/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2021, sin-ack * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include namespace Kernel { static constexpr size_t max_block_size = 4096; static constexpr ssize_t max_inline_symlink_length = 60; struct Ext2FSDirectoryEntry { String name; InodeIndex inode_index { 0 }; u8 file_type { 0 }; u16 record_length { 0 }; }; static u8 to_ext2_file_type(mode_t mode) { if (is_regular_file(mode)) return EXT2_FT_REG_FILE; if (is_directory(mode)) return EXT2_FT_DIR; if (is_character_device(mode)) return EXT2_FT_CHRDEV; if (is_block_device(mode)) return EXT2_FT_BLKDEV; if (is_fifo(mode)) return EXT2_FT_FIFO; if (is_socket(mode)) return EXT2_FT_SOCK; if (is_symlink(mode)) return EXT2_FT_SYMLINK; return EXT2_FT_UNKNOWN; } static unsigned divide_rounded_up(unsigned a, unsigned b) { return (a / b) + (a % b != 0); } NonnullRefPtr Ext2FS::create(FileDescription& file_description) { return adopt_ref(*new Ext2FS(file_description)); } Ext2FS::Ext2FS(FileDescription& file_description) : BlockBasedFS(file_description) { } Ext2FS::~Ext2FS() { } bool Ext2FS::flush_super_block() { Locker locker(m_lock); VERIFY((sizeof(ext2_super_block) % logical_block_size()) == 0); auto super_block_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&m_super_block); bool success = raw_write_blocks(2, (sizeof(ext2_super_block) / logical_block_size()), super_block_buffer); VERIFY(success); return true; } const ext2_group_desc& Ext2FS::group_descriptor(GroupIndex group_index) const { // FIXME: Should this fail gracefully somehow? VERIFY(group_index <= m_block_group_count); VERIFY(group_index > 0); return block_group_descriptors()[group_index.value() - 1]; } bool Ext2FS::initialize() { Locker locker(m_lock); VERIFY((sizeof(ext2_super_block) % logical_block_size()) == 0); auto super_block_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&m_super_block); bool success = raw_read_blocks(2, (sizeof(ext2_super_block) / logical_block_size()), super_block_buffer); VERIFY(success); auto& super_block = this->super_block(); if constexpr (EXT2_DEBUG) { dmesgln("Ext2FS: super block magic: {:04x} (super block size: {})", super_block.s_magic, sizeof(ext2_super_block)); } if (super_block.s_magic != EXT2_SUPER_MAGIC) return false; if constexpr (EXT2_DEBUG) { dmesgln("Ext2FS: {} inodes, {} blocks", super_block.s_inodes_count, super_block.s_blocks_count); dmesgln("Ext2FS: Block size: {}", EXT2_BLOCK_SIZE(&super_block)); dmesgln("Ext2FS: First data block: {}", super_block.s_first_data_block); dmesgln("Ext2FS: Inodes per block: {}", inodes_per_block()); dmesgln("Ext2FS: Inodes per group: {}", inodes_per_group()); dmesgln("Ext2FS: Free inodes: {}", super_block.s_free_inodes_count); dmesgln("Ext2FS: Descriptors per block: {}", EXT2_DESC_PER_BLOCK(&super_block)); dmesgln("Ext2FS: Descriptor size: {}", EXT2_DESC_SIZE(&super_block)); } set_block_size(EXT2_BLOCK_SIZE(&super_block)); set_fragment_size(EXT2_FRAG_SIZE(&super_block)); VERIFY(block_size() <= (int)max_block_size); m_block_group_count = ceil_div(super_block.s_blocks_count, super_block.s_blocks_per_group); if (m_block_group_count == 0) { dmesgln("Ext2FS: no block groups :("); return false; } unsigned blocks_to_read = ceil_div(m_block_group_count * sizeof(ext2_group_desc), block_size()); BlockIndex first_block_of_bgdt = block_size() == 1024 ? 2 : 1; m_cached_group_descriptor_table = KBuffer::try_create_with_size(block_size() * blocks_to_read, Region::Access::Read | Region::Access::Write, "Ext2FS: Block group descriptors"); if (!m_cached_group_descriptor_table) { dbgln("Ext2FS: Failed to allocate memory for group descriptor table"); return false; } auto buffer = UserOrKernelBuffer::for_kernel_buffer(m_cached_group_descriptor_table->data()); if (auto result = read_blocks(first_block_of_bgdt, blocks_to_read, buffer); result.is_error()) { // FIXME: Propagate the error dbgln("Ext2FS: initialize had error: {}", result.error()); return false; } if constexpr (EXT2_DEBUG) { for (unsigned i = 1; i <= m_block_group_count; ++i) { auto& group = group_descriptor(i); dbgln("Ext2FS: group[{}] ( block_bitmap: {}, inode_bitmap: {}, inode_table: {} )", i, group.bg_block_bitmap, group.bg_inode_bitmap, group.bg_inode_table); } } return true; } const char* Ext2FS::class_name() const { return "Ext2FS"; } NonnullRefPtr Ext2FS::root_inode() const { return *get_inode({ fsid(), EXT2_ROOT_INO }); } bool Ext2FS::find_block_containing_inode(InodeIndex inode, BlockIndex& block_index, unsigned& offset) const { auto& super_block = this->super_block(); if (inode != EXT2_ROOT_INO && inode < EXT2_FIRST_INO(&super_block)) return false; if (inode > super_block.s_inodes_count) return false; auto& bgd = group_descriptor(group_index_from_inode(inode)); offset = ((inode.value() - 1) % inodes_per_group()) * inode_size(); block_index = bgd.bg_inode_table + (offset >> EXT2_BLOCK_SIZE_BITS(&super_block)); offset &= block_size() - 1; return true; } Ext2FS::BlockListShape Ext2FS::compute_block_list_shape(unsigned blocks) const { BlockListShape shape; const unsigned entries_per_block = EXT2_ADDR_PER_BLOCK(&super_block()); unsigned blocks_remaining = blocks; shape.direct_blocks = min((unsigned)EXT2_NDIR_BLOCKS, blocks_remaining); blocks_remaining -= shape.direct_blocks; if (!blocks_remaining) return shape; shape.indirect_blocks = min(blocks_remaining, entries_per_block); shape.meta_blocks += 1; blocks_remaining -= shape.indirect_blocks; if (!blocks_remaining) return shape; shape.doubly_indirect_blocks = min(blocks_remaining, entries_per_block * entries_per_block); shape.meta_blocks += 1; shape.meta_blocks += divide_rounded_up(shape.doubly_indirect_blocks, entries_per_block); blocks_remaining -= shape.doubly_indirect_blocks; if (!blocks_remaining) return shape; shape.triply_indirect_blocks = min(blocks_remaining, entries_per_block * entries_per_block * entries_per_block); shape.meta_blocks += 1; shape.meta_blocks += divide_rounded_up(shape.triply_indirect_blocks, entries_per_block * entries_per_block); shape.meta_blocks += divide_rounded_up(shape.triply_indirect_blocks, entries_per_block); blocks_remaining -= shape.triply_indirect_blocks; VERIFY(blocks_remaining == 0); return shape; } KResult Ext2FSInode::write_indirect_block(BlockBasedFS::BlockIndex block, Span blocks_indices) { const auto entries_per_block = EXT2_ADDR_PER_BLOCK(&fs().super_block()); VERIFY(blocks_indices.size() <= entries_per_block); auto block_contents = ByteBuffer::create_uninitialized(fs().block_size()); OutputMemoryStream stream { block_contents }; auto buffer = UserOrKernelBuffer::for_kernel_buffer(stream.data()); VERIFY(blocks_indices.size() <= EXT2_ADDR_PER_BLOCK(&fs().super_block())); for (unsigned i = 0; i < blocks_indices.size(); ++i) stream << static_cast(blocks_indices[i].value()); stream.fill_to_end(0); return fs().write_block(block, buffer, stream.size()); } KResult Ext2FSInode::grow_doubly_indirect_block(BlockBasedFS::BlockIndex block, size_t old_blocks_length, Span blocks_indices, Vector& new_meta_blocks, unsigned& meta_blocks) { const auto entries_per_block = EXT2_ADDR_PER_BLOCK(&fs().super_block()); const auto entries_per_doubly_indirect_block = entries_per_block * entries_per_block; const auto old_indirect_blocks_length = divide_rounded_up(old_blocks_length, entries_per_block); const auto new_indirect_blocks_length = divide_rounded_up(blocks_indices.size(), entries_per_block); VERIFY(blocks_indices.size() > 0); VERIFY(blocks_indices.size() > old_blocks_length); VERIFY(blocks_indices.size() <= entries_per_doubly_indirect_block); auto block_contents = ByteBuffer::create_uninitialized(fs().block_size()); auto* block_as_pointers = (unsigned*)block_contents.data(); OutputMemoryStream stream { block_contents }; auto buffer = UserOrKernelBuffer::for_kernel_buffer(stream.data()); if (old_blocks_length > 0) { if (auto result = fs().read_block(block, &buffer, fs().block_size()); result.is_error()) return result; } // Grow the doubly indirect block. for (unsigned i = 0; i < old_indirect_blocks_length; i++) stream << static_cast(block_as_pointers[i]); for (unsigned i = old_indirect_blocks_length; i < new_indirect_blocks_length; i++) { auto new_block = new_meta_blocks.take_last().value(); dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::grow_doubly_indirect_block(): Allocating indirect block {} at index {}", identifier(), new_block, i); stream << static_cast(new_block); meta_blocks++; } stream.fill_to_end(0); // Write out the indirect blocks. for (unsigned i = old_blocks_length / entries_per_block; i < new_indirect_blocks_length; i++) { const auto offset_block = i * entries_per_block; if (auto result = write_indirect_block(block_as_pointers[i], blocks_indices.slice(offset_block, min(blocks_indices.size() - offset_block, entries_per_block))); result.is_error()) return result; } // Write out the doubly indirect block. return fs().write_block(block, buffer, stream.size()); } KResult Ext2FSInode::shrink_doubly_indirect_block(BlockBasedFS::BlockIndex block, size_t old_blocks_length, size_t new_blocks_length, unsigned& meta_blocks) { const auto entries_per_block = EXT2_ADDR_PER_BLOCK(&fs().super_block()); const auto entries_per_doubly_indirect_block = entries_per_block * entries_per_block; const auto old_indirect_blocks_length = divide_rounded_up(old_blocks_length, entries_per_block); const auto new_indirect_blocks_length = divide_rounded_up(new_blocks_length, entries_per_block); VERIFY(old_blocks_length > 0); VERIFY(old_blocks_length >= new_blocks_length); VERIFY(new_blocks_length <= entries_per_doubly_indirect_block); auto block_contents = ByteBuffer::create_uninitialized(fs().block_size()); auto* block_as_pointers = (unsigned*)block_contents.data(); auto buffer = UserOrKernelBuffer::for_kernel_buffer(reinterpret_cast(block_as_pointers)); if (auto result = fs().read_block(block, &buffer, fs().block_size()); result.is_error()) return result; // Free the unused indirect blocks. for (unsigned i = new_indirect_blocks_length; i < old_indirect_blocks_length; i++) { dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::shrink_doubly_indirect_block(): Freeing indirect block {} at index {}", identifier(), block_as_pointers[i], i); if (auto result = fs().set_block_allocation_state(block_as_pointers[i], false); result.is_error()) return result; meta_blocks--; } // Free the doubly indirect block if no longer needed. if (new_blocks_length == 0) { dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::shrink_doubly_indirect_block(): Freeing doubly indirect block {}", identifier(), block); if (auto result = fs().set_block_allocation_state(block, false); result.is_error()) return result; meta_blocks--; } return KSuccess; } KResult Ext2FSInode::grow_triply_indirect_block(BlockBasedFS::BlockIndex block, size_t old_blocks_length, Span blocks_indices, Vector& new_meta_blocks, unsigned& meta_blocks) { const auto entries_per_block = EXT2_ADDR_PER_BLOCK(&fs().super_block()); const auto entries_per_doubly_indirect_block = entries_per_block * entries_per_block; const auto entries_per_triply_indirect_block = entries_per_block * entries_per_block; const auto old_doubly_indirect_blocks_length = divide_rounded_up(old_blocks_length, entries_per_doubly_indirect_block); const auto new_doubly_indirect_blocks_length = divide_rounded_up(blocks_indices.size(), entries_per_doubly_indirect_block); VERIFY(blocks_indices.size() > 0); VERIFY(blocks_indices.size() > old_blocks_length); VERIFY(blocks_indices.size() <= entries_per_triply_indirect_block); auto block_contents = ByteBuffer::create_uninitialized(fs().block_size()); auto* block_as_pointers = (unsigned*)block_contents.data(); OutputMemoryStream stream { block_contents }; auto buffer = UserOrKernelBuffer::for_kernel_buffer(stream.data()); if (old_blocks_length > 0) { if (auto result = fs().read_block(block, &buffer, fs().block_size()); result.is_error()) return result; } // Grow the triply indirect block. for (unsigned i = 0; i < old_doubly_indirect_blocks_length; i++) stream << static_cast(block_as_pointers[i]); for (unsigned i = old_doubly_indirect_blocks_length; i < new_doubly_indirect_blocks_length; i++) { auto new_block = new_meta_blocks.take_last().value(); dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::grow_triply_indirect_block(): Allocating doubly indirect block {} at index {}", identifier(), new_block, i); stream << static_cast(new_block); meta_blocks++; } stream.fill_to_end(0); // Write out the doubly indirect blocks. for (unsigned i = old_blocks_length / entries_per_doubly_indirect_block; i < new_doubly_indirect_blocks_length; i++) { const auto processed_blocks = i * entries_per_doubly_indirect_block; const auto old_doubly_indirect_blocks_length = min(old_blocks_length > processed_blocks ? old_blocks_length - processed_blocks : 0, entries_per_doubly_indirect_block); const auto new_doubly_indirect_blocks_length = min(blocks_indices.size() > processed_blocks ? blocks_indices.size() - processed_blocks : 0, entries_per_doubly_indirect_block); if (auto result = grow_doubly_indirect_block(block_as_pointers[i], old_doubly_indirect_blocks_length, blocks_indices.slice(processed_blocks, new_doubly_indirect_blocks_length), new_meta_blocks, meta_blocks); result.is_error()) return result; } // Write out the triply indirect block. return fs().write_block(block, buffer, stream.size()); } KResult Ext2FSInode::shrink_triply_indirect_block(BlockBasedFS::BlockIndex block, size_t old_blocks_length, size_t new_blocks_length, unsigned& meta_blocks) { const auto entries_per_block = EXT2_ADDR_PER_BLOCK(&fs().super_block()); const auto entries_per_doubly_indirect_block = entries_per_block * entries_per_block; const auto entries_per_triply_indirect_block = entries_per_doubly_indirect_block * entries_per_block; const auto old_triply_indirect_blocks_length = divide_rounded_up(old_blocks_length, entries_per_doubly_indirect_block); const auto new_triply_indirect_blocks_length = new_blocks_length / entries_per_doubly_indirect_block; VERIFY(old_blocks_length > 0); VERIFY(old_blocks_length >= new_blocks_length); VERIFY(new_blocks_length <= entries_per_triply_indirect_block); auto block_contents = ByteBuffer::create_uninitialized(fs().block_size()); auto* block_as_pointers = (unsigned*)block_contents.data(); auto buffer = UserOrKernelBuffer::for_kernel_buffer(reinterpret_cast(block_as_pointers)); if (auto result = fs().read_block(block, &buffer, fs().block_size()); result.is_error()) return result; // Shrink the doubly indirect blocks. for (unsigned i = new_triply_indirect_blocks_length; i < old_triply_indirect_blocks_length; i++) { const auto processed_blocks = i * entries_per_doubly_indirect_block; const auto old_doubly_indirect_blocks_length = min(old_blocks_length > processed_blocks ? old_blocks_length - processed_blocks : 0, entries_per_doubly_indirect_block); const auto new_doubly_indirect_blocks_length = min(new_blocks_length > processed_blocks ? new_blocks_length - processed_blocks : 0, entries_per_doubly_indirect_block); dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::shrink_triply_indirect_block(): Shrinking doubly indirect block {} at index {}", identifier(), block_as_pointers[i], i); if (auto result = shrink_doubly_indirect_block(block_as_pointers[i], old_doubly_indirect_blocks_length, new_doubly_indirect_blocks_length, meta_blocks); result.is_error()) return result; } // Free the triply indirect block if no longer needed. if (new_blocks_length == 0) { dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::shrink_triply_indirect_block(): Freeing triply indirect block {}", identifier(), block); if (auto result = fs().set_block_allocation_state(block, false); result.is_error()) return result; meta_blocks--; } return KSuccess; } KResult Ext2FSInode::flush_block_list() { Locker locker(m_lock); if (m_block_list.is_empty()) { m_raw_inode.i_blocks = 0; memset(m_raw_inode.i_block, 0, sizeof(m_raw_inode.i_block)); set_metadata_dirty(true); return KSuccess; } // NOTE: There is a mismatch between i_blocks and blocks.size() since i_blocks includes meta blocks and blocks.size() does not. const auto old_block_count = ceil_div(size(), static_cast(fs().block_size())); auto old_shape = fs().compute_block_list_shape(old_block_count); const auto new_shape = fs().compute_block_list_shape(m_block_list.size()); Vector new_meta_blocks; if (new_shape.meta_blocks > old_shape.meta_blocks) { auto blocks_or_error = fs().allocate_blocks(fs().group_index_from_inode(index()), new_shape.meta_blocks - old_shape.meta_blocks); if (blocks_or_error.is_error()) return blocks_or_error.error(); new_meta_blocks = blocks_or_error.release_value(); } m_raw_inode.i_blocks = (m_block_list.size() + new_shape.meta_blocks) * (fs().block_size() / 512); dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::flush_block_list(): Old shape=({};{};{};{}:{}), new shape=({};{};{};{}:{})", identifier(), old_shape.direct_blocks, old_shape.indirect_blocks, old_shape.doubly_indirect_blocks, old_shape.triply_indirect_blocks, old_shape.meta_blocks, new_shape.direct_blocks, new_shape.indirect_blocks, new_shape.doubly_indirect_blocks, new_shape.triply_indirect_blocks, new_shape.meta_blocks); unsigned output_block_index = 0; unsigned remaining_blocks = m_block_list.size(); // Deal with direct blocks. bool inode_dirty = false; VERIFY(new_shape.direct_blocks <= EXT2_NDIR_BLOCKS); for (unsigned i = 0; i < new_shape.direct_blocks; ++i) { if (BlockBasedFS::BlockIndex(m_raw_inode.i_block[i]) != m_block_list[output_block_index]) inode_dirty = true; m_raw_inode.i_block[i] = m_block_list[output_block_index].value(); ++output_block_index; --remaining_blocks; } // e2fsck considers all blocks reachable through any of the pointers in // m_raw_inode.i_block as part of this inode regardless of the value in // m_raw_inode.i_size. When it finds more blocks than the amount that // is indicated by i_size or i_blocks it offers to repair the filesystem // by changing those values. That will actually cause further corruption. // So we must zero all pointers to blocks that are now unused. for (unsigned i = new_shape.direct_blocks; i < EXT2_NDIR_BLOCKS; ++i) { m_raw_inode.i_block[i] = 0; } if (inode_dirty) { if constexpr (EXT2_DEBUG) { dbgln("Ext2FSInode[{}]::flush_block_list(): Writing {} direct block(s) to i_block array of inode {}", identifier(), min((size_t)EXT2_NDIR_BLOCKS, m_block_list.size()), index()); for (size_t i = 0; i < min((size_t)EXT2_NDIR_BLOCKS, m_block_list.size()); ++i) dbgln(" + {}", m_block_list[i]); } set_metadata_dirty(true); } // Deal with indirect blocks. if (old_shape.indirect_blocks != new_shape.indirect_blocks) { if (new_shape.indirect_blocks > old_shape.indirect_blocks) { // Write out the indirect block. if (old_shape.indirect_blocks == 0) { auto new_block = new_meta_blocks.take_last().value(); dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::flush_block_list(): Allocating indirect block: {}", identifier(), new_block); m_raw_inode.i_block[EXT2_IND_BLOCK] = new_block; set_metadata_dirty(true); old_shape.meta_blocks++; } if (auto result = write_indirect_block(m_raw_inode.i_block[EXT2_IND_BLOCK], m_block_list.span().slice(output_block_index, new_shape.indirect_blocks)); result.is_error()) return result; } else if ((new_shape.indirect_blocks == 0) && (old_shape.indirect_blocks != 0)) { dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::flush_block_list(): Freeing indirect block: {}", identifier(), m_raw_inode.i_block[EXT2_IND_BLOCK]); if (auto result = fs().set_block_allocation_state(m_raw_inode.i_block[EXT2_IND_BLOCK], false); result.is_error()) return result; old_shape.meta_blocks--; m_raw_inode.i_block[EXT2_IND_BLOCK] = 0; } } remaining_blocks -= new_shape.indirect_blocks; output_block_index += new_shape.indirect_blocks; if (old_shape.doubly_indirect_blocks != new_shape.doubly_indirect_blocks) { // Write out the doubly indirect block. if (new_shape.doubly_indirect_blocks > old_shape.doubly_indirect_blocks) { if (old_shape.doubly_indirect_blocks == 0) { auto new_block = new_meta_blocks.take_last().value(); dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::flush_block_list(): Allocating doubly indirect block: {}", identifier(), new_block); m_raw_inode.i_block[EXT2_DIND_BLOCK] = new_block; set_metadata_dirty(true); old_shape.meta_blocks++; } if (auto result = grow_doubly_indirect_block(m_raw_inode.i_block[EXT2_DIND_BLOCK], old_shape.doubly_indirect_blocks, m_block_list.span().slice(output_block_index, new_shape.doubly_indirect_blocks), new_meta_blocks, old_shape.meta_blocks); result.is_error()) return result; } else { if (auto result = shrink_doubly_indirect_block(m_raw_inode.i_block[EXT2_DIND_BLOCK], old_shape.doubly_indirect_blocks, new_shape.doubly_indirect_blocks, old_shape.meta_blocks); result.is_error()) return result; if (new_shape.doubly_indirect_blocks == 0) m_raw_inode.i_block[EXT2_DIND_BLOCK] = 0; } } remaining_blocks -= new_shape.doubly_indirect_blocks; output_block_index += new_shape.doubly_indirect_blocks; if (old_shape.triply_indirect_blocks != new_shape.triply_indirect_blocks) { // Write out the triply indirect block. if (new_shape.triply_indirect_blocks > old_shape.triply_indirect_blocks) { if (old_shape.triply_indirect_blocks == 0) { auto new_block = new_meta_blocks.take_last().value(); dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::flush_block_list(): Allocating triply indirect block: {}", identifier(), new_block); m_raw_inode.i_block[EXT2_TIND_BLOCK] = new_block; set_metadata_dirty(true); old_shape.meta_blocks++; } if (auto result = grow_triply_indirect_block(m_raw_inode.i_block[EXT2_TIND_BLOCK], old_shape.triply_indirect_blocks, m_block_list.span().slice(output_block_index, new_shape.triply_indirect_blocks), new_meta_blocks, old_shape.meta_blocks); result.is_error()) return result; } else { if (auto result = shrink_triply_indirect_block(m_raw_inode.i_block[EXT2_TIND_BLOCK], old_shape.triply_indirect_blocks, new_shape.triply_indirect_blocks, old_shape.meta_blocks); result.is_error()) return result; if (new_shape.triply_indirect_blocks == 0) m_raw_inode.i_block[EXT2_TIND_BLOCK] = 0; } } remaining_blocks -= new_shape.triply_indirect_blocks; output_block_index += new_shape.triply_indirect_blocks; dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::flush_block_list(): New meta blocks count at {}, expecting {}", identifier(), old_shape.meta_blocks, new_shape.meta_blocks); VERIFY(new_meta_blocks.size() == 0); VERIFY(old_shape.meta_blocks == new_shape.meta_blocks); if (!remaining_blocks) return KSuccess; dbgln("we don't know how to write qind ext2fs blocks, they don't exist anyway!"); VERIFY_NOT_REACHED(); } Vector Ext2FSInode::compute_block_list() const { return compute_block_list_impl(false); } Vector Ext2FSInode::compute_block_list_with_meta_blocks() const { return compute_block_list_impl(true); } Vector Ext2FSInode::compute_block_list_impl(bool include_block_list_blocks) const { // FIXME: This is really awkwardly factored.. foo_impl_internal :| auto block_list = compute_block_list_impl_internal(m_raw_inode, include_block_list_blocks); while (!block_list.is_empty() && block_list.last() == 0) block_list.take_last(); return block_list; } Vector Ext2FSInode::compute_block_list_impl_internal(const ext2_inode& e2inode, bool include_block_list_blocks) const { unsigned entries_per_block = EXT2_ADDR_PER_BLOCK(&fs().super_block()); unsigned block_count = ceil_div(size(), static_cast(fs().block_size())); // If we are handling a symbolic link, the path is stored in the 60 bytes in // the inode that are used for the 12 direct and 3 indirect block pointers, // If the path is longer than 60 characters, a block is allocated, and the // block contains the destination path. The file size corresponds to the // path length of the destination. if (::is_symlink(e2inode.i_mode) && e2inode.i_blocks == 0) block_count = 0; dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::block_list_for_inode(): i_size={}, i_blocks={}, block_count={}", identifier(), e2inode.i_size, e2inode.i_blocks, block_count); unsigned blocks_remaining = block_count; if (include_block_list_blocks) { auto shape = fs().compute_block_list_shape(block_count); blocks_remaining += shape.meta_blocks; } Vector list; auto add_block = [&](auto bi) { if (blocks_remaining) { list.append(bi); --blocks_remaining; } }; if (include_block_list_blocks) { // This seems like an excessive over-estimate but w/e. list.ensure_capacity(blocks_remaining * 2); } else { list.ensure_capacity(blocks_remaining); } unsigned direct_count = min(block_count, (unsigned)EXT2_NDIR_BLOCKS); for (unsigned i = 0; i < direct_count; ++i) { auto block_index = e2inode.i_block[i]; add_block(block_index); } if (!blocks_remaining) return list; // Don't need to make copy of add_block, since this capture will only // be called before compute_block_list_impl_internal finishes. auto process_block_array = [&](auto array_block_index, auto&& callback) { if (include_block_list_blocks) add_block(array_block_index); auto count = min(blocks_remaining, entries_per_block); if (!count) return; size_t read_size = count * sizeof(u32); auto array_storage = ByteBuffer::create_uninitialized(read_size); auto* array = (u32*)array_storage.data(); auto buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)array); if (auto result = fs().read_block(array_block_index, &buffer, read_size, 0); result.is_error()) { // FIXME: Stop here and propagate this error. dbgln("Ext2FSInode[{}]::compute_block_list_impl_internal(): Error: {}", identifier(), result.error()); } for (unsigned i = 0; i < count; ++i) callback(Ext2FS::BlockIndex(array[i])); }; process_block_array(e2inode.i_block[EXT2_IND_BLOCK], [&](auto block_index) { add_block(block_index); }); if (!blocks_remaining) return list; process_block_array(e2inode.i_block[EXT2_DIND_BLOCK], [&](auto block_index) { process_block_array(block_index, [&](auto block_index2) { add_block(block_index2); }); }); if (!blocks_remaining) return list; process_block_array(e2inode.i_block[EXT2_TIND_BLOCK], [&](auto block_index) { process_block_array(block_index, [&](auto block_index2) { process_block_array(block_index2, [&](auto block_index3) { add_block(block_index3); }); }); }); return list; } void Ext2FS::free_inode(Ext2FSInode& inode) { Locker locker(m_lock); VERIFY(inode.m_raw_inode.i_links_count == 0); dbgln_if(EXT2_DEBUG, "Ext2FS[{}]::free_inode(): Inode {} has no more links, time to delete!", fsid(), inode.index()); // Mark all blocks used by this inode as free. for (auto block_index : inode.compute_block_list_with_meta_blocks()) { VERIFY(block_index <= super_block().s_blocks_count); if (block_index.value()) { if (auto result = set_block_allocation_state(block_index, false); result.is_error()) { dbgln("Ext2FS[{}]::free_inode(): Failed to deallocate block {} for inode {}", fsid(), block_index, inode.index()); } } } // If the inode being freed is a directory, update block group directory counter. if (inode.is_directory()) { auto& bgd = const_cast(group_descriptor(group_index_from_inode(inode.index()))); --bgd.bg_used_dirs_count; dbgln_if(EXT2_DEBUG, "Ext2FS[{}]::free_inode(): Decremented bg_used_dirs_count to {} for inode {}", fsid(), bgd.bg_used_dirs_count, inode.index()); m_block_group_descriptors_dirty = true; } // NOTE: After this point, the inode metadata is wiped. memset(&inode.m_raw_inode, 0, sizeof(ext2_inode)); inode.m_raw_inode.i_dtime = kgettimeofday().to_truncated_seconds(); write_ext2_inode(inode.index(), inode.m_raw_inode); // Mark the inode as free. if (auto result = set_inode_allocation_state(inode.index(), false); result.is_error()) dbgln("Ext2FS[{}]::free_inode(): Failed to free inode {}: {}", fsid(), inode.index(), result.error()); } void Ext2FS::flush_block_group_descriptor_table() { Locker locker(m_lock); unsigned blocks_to_write = ceil_div(m_block_group_count * sizeof(ext2_group_desc), block_size()); unsigned first_block_of_bgdt = block_size() == 1024 ? 2 : 1; auto buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)block_group_descriptors()); if (auto result = write_blocks(first_block_of_bgdt, blocks_to_write, buffer); result.is_error()) dbgln("Ext2FS[{}]::flush_block_group_descriptor_table(): Failed to write blocks: {}", fsid(), result.error()); } void Ext2FS::flush_writes() { Locker locker(m_lock); if (m_super_block_dirty) { flush_super_block(); m_super_block_dirty = false; } if (m_block_group_descriptors_dirty) { flush_block_group_descriptor_table(); m_block_group_descriptors_dirty = false; } for (auto& cached_bitmap : m_cached_bitmaps) { if (cached_bitmap->dirty) { auto buffer = UserOrKernelBuffer::for_kernel_buffer(cached_bitmap->buffer.data()); if (auto result = write_block(cached_bitmap->bitmap_block_index, buffer, block_size()); result.is_error()) { dbgln("Ext2FS[{}]::flush_writes(): Failed to write blocks: {}", fsid(), result.error()); } cached_bitmap->dirty = false; dbgln_if(EXT2_DEBUG, "Ext2FS[{}]::flush_writes(): Flushed bitmap block {}", fsid(), cached_bitmap->bitmap_block_index); } } BlockBasedFS::flush_writes(); // Uncache Inodes that are only kept alive by the index-to-inode lookup cache. // We don't uncache Inodes that are being watched by at least one InodeWatcher. // FIXME: It would be better to keep a capped number of Inodes around. // The problem is that they are quite heavy objects, and use a lot of heap memory // for their (child name lookup) and (block list) caches. Vector unused_inodes; for (auto& it : m_inode_cache) { if (it.value->ref_count() != 1) continue; if (it.value->has_watchers()) continue; unused_inodes.append(it.key); } for (auto index : unused_inodes) uncache_inode(index); } Ext2FSInode::Ext2FSInode(Ext2FS& fs, InodeIndex index) : Inode(fs, index) { } Ext2FSInode::~Ext2FSInode() { if (m_raw_inode.i_links_count == 0) fs().free_inode(*this); } u64 Ext2FSInode::size() const { if (Kernel::is_regular_file(m_raw_inode.i_mode) && ((u32)fs().get_features_readonly() & (u32)Ext2FS::FeaturesReadOnly::FileSize64bits)) return static_cast(m_raw_inode.i_dir_acl) << 32 | m_raw_inode.i_size; return m_raw_inode.i_size; } InodeMetadata Ext2FSInode::metadata() const { Locker locker(m_lock); InodeMetadata metadata; metadata.inode = identifier(); metadata.size = size(); metadata.mode = m_raw_inode.i_mode; metadata.uid = m_raw_inode.i_uid; metadata.gid = m_raw_inode.i_gid; metadata.link_count = m_raw_inode.i_links_count; metadata.atime = m_raw_inode.i_atime; metadata.ctime = m_raw_inode.i_ctime; metadata.mtime = m_raw_inode.i_mtime; metadata.dtime = m_raw_inode.i_dtime; metadata.block_size = fs().block_size(); metadata.block_count = m_raw_inode.i_blocks; if (Kernel::is_character_device(m_raw_inode.i_mode) || Kernel::is_block_device(m_raw_inode.i_mode)) { unsigned dev = m_raw_inode.i_block[0]; if (!dev) dev = m_raw_inode.i_block[1]; metadata.major_device = (dev & 0xfff00) >> 8; metadata.minor_device = (dev & 0xff) | ((dev >> 12) & 0xfff00); } return metadata; } void Ext2FSInode::flush_metadata() { Locker locker(m_lock); dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::flush_metadata(): Flushing inode", identifier()); fs().write_ext2_inode(index(), m_raw_inode); if (is_directory()) { // Unless we're about to go away permanently, invalidate the lookup cache. if (m_raw_inode.i_links_count != 0) { // FIXME: This invalidation is way too hardcore. It's sad to throw away the whole cache. m_lookup_cache.clear(); } } set_metadata_dirty(false); } RefPtr Ext2FS::get_inode(InodeIdentifier inode) const { Locker locker(m_lock); VERIFY(inode.fsid() == fsid()); { auto it = m_inode_cache.find(inode.index()); if (it != m_inode_cache.end()) return (*it).value; } auto state_or_error = get_inode_allocation_state(inode.index()); if (state_or_error.is_error()) return {}; if (!state_or_error.value()) { m_inode_cache.set(inode.index(), nullptr); return {}; } BlockIndex block_index; unsigned offset; if (!find_block_containing_inode(inode.index(), block_index, offset)) return {}; auto new_inode = adopt_ref(*new Ext2FSInode(const_cast(*this), inode.index())); auto buffer = UserOrKernelBuffer::for_kernel_buffer(reinterpret_cast(&new_inode->m_raw_inode)); if (auto result = read_block(block_index, &buffer, sizeof(ext2_inode), offset); result.is_error()) { // FIXME: Propagate the actual error. return nullptr; } m_inode_cache.set(inode.index(), new_inode); return new_inode; } KResultOr Ext2FSInode::read_bytes(off_t offset, ssize_t count, UserOrKernelBuffer& buffer, FileDescription* description) const { Locker inode_locker(m_lock); VERIFY(offset >= 0); if (m_raw_inode.i_size == 0) return 0; if (static_cast(offset) >= size()) return 0; // Symbolic links shorter than 60 characters are store inline inside the i_block array. // This avoids wasting an entire block on short links. (Most links are short.) if (is_symlink() && size() < max_inline_symlink_length) { VERIFY(offset == 0); ssize_t nread = min((off_t)size() - offset, static_cast(count)); if (!buffer.write(((const u8*)m_raw_inode.i_block) + offset, (size_t)nread)) return EFAULT; return nread; } if (m_block_list.is_empty()) m_block_list = compute_block_list(); if (m_block_list.is_empty()) { dmesgln("Ext2FSInode[{}]::read_bytes(): Empty block list", identifier()); return EIO; } bool allow_cache = !description || !description->is_direct(); const int block_size = fs().block_size(); BlockBasedFS::BlockIndex first_block_logical_index = offset / block_size; BlockBasedFS::BlockIndex last_block_logical_index = (offset + count) / block_size; if (last_block_logical_index >= m_block_list.size()) last_block_logical_index = m_block_list.size() - 1; int offset_into_first_block = offset % block_size; ssize_t nread = 0; auto remaining_count = min((off_t)count, (off_t)size() - offset); dbgln_if(EXT2_VERY_DEBUG, "Ext2FSInode[{}]::read_bytes(): Reading up to {} bytes, {} bytes into inode to {}", identifier(), count, offset, buffer.user_or_kernel_ptr()); for (auto bi = first_block_logical_index; remaining_count && bi <= last_block_logical_index; bi = bi.value() + 1) { auto block_index = m_block_list[bi.value()]; size_t offset_into_block = (bi == first_block_logical_index) ? offset_into_first_block : 0; size_t num_bytes_to_copy = min((size_t)block_size - offset_into_block, (size_t)remaining_count); auto buffer_offset = buffer.offset(nread); if (block_index.value() == 0) { // This is a hole, act as if it's filled with zeroes. if (!buffer_offset.memset(0, num_bytes_to_copy)) return EFAULT; } else { if (auto result = fs().read_block(block_index, &buffer_offset, num_bytes_to_copy, offset_into_block, allow_cache); result.is_error()) { dmesgln("Ext2FSInode[{}]::read_bytes(): Failed to read block {} (index {})", identifier(), block_index.value(), bi); return result.error(); } } remaining_count -= num_bytes_to_copy; nread += num_bytes_to_copy; } return nread; } KResult Ext2FSInode::resize(u64 new_size) { auto old_size = size(); if (old_size == new_size) return KSuccess; if (!((u32)fs().get_features_readonly() & (u32)Ext2FS::FeaturesReadOnly::FileSize64bits) && (new_size >= static_cast(-1))) return ENOSPC; u64 block_size = fs().block_size(); auto blocks_needed_before = ceil_div(old_size, block_size); auto blocks_needed_after = ceil_div(new_size, block_size); if constexpr (EXT2_DEBUG) { dbgln("Ext2FSInode[{}]::resize(): Blocks needed before (size was {}): {}", identifier(), old_size, blocks_needed_before); dbgln("Ext2FSInode[{}]::resize(): Blocks needed after (size is {}): {}", identifier(), new_size, blocks_needed_after); } if (blocks_needed_after > blocks_needed_before) { auto additional_blocks_needed = blocks_needed_after - blocks_needed_before; if (additional_blocks_needed > fs().super_block().s_free_blocks_count) return ENOSPC; } if (m_block_list.is_empty()) m_block_list = this->compute_block_list(); if (blocks_needed_after > blocks_needed_before) { auto blocks_or_error = fs().allocate_blocks(fs().group_index_from_inode(index()), blocks_needed_after - blocks_needed_before); if (blocks_or_error.is_error()) return blocks_or_error.error(); if (!m_block_list.try_append(blocks_or_error.release_value())) return ENOMEM; } else if (blocks_needed_after < blocks_needed_before) { if constexpr (EXT2_VERY_DEBUG) { dbgln("Ext2FSInode[{}]::resize(): Shrinking inode, old block list is {} entries:", identifier(), m_block_list.size()); for (auto block_index : m_block_list) { dbgln(" # {}", block_index); } } while (m_block_list.size() != blocks_needed_after) { auto block_index = m_block_list.take_last(); if (block_index.value()) { if (auto result = fs().set_block_allocation_state(block_index, false); result.is_error()) { dbgln("Ext2FSInode[{}]::resize(): Failed to free block {}: {}", identifier(), block_index, result.error()); return result; } } } } if (auto result = flush_block_list(); result.is_error()) return result; m_raw_inode.i_size = new_size; if (Kernel::is_regular_file(m_raw_inode.i_mode)) m_raw_inode.i_dir_acl = new_size >> 32; set_metadata_dirty(true); if (new_size > old_size) { // If we're growing the inode, make sure we zero out all the new space. // FIXME: There are definitely more efficient ways to achieve this. auto bytes_to_clear = new_size - old_size; auto clear_from = old_size; u8 zero_buffer[PAGE_SIZE] {}; while (bytes_to_clear) { auto result = write_bytes(clear_from, min(static_cast(sizeof(zero_buffer)), bytes_to_clear), UserOrKernelBuffer::for_kernel_buffer(zero_buffer), nullptr); if (result.is_error()) return result.error(); VERIFY(result.value() != 0); bytes_to_clear -= result.value(); clear_from += result.value(); } } return KSuccess; } KResultOr Ext2FSInode::write_bytes(off_t offset, ssize_t count, const UserOrKernelBuffer& data, FileDescription* description) { VERIFY(offset >= 0); VERIFY(count >= 0); if (count == 0) return 0; Locker inode_locker(m_lock); if (auto result = prepare_to_write_data(); result.is_error()) return result; if (is_symlink()) { VERIFY(offset == 0); if (max((size_t)(offset + count), (size_t)m_raw_inode.i_size) < max_inline_symlink_length) { dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::write_bytes(): Poking into i_block array for inline symlink '{}' ({} bytes)", identifier(), data.copy_into_string(count), count); if (!data.read(((u8*)m_raw_inode.i_block) + offset, (size_t)count)) return EFAULT; if ((size_t)(offset + count) > (size_t)m_raw_inode.i_size) m_raw_inode.i_size = offset + count; set_metadata_dirty(true); return count; } } bool allow_cache = !description || !description->is_direct(); const auto block_size = fs().block_size(); auto new_size = max(static_cast(offset) + count, size()); if (auto result = resize(new_size); result.is_error()) return result; if (m_block_list.is_empty()) m_block_list = compute_block_list(); if (m_block_list.is_empty()) { dbgln("Ext2FSInode[{}]::write_bytes(): Empty block list", identifier()); return EIO; } BlockBasedFS::BlockIndex first_block_logical_index = offset / block_size; BlockBasedFS::BlockIndex last_block_logical_index = (offset + count) / block_size; if (last_block_logical_index >= m_block_list.size()) last_block_logical_index = m_block_list.size() - 1; size_t offset_into_first_block = offset % block_size; ssize_t nwritten = 0; auto remaining_count = min((off_t)count, (off_t)new_size - offset); dbgln_if(EXT2_VERY_DEBUG, "Ext2FSInode[{}]::write_bytes(): Writing {} bytes, {} bytes into inode from {}", identifier(), count, offset, data.user_or_kernel_ptr()); for (auto bi = first_block_logical_index; remaining_count && bi <= last_block_logical_index; bi = bi.value() + 1) { size_t offset_into_block = (bi == first_block_logical_index) ? offset_into_first_block : 0; size_t num_bytes_to_copy = min((size_t)block_size - offset_into_block, (size_t)remaining_count); dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::write_bytes(): Writing block {} (offset_into_block: {})", identifier(), m_block_list[bi.value()], offset_into_block); if (auto result = fs().write_block(m_block_list[bi.value()], data.offset(nwritten), num_bytes_to_copy, offset_into_block, allow_cache); result.is_error()) { dbgln("Ext2FSInode[{}]::write_bytes(): Failed to write block {} (index {})", identifier(), m_block_list[bi.value()], bi); return result; } remaining_count -= num_bytes_to_copy; nwritten += num_bytes_to_copy; } did_modify_contents(); dbgln_if(EXT2_VERY_DEBUG, "Ext2FSInode[{}]::write_bytes(): After write, i_size={}, i_blocks={} ({} blocks in list)", identifier(), size(), m_raw_inode.i_blocks, m_block_list.size()); return nwritten; } u8 Ext2FS::internal_file_type_to_directory_entry_type(const DirectoryEntryView& entry) const { switch (entry.file_type) { case EXT2_FT_REG_FILE: return DT_REG; case EXT2_FT_DIR: return DT_DIR; case EXT2_FT_CHRDEV: return DT_CHR; case EXT2_FT_BLKDEV: return DT_BLK; case EXT2_FT_FIFO: return DT_FIFO; case EXT2_FT_SOCK: return DT_SOCK; case EXT2_FT_SYMLINK: return DT_LNK; default: return DT_UNKNOWN; } } Ext2FS::FeaturesReadOnly Ext2FS::get_features_readonly() const { if (m_super_block.s_rev_level > 0) return static_cast(m_super_block.s_feature_ro_compat); return Ext2FS::FeaturesReadOnly::None; } KResult Ext2FSInode::traverse_as_directory(Function callback) const { Locker locker(m_lock); VERIFY(is_directory()); u8 buffer[max_block_size]; auto buf = UserOrKernelBuffer::for_kernel_buffer(buffer); auto block_size = fs().block_size(); bool allow_cache = true; if (m_block_list.is_empty()) m_block_list = compute_block_list(); // Directory entries are guaranteed not to span multiple blocks, // so we can iterate over blocks separately. for (auto& block_index : m_block_list) { VERIFY(block_index.value() != 0); if (auto result = fs().read_block(block_index, &buf, block_size, 0, allow_cache); result.is_error()) { return result; } auto* entry = reinterpret_cast(buffer); auto* entries_end = reinterpret_cast(buffer + block_size); while (entry < entries_end) { if (entry->inode != 0) { dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::traverse_as_directory(): inode {}, name_len: {}, rec_len: {}, file_type: {}, name: {}", identifier(), entry->inode, entry->name_len, entry->rec_len, entry->file_type, StringView(entry->name, entry->name_len)); if (!callback({ { entry->name, entry->name_len }, { fsid(), entry->inode }, entry->file_type })) return KSuccess; } entry = (ext2_dir_entry_2*)((char*)entry + entry->rec_len); } } return KSuccess; } KResult Ext2FSInode::write_directory(Vector& entries) { Locker locker(m_lock); auto block_size = fs().block_size(); // Calculate directory size and record length of entries so that // the following constraints are met: // - All used blocks must be entirely filled. // - Entries are aligned on a 4-byte boundary. // - No entry may span multiple blocks. size_t directory_size = 0; size_t space_in_block = block_size; for (size_t i = 0; i < entries.size(); ++i) { auto& entry = entries[i]; entry.record_length = EXT2_DIR_REC_LEN(entry.name.length()); space_in_block -= entry.record_length; if (i + 1 < entries.size()) { if (EXT2_DIR_REC_LEN(entries[i + 1].name.length()) > space_in_block) { entry.record_length += space_in_block; space_in_block = block_size; } } else { entry.record_length += space_in_block; } directory_size += entry.record_length; } dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::write_directory(): New directory contents to write (size {}):", identifier(), directory_size); auto directory_data = ByteBuffer::create_uninitialized(directory_size); OutputMemoryStream stream { directory_data }; for (auto& entry : entries) { dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::write_directory(): Writing inode: {}, name_len: {}, rec_len: {}, file_type: {}, name: {}", identifier(), entry.inode_index, u16(entry.name.length()), u16(entry.record_length), u8(entry.file_type), entry.name); stream << u32(entry.inode_index.value()); stream << u16(entry.record_length); stream << u8(entry.name.length()); stream << u8(entry.file_type); stream << entry.name.bytes(); int padding = entry.record_length - entry.name.length() - 8; for (int j = 0; j < padding; ++j) stream << u8(0); } VERIFY(stream.is_end()); if (auto result = resize(stream.size()); result.is_error()) return result; auto buffer = UserOrKernelBuffer::for_kernel_buffer(stream.data()); auto result = write_bytes(0, stream.size(), buffer, nullptr); if (result.is_error()) return result.error(); set_metadata_dirty(true); if (static_cast(result.value()) != directory_data.size()) return EIO; return KSuccess; } KResultOr> Ext2FSInode::create_child(const String& name, mode_t mode, dev_t dev, uid_t uid, gid_t gid) { if (::is_directory(mode)) return fs().create_directory(*this, name, mode, uid, gid); return fs().create_inode(*this, name, mode, dev, uid, gid); } KResult Ext2FSInode::add_child(Inode& child, const StringView& name, mode_t mode) { Locker locker(m_lock); VERIFY(is_directory()); if (name.length() > EXT2_NAME_LEN) return ENAMETOOLONG; dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::add_child(): Adding inode {} with name '{}' and mode {:o} to directory {}", identifier(), child.index(), name, mode, index()); Vector entries; bool name_already_exists = false; KResult result = traverse_as_directory([&](auto& entry) { if (name == entry.name) { name_already_exists = true; return false; } entries.append({ entry.name, entry.inode.index(), entry.file_type }); return true; }); if (result.is_error()) return result; if (name_already_exists) { dbgln("Ext2FSInode[{}]::add_child(): Name '{}' already exists", identifier(), name); return EEXIST; } result = child.increment_link_count(); if (result.is_error()) return result; entries.empend(name, child.index(), to_ext2_file_type(mode)); result = write_directory(entries); if (result.is_error()) return result; m_lookup_cache.set(name, child.index()); did_add_child(child.identifier(), name); return KSuccess; } KResult Ext2FSInode::remove_child(const StringView& name) { Locker locker(m_lock); dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::remove_child(): Removing '{}'", identifier(), name); VERIFY(is_directory()); auto it = m_lookup_cache.find(name); if (it == m_lookup_cache.end()) return ENOENT; auto child_inode_index = (*it).value; InodeIdentifier child_id { fsid(), child_inode_index }; Vector entries; KResult result = traverse_as_directory([&](auto& entry) { if (name != entry.name) entries.append({ entry.name, entry.inode.index(), entry.file_type }); return true; }); if (result.is_error()) return result; result = write_directory(entries); if (result.is_error()) return result; m_lookup_cache.remove(name); auto child_inode = fs().get_inode(child_id); result = child_inode->decrement_link_count(); if (result.is_error()) return result; did_remove_child(child_id, name); return KSuccess; } unsigned Ext2FS::inodes_per_block() const { return EXT2_INODES_PER_BLOCK(&super_block()); } unsigned Ext2FS::inodes_per_group() const { return EXT2_INODES_PER_GROUP(&super_block()); } unsigned Ext2FS::inode_size() const { return EXT2_INODE_SIZE(&super_block()); } unsigned Ext2FS::blocks_per_group() const { return EXT2_BLOCKS_PER_GROUP(&super_block()); } bool Ext2FS::write_ext2_inode(InodeIndex inode, const ext2_inode& e2inode) { BlockIndex block_index; unsigned offset; if (!find_block_containing_inode(inode, block_index, offset)) return false; auto buffer = UserOrKernelBuffer::for_kernel_buffer(const_cast((const u8*)&e2inode)); return write_block(block_index, buffer, inode_size(), offset) >= 0; } auto Ext2FS::allocate_blocks(GroupIndex preferred_group_index, size_t count) -> KResultOr> { Locker locker(m_lock); dbgln_if(EXT2_DEBUG, "Ext2FS: allocate_blocks(preferred group: {}, count {})", preferred_group_index, count); if (count == 0) return Vector {}; Vector blocks; dbgln_if(EXT2_DEBUG, "Ext2FS: allocate_blocks:"); blocks.ensure_capacity(count); auto group_index = preferred_group_index; if (!group_descriptor(preferred_group_index).bg_free_blocks_count) { group_index = 1; } while (blocks.size() < count) { bool found_a_group = false; if (group_descriptor(group_index).bg_free_blocks_count) { found_a_group = true; } else { if (group_index == preferred_group_index) group_index = 1; for (; group_index <= m_block_group_count; group_index = GroupIndex { group_index.value() + 1 }) { if (group_descriptor(group_index).bg_free_blocks_count) { found_a_group = true; break; } } } VERIFY(found_a_group); auto& bgd = group_descriptor(group_index); auto cached_bitmap_or_error = get_bitmap_block(bgd.bg_block_bitmap); if (cached_bitmap_or_error.is_error()) return cached_bitmap_or_error.error(); auto& cached_bitmap = *cached_bitmap_or_error.value(); int blocks_in_group = min(blocks_per_group(), super_block().s_blocks_count); auto block_bitmap = cached_bitmap.bitmap(blocks_in_group); BlockIndex first_block_in_group = (group_index.value() - 1) * blocks_per_group() + first_block_index().value(); size_t free_region_size = 0; auto first_unset_bit_index = block_bitmap.find_longest_range_of_unset_bits(count - blocks.size(), free_region_size); VERIFY(first_unset_bit_index.has_value()); dbgln_if(EXT2_DEBUG, "Ext2FS: allocating free region of size: {} [{}]", free_region_size, group_index); for (size_t i = 0; i < free_region_size; ++i) { BlockIndex block_index = (first_unset_bit_index.value() + i) + first_block_in_group.value(); if (auto result = set_block_allocation_state(block_index, true); result.is_error()) { dbgln("Ext2FS: Failed to allocate block {} in allocate_blocks()", block_index); return result; } blocks.unchecked_append(block_index); dbgln_if(EXT2_DEBUG, " allocated > {}", block_index); } } VERIFY(blocks.size() == count); return blocks; } KResultOr Ext2FS::allocate_inode(GroupIndex preferred_group) { dbgln_if(EXT2_DEBUG, "Ext2FS: allocate_inode(preferred_group: {})", preferred_group); Locker locker(m_lock); // FIXME: We shouldn't refuse to allocate an inode if there is no group that can house the whole thing. // In those cases we should just spread it across multiple groups. auto is_suitable_group = [this](auto group_index) { auto& bgd = group_descriptor(group_index); return bgd.bg_free_inodes_count && bgd.bg_free_blocks_count >= 1; }; GroupIndex group_index; if (preferred_group.value() && is_suitable_group(preferred_group)) { group_index = preferred_group; } else { for (unsigned i = 1; i <= m_block_group_count; ++i) { if (is_suitable_group(i)) { group_index = i; break; } } } if (!group_index) { dmesgln("Ext2FS: allocate_inode: no suitable group found for new inode"); return ENOSPC; } dbgln_if(EXT2_DEBUG, "Ext2FS: allocate_inode: found suitable group [{}] for new inode :^)", group_index); auto& bgd = group_descriptor(group_index); unsigned inodes_in_group = min(inodes_per_group(), super_block().s_inodes_count); InodeIndex first_inode_in_group = (group_index.value() - 1) * inodes_per_group() + 1; auto cached_bitmap_or_error = get_bitmap_block(bgd.bg_inode_bitmap); if (cached_bitmap_or_error.is_error()) return cached_bitmap_or_error.error(); auto& cached_bitmap = *cached_bitmap_or_error.value(); auto inode_bitmap = cached_bitmap.bitmap(inodes_in_group); for (size_t i = 0; i < inode_bitmap.size(); ++i) { if (inode_bitmap.get(i)) continue; inode_bitmap.set(i, true); auto inode_index = InodeIndex(first_inode_in_group.value() + i); cached_bitmap.dirty = true; m_super_block.s_free_inodes_count--; m_super_block_dirty = true; const_cast(bgd).bg_free_inodes_count--; m_block_group_descriptors_dirty = true; // In case the inode cache had this cached as "non-existent", uncache that info. m_inode_cache.remove(inode_index.value()); return inode_index; } dmesgln("Ext2FS: allocate_inode found no available inode, despite bgd claiming there are inodes :("); return EIO; } Ext2FS::GroupIndex Ext2FS::group_index_from_block_index(BlockIndex block_index) const { if (!block_index) return 0; return (block_index.value() - 1) / blocks_per_group() + 1; } auto Ext2FS::group_index_from_inode(InodeIndex inode) const -> GroupIndex { if (!inode) return 0; return (inode.value() - 1) / inodes_per_group() + 1; } KResultOr Ext2FS::get_inode_allocation_state(InodeIndex index) const { Locker locker(m_lock); if (index == 0) return EINVAL; auto group_index = group_index_from_inode(index); auto& bgd = group_descriptor(group_index); unsigned index_in_group = index.value() - ((group_index.value() - 1) * inodes_per_group()); unsigned bit_index = (index_in_group - 1) % inodes_per_group(); auto cached_bitmap_or_error = const_cast(*this).get_bitmap_block(bgd.bg_inode_bitmap); if (cached_bitmap_or_error.is_error()) return cached_bitmap_or_error.error(); return cached_bitmap_or_error.value()->bitmap(inodes_per_group()).get(bit_index); } KResult Ext2FS::update_bitmap_block(BlockIndex bitmap_block, size_t bit_index, bool new_state, u32& super_block_counter, u16& group_descriptor_counter) { auto cached_bitmap_or_error = get_bitmap_block(bitmap_block); if (cached_bitmap_or_error.is_error()) return cached_bitmap_or_error.error(); auto& cached_bitmap = *cached_bitmap_or_error.value(); bool current_state = cached_bitmap.bitmap(blocks_per_group()).get(bit_index); if (current_state == new_state) { dbgln("Ext2FS: Bit {} in bitmap block {} had unexpected state {}", bit_index, bitmap_block, current_state); return EIO; } cached_bitmap.bitmap(blocks_per_group()).set(bit_index, new_state); cached_bitmap.dirty = true; if (new_state) { --super_block_counter; --group_descriptor_counter; } else { ++super_block_counter; ++group_descriptor_counter; } m_super_block_dirty = true; m_block_group_descriptors_dirty = true; return KSuccess; } KResult Ext2FS::set_inode_allocation_state(InodeIndex inode_index, bool new_state) { Locker locker(m_lock); auto group_index = group_index_from_inode(inode_index); unsigned index_in_group = inode_index.value() - ((group_index.value() - 1) * inodes_per_group()); unsigned bit_index = (index_in_group - 1) % inodes_per_group(); dbgln_if(EXT2_DEBUG, "Ext2FS: set_inode_allocation_state: Inode {} -> {}", inode_index, new_state); auto& bgd = const_cast(group_descriptor(group_index)); return update_bitmap_block(bgd.bg_inode_bitmap, bit_index, new_state, m_super_block.s_free_inodes_count, bgd.bg_free_inodes_count); } Ext2FS::BlockIndex Ext2FS::first_block_index() const { return block_size() == 1024 ? 1 : 0; } KResultOr Ext2FS::get_bitmap_block(BlockIndex bitmap_block_index) { for (auto& cached_bitmap : m_cached_bitmaps) { if (cached_bitmap->bitmap_block_index == bitmap_block_index) return cached_bitmap; } auto block = KBuffer::create_with_size(block_size(), Region::Access::Read | Region::Access::Write, "Ext2FS: Cached bitmap block"); auto buffer = UserOrKernelBuffer::for_kernel_buffer(block.data()); if (auto result = read_block(bitmap_block_index, &buffer, block_size()); result.is_error()) { dbgln("Ext2FS: Failed to load bitmap block {}", bitmap_block_index); return result; } auto new_bitmap = adopt_own_if_nonnull(new CachedBitmap(bitmap_block_index, move(block))); if (!new_bitmap) return ENOMEM; if (!m_cached_bitmaps.try_append(move(new_bitmap))) return ENOMEM; return m_cached_bitmaps.last(); } KResult Ext2FS::set_block_allocation_state(BlockIndex block_index, bool new_state) { VERIFY(block_index != 0); Locker locker(m_lock); auto group_index = group_index_from_block_index(block_index); unsigned index_in_group = (block_index.value() - first_block_index().value()) - ((group_index.value() - 1) * blocks_per_group()); unsigned bit_index = index_in_group % blocks_per_group(); auto& bgd = const_cast(group_descriptor(group_index)); dbgln_if(EXT2_DEBUG, "Ext2FS: Block {} state -> {} (in bitmap block {})", block_index, new_state, bgd.bg_block_bitmap); return update_bitmap_block(bgd.bg_block_bitmap, bit_index, new_state, m_super_block.s_free_blocks_count, bgd.bg_free_blocks_count); } KResult Ext2FS::create_directory(Ext2FSInode& parent_inode, const String& name, mode_t mode, uid_t uid, gid_t gid) { Locker locker(m_lock); VERIFY(is_directory(mode)); auto inode_or_error = create_inode(parent_inode, name, mode, 0, uid, gid); if (inode_or_error.is_error()) return inode_or_error.error(); auto& inode = inode_or_error.value(); dbgln_if(EXT2_DEBUG, "Ext2FS: create_directory: created new directory named '{} with inode {}", name, inode->index()); Vector entries; entries.empend(".", inode->index(), static_cast(EXT2_FT_DIR)); entries.empend("..", parent_inode.index(), static_cast(EXT2_FT_DIR)); if (auto result = static_cast(*inode).write_directory(entries); result.is_error()) return result; if (auto result = parent_inode.increment_link_count(); result.is_error()) return result; auto& bgd = const_cast(group_descriptor(group_index_from_inode(inode->identifier().index()))); ++bgd.bg_used_dirs_count; m_block_group_descriptors_dirty = true; return KSuccess; } KResultOr> Ext2FS::create_inode(Ext2FSInode& parent_inode, const String& name, mode_t mode, dev_t dev, uid_t uid, gid_t gid) { if (name.length() > EXT2_NAME_LEN) return ENAMETOOLONG; if (parent_inode.m_raw_inode.i_links_count == 0) return ENOENT; ext2_inode e2inode {}; auto now = kgettimeofday().to_truncated_seconds(); e2inode.i_mode = mode; e2inode.i_uid = uid; e2inode.i_gid = gid; e2inode.i_size = 0; e2inode.i_atime = now; e2inode.i_ctime = now; e2inode.i_mtime = now; e2inode.i_dtime = 0; e2inode.i_flags = 0; // For directories, add +1 link count for the "." entry in self. e2inode.i_links_count = is_directory(mode); if (is_character_device(mode)) e2inode.i_block[0] = dev; else if (is_block_device(mode)) e2inode.i_block[1] = dev; auto inode_id = allocate_inode(); if (inode_id.is_error()) return inode_id.error(); dbgln_if(EXT2_DEBUG, "Ext2FS: writing initial metadata for inode {}", inode_id.value()); auto success = write_ext2_inode(inode_id.value(), e2inode); VERIFY(success); auto new_inode = get_inode({ fsid(), inode_id.value() }); VERIFY(new_inode); dbgln_if(EXT2_DEBUG, "Ext2FS: Adding inode '{}' (mode {:o}) to parent directory {}", name, mode, parent_inode.index()); if (auto result = parent_inode.add_child(*new_inode, name, mode); result.is_error()) return result; return new_inode.release_nonnull(); } bool Ext2FSInode::populate_lookup_cache() const { Locker locker(m_lock); if (!m_lookup_cache.is_empty()) return true; HashMap children; KResult result = traverse_as_directory([&children](auto& entry) { children.set(entry.name, entry.inode.index()); return true; }); if (!result.is_success()) return false; if (!m_lookup_cache.is_empty()) return false; m_lookup_cache = move(children); return true; } RefPtr Ext2FSInode::lookup(StringView name) { VERIFY(is_directory()); dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]:lookup(): Looking up '{}'", identifier(), name); if (!populate_lookup_cache()) return {}; Locker locker(m_lock); auto it = m_lookup_cache.find(name.hash(), [&](auto& entry) { return entry.key == name; }); if (it != m_lookup_cache.end()) return fs().get_inode({ fsid(), (*it).value }); dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]:lookup(): '{}' not found", identifier(), name); return {}; } void Ext2FSInode::one_ref_left() { // FIXME: I would like to not live forever, but uncached Ext2FS is fucking painful right now. } KResult Ext2FSInode::set_atime(time_t t) { Locker locker(m_lock); if (fs().is_readonly()) return EROFS; m_raw_inode.i_atime = t; set_metadata_dirty(true); return KSuccess; } KResult Ext2FSInode::set_ctime(time_t t) { Locker locker(m_lock); if (fs().is_readonly()) return EROFS; m_raw_inode.i_ctime = t; set_metadata_dirty(true); return KSuccess; } KResult Ext2FSInode::set_mtime(time_t t) { Locker locker(m_lock); if (fs().is_readonly()) return EROFS; m_raw_inode.i_mtime = t; set_metadata_dirty(true); return KSuccess; } KResult Ext2FSInode::increment_link_count() { Locker locker(m_lock); if (fs().is_readonly()) return EROFS; constexpr size_t max_link_count = 65535; if (m_raw_inode.i_links_count == max_link_count) return EMLINK; ++m_raw_inode.i_links_count; set_metadata_dirty(true); return KSuccess; } KResult Ext2FSInode::decrement_link_count() { Locker locker(m_lock); if (fs().is_readonly()) return EROFS; VERIFY(m_raw_inode.i_links_count); --m_raw_inode.i_links_count; set_metadata_dirty(true); if (m_raw_inode.i_links_count == 0) did_delete_self(); if (ref_count() == 1 && m_raw_inode.i_links_count == 0) fs().uncache_inode(index()); return KSuccess; } void Ext2FS::uncache_inode(InodeIndex index) { Locker locker(m_lock); m_inode_cache.remove(index); } KResultOr Ext2FSInode::directory_entry_count() const { VERIFY(is_directory()); Locker locker(m_lock); populate_lookup_cache(); return m_lookup_cache.size(); } KResult Ext2FSInode::chmod(mode_t mode) { Locker locker(m_lock); if (m_raw_inode.i_mode == mode) return KSuccess; m_raw_inode.i_mode = mode; set_metadata_dirty(true); return KSuccess; } KResult Ext2FSInode::chown(uid_t uid, gid_t gid) { Locker locker(m_lock); if (m_raw_inode.i_uid == uid && m_raw_inode.i_gid == gid) return KSuccess; m_raw_inode.i_uid = uid; m_raw_inode.i_gid = gid; set_metadata_dirty(true); return KSuccess; } KResult Ext2FSInode::truncate(u64 size) { Locker locker(m_lock); if (static_cast(m_raw_inode.i_size) == size) return KSuccess; if (auto result = resize(size); result.is_error()) return result; set_metadata_dirty(true); return KSuccess; } KResultOr Ext2FSInode::get_block_address(int index) { Locker locker(m_lock); if (m_block_list.is_empty()) m_block_list = compute_block_list(); if (index < 0 || (size_t)index >= m_block_list.size()) return 0; return m_block_list[index].value(); } unsigned Ext2FS::total_block_count() const { Locker locker(m_lock); return super_block().s_blocks_count; } unsigned Ext2FS::free_block_count() const { Locker locker(m_lock); return super_block().s_free_blocks_count; } unsigned Ext2FS::total_inode_count() const { Locker locker(m_lock); return super_block().s_inodes_count; } unsigned Ext2FS::free_inode_count() const { Locker locker(m_lock); return super_block().s_free_inodes_count; } KResult Ext2FS::prepare_to_unmount() const { Locker locker(m_lock); for (auto& it : m_inode_cache) { if (it.value->ref_count() > 1) return EBUSY; } m_inode_cache.clear(); return KSuccess; } }