifier()); Function(InodeIdentifier)> callback_tmp; Function(InodeIdentifier)>* read_callback { nullptr }; if (directory_entry) read_callback = &directory_entry->read_callback; else switch (to_proc_parent_directory(identifier())) { case PDI_PID_fd: callback_tmp = procfs$pid_fd_entry; read_callback = &callback_tmp; break; case PDI_Root_sys: switch (SysVariable::for_inode(identifier()).type) { case SysVariable::Type::Invalid: ASSERT_NOT_REACHED(); case SysVariable::Type::Boolean: callback_tmp = read_sys_bool; break; case SysVariable::Type::String: callback_tmp = read_sys_string; break; } read_callback = &callback_tmp; break; default: ASSERT_NOT_REACHED(); } ASSERT(read_callback); Optional generated_data; if (!description) { generated_data = (*read_callback)(identifier()); } else { if (!description->generator_cache()) description->generator_cache() = (*read_callback)(identifier()); generated_data = description->generator_cache(); } auto& data = generated_data; if (!data.has_value()) return 0; if ((size_t)offset >= data.value().size()) return 0; ssize_t nread = min(static_cast(data.value().size() - offset), static_cast(count)); memcpy(buffer, data.value().data() + offset, nread); if (nread == 0 && description && description->generator_cache()) description->generator_cache().clear(); return nread; } InodeIdentifier ProcFS::ProcFSDirectoryEntry::identifier(unsigned fsid) const { return to_identifier(fsid, PDI_Root, 0, (ProcFileType)proc_file_type); } bool ProcFSInode::traverse_as_directory(Function callback) const { #ifdef PROCFS_DEBUG dbg() << "ProcFS: traverse_as_directory " << index(); #endif if (!Kernel::is_directory(identifier())) return false; auto pid = to_pid(identifier()); auto proc_file_type = to_proc_file_type(identifier()); auto parent_id = to_parent_id(identifier()); callback({ ".", 1, identifier(), 2 }); callback({ "..", 2, parent_id, 2 }); switch (proc_file_type) { case FI_Root: for (auto& entry : fs().m_entries) { // FIXME: strlen() here is sad. if (!entry.name) continue; if (entry.proc_file_type > __FI_Root_Start && entry.proc_file_type < __FI_Root_End) callback({ entry.name, strlen(entry.name), to_identifier(fsid(), PDI_Root, 0, (ProcFileType)entry.proc_file_type), 0 }); } for (auto pid_child : Process::all_pids()) { char name[16]; size_t name_length = (size_t)sprintf(name, "%u", pid_child); callback({ name, name_length, to_identifier(fsid(), PDI_Root, pid_child, FI_PID), 0 }); } break; case FI_Root_sys: for (size_t i = 1; i < sys_variables().size(); ++i) { auto& variable = sys_variables()[i]; callback({ variable.name.characters(), variable.name.length(), sys_var_to_identifier(fsid(), i), 0 }); } break; case FI_Root_net: callback({ "adapters", 8, to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_adapters), 0 }); callback({ "arp", 3, to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_arp), 0 }); callback({ "tcp", 3, to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_tcp), 0 }); callback({ "udp", 3, to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_udp), 0 }); callback({ "local", 5, to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_local), 0 }); break; case FI_PID: { auto handle = ProcessInspectionHandle::from_pid(pid); if (!handle) return false; auto& process = handle->process(); for (auto& entry : fs().m_entries) { if (entry.proc_file_type > __FI_PID_Start && entry.proc_file_type < __FI_PID_End) { if (entry.proc_file_type == FI_PID_exe && !process.executable()) continue; // FIXME: strlen() here is sad. callback({ entry.name, strlen(entry.name), to_identifier(fsid(), PDI_PID, pid, (ProcFileType)entry.proc_file_type), 0 }); } } } break; case FI_PID_fd: { auto handle = ProcessInspectionHandle::from_pid(pid); if (!handle) return false; auto& process = handle->process(); for (int i = 0; i < process.max_open_file_descriptors(); ++i) { auto description = process.file_description(i); if (!description) continue; char name[16]; size_t name_length = (size_t)sprintf(name, "%u", i); callback({ name, name_length, to_identifier_with_fd(fsid(), pid, i), 0 }); } } break; default: return true; } return true; } RefPtr ProcFSInode::lookup(StringView name) { ASSERT(is_directory()); if (name == ".") return fs().get_inode(identifier()); if (name == "..") return fs().get_inode(to_parent_id(identifier())); auto proc_file_type = to_proc_file_type(identifier()); if (proc_file_type == FI_Root) { for (auto& entry : fs().m_entries) { if (entry.name == nullptr) continue; if (entry.proc_file_type > __FI_Root_Start && entry.proc_file_type < __FI_Root_End) { if (name == entry.name) { return fs().get_inode(to_identifier(fsid(), PDI_Root, 0, (ProcFileType)entry.proc_file_type)); } } } bool ok; unsigned name_as_number = name.to_uint(ok); if (ok) { bool process_exists = false; { InterruptDisabler disabler; process_exists = Process::from_pid(name_as_number); } if (process_exists) return fs().get_inode(to_identifier(fsid(), PDI_Root, name_as_number, FI_PID)); } return {}; } if (proc_file_type == FI_Root_sys) { for (size_t i = 1; i < sys_variables().size(); ++i) { auto& variable = sys_variables()[i]; if (name == variable.name) return fs().get_inode(sys_var_to_identifier(fsid(), i)); } return {}; } if (proc_file_type == FI_Root_net) { if (name == "adapters") return fs().get_inode(to_identifier(fsid(), PDI_Root, 0, FI_Root_net_adapters)); if (name == "arp") return fs().get_inode(to_identifier(fsid(), PDI_Root, 0, FI_Root_net_arp)); if (name == "tcp") return fs().get_inode(to_identifier(fsid(), PDI_Root, 0, FI_Root_net_tcp)); if (name == "udp") return fs().get_inode(to_identifier(fsid(), PDI_Root, 0, FI_Root_net_udp)); if (name == "local") return fs().get_inode(to_identifier(fsid(), PDI_Root, 0, FI_Root_net_local)); return {}; } if (proc_file_type == FI_PID) { auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier())); if (!handle) return {}; auto& process = handle->process(); for (auto& entry : fs().m_entries) { if (entry.proc_file_type > __FI_PID_Start && entry.proc_file_type < __FI_PID_End) { if (entry.proc_file_type == FI_PID_exe && !process.executable()) continue; if (entry.name == nullptr) continue; if (name == entry.name) { return fs().get_inode(to_identifier(fsid(), PDI_PID, to_pid(identifier()), (ProcFileType)entry.proc_file_type)); } } } return {}; } if (proc_file_type == FI_PID_fd) { bool ok; unsigned name_as_number = name.to_uint(ok); if (ok) { bool fd_exists = false; { InterruptDisabler disabler; if (auto* process = Process::from_pid(to_pid(identifier()))) fd_exists = process->file_description(name_as_number); } if (fd_exists) return fs().get_inode(to_identifier_with_fd(fsid(), to_pid(identifier()), name_as_number)); } } return {}; } void ProcFSInode::flush_metadata() { } ssize_t ProcFSInode::write_bytes(off_t offset, ssize_t size, const u8* buffer, FileDescription*) { auto* directory_entry = fs().get_directory_entry(identifier()); Function callback_tmp; Function* write_callback { nullptr }; if (directory_entry == nullptr) { if (to_proc_parent_directory(identifier()) == PDI_Root_sys) { switch (SysVariable::for_inode(identifier()).type) { case SysVariable::Type::Invalid: ASSERT_NOT_REACHED(); case SysVariable::Type::Boolean: callback_tmp = write_sys_bool; break; case SysVariable::Type::String: callback_tmp = write_sys_string; break; } write_callback = &callback_tmp; } else return -EPERM; } else { if (!directory_entry->write_callback) return -EPERM; write_callback = &directory_entry->write_callback; } ASSERT(is_persistent_inode(identifier())); // FIXME: Being able to write into ProcFS at a non-zero offset seems like something we should maybe support.. ASSERT(offset == 0); bool success = (*write_callback)(identifier(), ByteBuffer::wrap(buffer, size)); ASSERT(success); return 0; } KResultOr> ProcFSInode::resolve_as_link(Custody& base, RefPtr* out_parent, int options, int symlink_recursion_level) const { if (!is_process_related_file(identifier())) return Inode::resolve_as_link(base, out_parent, options, symlink_recursion_level); // FIXME: We should return a custody for FI_PID or FI_PID_fd here // for correctness. It's impossible to create files in ProcFS, // so returning null shouldn't break much. if (out_parent) *out_parent = nullptr; auto pid = to_pid(identifier()); auto proc_file_type = to_proc_file_type(identifier()); auto handle = ProcessInspectionHandle::from_pid(pid); if (!handle) return KResult(-ENOENT); auto& process = handle->process(); if (to_proc_parent_directory(identifier()) == PDI_PID_fd) { if (out_parent) *out_parent = base; int fd = to_fd(identifier()); auto description = process.file_description(fd); if (!description) return KResult(-ENOENT); auto proxy_inode = ProcFSProxyInode::create(const_cast(fs()), *description); return Custody::create(&base, "", proxy_inode, base.mount_flags()); } Custody* res = nullptr; switch (proc_file_type) { case FI_PID_cwd: res = &process.current_directory(); break; case FI_PID_exe: res = process.executable(); break; case FI_PID_root: // Note: we open root_directory() here, not // root_directory_relative_to_global_root(). // This seems more useful. res = &process.root_directory(); break; default: ASSERT_NOT_REACHED(); } if (!res) return KResult(-ENOENT); return *res; } ProcFSProxyInode::ProcFSProxyInode(ProcFS& fs, FileDescription& fd) : Inode(fs, 0) , m_fd(fd) { } ProcFSProxyInode::~ProcFSProxyInode() { } InodeMetadata ProcFSProxyInode::metadata() const { InodeMetadata metadata = m_fd->metadata(); if (m_fd->is_readable()) metadata.mode |= 0444; else metadata.mode &= ~0444; if (m_fd->is_writable()) metadata.mode |= 0222; else metadata.mode &= ~0222; if (!metadata.is_directory()) metadata.mode &= ~0111; return metadata; } KResult ProcFSProxyInode::add_child(InodeIdentifier child_id, const StringView& name, mode_t mode) { if (!m_fd->inode()) return KResult(-EINVAL); return m_fd->inode()->add_child(child_id, name, mode); } KResult ProcFSProxyInode::remove_child(const StringView& name) { if (!m_fd->inode()) return KResult(-EINVAL); return m_fd->inode()->remove_child(name); } RefPtr ProcFSProxyInode::lookup(StringView name) { if (!m_fd->inode()) return {}; return m_fd->inode()->lookup(name); } size_t ProcFSProxyInode::directory_entry_count() const { if (!m_fd->inode()) return 0; return m_fd->inode()->directory_entry_count(); } KResult ProcFSInode::add_child(InodeIdentifier child_id, const StringView& name, mode_t) { (void)child_id; (void)name; return KResult(-EPERM); } KResult ProcFSInode::remove_child(const StringView& name) { (void)name; return KResult(-EPERM); } size_t ProcFSInode::directory_entry_count() const { ASSERT(is_directory()); size_t count = 0; traverse_as_directory([&count](const FS::DirectoryEntry&) { ++count; return true; }); return count; } KResult ProcFSInode::chmod(mode_t) { return KResult(-EPERM); } ProcFS::ProcFS() { m_root_inode = adopt(*new ProcFSInode(*this, 1)); m_entries.resize(FI_MaxStaticFileIndex); m_entries[FI_Root_mm] = { "mm", FI_Root_mm, true, procfs$mm }; m_entries[FI_Root_mounts] = { "mounts", FI_Root_mounts, false, procfs$mounts }; m_entries[FI_Root_df] = { "df", FI_Root_df, false, procfs$df }; m_entries[FI_Root_all] = { "all", FI_Root_all, false, procfs$all }; m_entries[FI_Root_memstat] = { "memstat", FI_Root_memstat, false, procfs$memstat }; m_entries[FI_Root_cpuinfo] = { "cpuinfo", FI_Root_cpuinfo, false, procfs$cpuinfo }; m_entries[FI_Root_inodes] = { "inodes", FI_Root_inodes, true, procfs$inodes }; m_entries[FI_Root_dmesg] = { "dmesg", FI_Root_dmesg, true, procfs$dmesg }; m_entries[FI_Root_self] = { "self", FI_Root_self, false, procfs$self }; m_entries[FI_Root_pci] = { "pci", FI_Root_pci, false, procfs$pci }; m_entries[FI_Root_interrupts] = { "interrupts", FI_Root_interrupts, false, procfs$interrupts }; m_entries[FI_Root_devices] = { "devices", FI_Root_devices, false, procfs$devices }; m_entries[FI_Root_uptime] = { "uptime", FI_Root_uptime, false, procfs$uptime }; m_entries[FI_Root_cmdline] = { "cmdline", FI_Root_cmdline, true, procfs$cmdline }; m_entries[FI_Root_modules] = { "modules", FI_Root_modules, true, procfs$modules }; m_entries[FI_Root_profile] = { "profile", FI_Root_profile, false, procfs$profile }; m_entries[FI_Root_sys] = { "sys", FI_Root_sys, true }; m_entries[FI_Root_net] = { "net", FI_Root_net, false }; m_entries[FI_Root_net_adapters] = { "adapters", FI_Root_net_adapters, false, procfs$net_adapters }; m_entries[FI_Root_net_arp] = { "arp", FI_Root_net_arp, true, procfs$net_arp }; m_entries[FI_Root_net_tcp] = { "tcp", FI_Root_net_tcp, false, procfs$net_tcp }; m_entries[FI_Root_net_udp] = { "udp", FI_Root_net_udp, false, procfs$net_udp }; m_entries[FI_Root_net_local] = { "local", FI_Root_net_local, false, procfs$net_local }; m_entries[FI_PID_vm] = { "vm", FI_PID_vm, false, procfs$pid_vm }; m_entries[FI_PID_vmobjects] = { "vmobjects", FI_PID_vmobjects, true, procfs$pid_vmobjects }; m_entries[FI_PID_stack] = { "stack", FI_PID_stack, false, procfs$pid_stack }; m_entries[FI_PID_regs] = { "regs", FI_PID_regs, true, procfs$pid_regs }; m_entries[FI_PID_fds] = { "fds", FI_PID_fds, false, procfs$pid_fds }; m_entries[FI_PID_exe] = { "exe", FI_PID_exe, false, procfs$pid_exe }; m_entries[FI_PID_cwd] = { "cwd", FI_PID_cwd, false, procfs$pid_cwd }; m_entries[FI_PID_unveil] = { "unveil", FI_PID_unveil, false, procfs$pid_unveil }; m_entries[FI_PID_root] = { "root", FI_PID_root, false, procfs$pid_root }; m_entries[FI_PID_fd] = { "fd", FI_PID_fd, false }; } ProcFS::ProcFSDirectoryEntry* ProcFS::get_directory_entry(InodeIdentifier identifier) const { auto proc_file_type = to_proc_file_type(identifier); if (proc_file_type != FI_Invalid && proc_file_type != FI_Root_sys_variable && proc_file_type < FI_MaxStaticFileIndex) return const_cast(&m_entries[proc_file_type]); return nullptr; } KResult ProcFSInode::chown(uid_t, gid_t) { return KResult(-EPERM); } }