/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include //#define BBFS_DEBUG namespace Kernel { struct CacheEntry { IntrusiveListNode list_node; u32 block_index { 0 }; u8* data { nullptr }; bool has_data { false }; }; class DiskCache { public: explicit DiskCache(BlockBasedFS& fs) : m_fs(fs) , m_cached_block_data(KBuffer::create_with_size(m_entry_count * m_fs.block_size())) , m_entries(KBuffer::create_with_size(m_entry_count * sizeof(CacheEntry))) { for (size_t i = 0; i < m_entry_count; ++i) { entries()[i].data = m_cached_block_data.data() + i * m_fs.block_size(); m_clean_list.append(entries()[i]); } } ~DiskCache() { } bool is_dirty() const { return m_dirty; } void set_dirty(bool b) { m_dirty = b; } void mark_all_clean() { while (auto* entry = m_dirty_list.first()) m_clean_list.prepend(*entry); m_dirty = false; } void mark_dirty(CacheEntry& entry) { m_dirty_list.prepend(entry); m_dirty = true; } void mark_clean(CacheEntry& entry) { m_clean_list.prepend(entry); } CacheEntry& get(u32 block_index) const { if (auto it = m_hash.find(block_index); it != m_hash.end()) { auto& entry = const_cast(*it->value); ASSERT(entry.block_index == block_index); return entry; } if (m_clean_list.is_empty()) { // Not a single clean entry! Flush writes and try again. // NOTE: We want to make sure we only call FileBackedFS flush here, // not some FileBackedFS subclass flush! m_fs.flush_writes_impl(); return get(block_index); } ASSERT(m_clean_list.last()); auto& new_entry = *m_clean_list.last(); m_clean_list.prepend(new_entry); m_hash.remove(new_entry.block_index); m_hash.set(block_index, &new_entry); new_entry.block_index = block_index; new_entry.has_data = false; return new_entry; } const CacheEntry* entries() const { return (const CacheEntry*)m_entries.data(); } CacheEntry* entries() { return (CacheEntry*)m_entries.data(); } template void for_each_clean_entry(Callback callback) { for (auto& entry : m_clean_list) callback(entry); } template void for_each_dirty_entry(Callback callback) { for (auto& entry : m_dirty_list) callback(entry); } private: BlockBasedFS& m_fs; size_t m_entry_count { 10000 }; mutable HashMap m_hash; mutable IntrusiveList m_clean_list; mutable IntrusiveList m_dirty_list; KBuffer m_cached_block_data; KBuffer m_entries; bool m_dirty { false }; }; BlockBasedFS::BlockBasedFS(FileDescription& file_description) : FileBackedFS(file_description) { ASSERT(file_description.file().is_seekable()); } BlockBasedFS::~BlockBasedFS() { } int BlockBasedFS::write_block(unsigned index, const UserOrKernelBuffer& data, size_t count, size_t offset, bool allow_cache) { ASSERT(m_logical_block_size); ASSERT(offset + count <= block_size()); #ifdef BBFS_DEBUG klog() << "BlockBasedFileSystem::write_block " << index << ", size=" << count; #endif if (!allow_cache) { flush_specific_block_if_needed(index); u32 base_offset = static_cast(index) * static_cast(block_size()) + offset; file_description().seek(base_offset, SEEK_SET); auto nwritten = file_description().write(data, count); if (nwritten.is_error()) return -EIO; // TODO: Return error code as-is, could be -EFAULT! ASSERT(nwritten.value() == count); return 0; } auto& entry = cache().get(index); if (count < block_size()) { // Fill the cache first. read_block(index, nullptr, block_size()); } if (!data.read(entry.data + offset, count)) return -EFAULT; cache().mark_dirty(entry); entry.has_data = true; return 0; } bool BlockBasedFS::raw_read(unsigned index, UserOrKernelBuffer& buffer) { u32 base_offset = static_cast(index) * static_cast(m_logical_block_size); file_description().seek(base_offset, SEEK_SET); auto nread = file_description().read(buffer, m_logical_block_size); ASSERT(!nread.is_error()); ASSERT(nread.value() == m_logical_block_size); return true; } bool BlockBasedFS::raw_write(unsigned index, const UserOrKernelBuffer& buffer) { u32 base_offset = static_cast(index) * static_cast(m_logical_block_size); file_description().seek(base_offset, SEEK_SET); auto nwritten = file_description().write(buffer, m_logical_block_size); ASSERT(!nwritten.is_error()); ASSERT(nwritten.value() == m_logical_block_size); return true; } bool BlockBasedFS::raw_read_blocks(unsigned index, size_t count, UserOrKernelBuffer& buffer) { auto current = buffer; for (unsigned block = index; block < (index + count); block++) { if (!raw_read(block, current)) return false; current = current.offset(logical_block_size()); } return true; } bool BlockBasedFS::raw_write_blocks(unsigned index, size_t count, const UserOrKernelBuffer& buffer) { auto current = buffer; for (unsigned block = index; block < (index + count); block++) { if (!raw_write(block, current)) return false; current = current.offset(logical_block_size()); } return true; } int BlockBasedFS::write_blocks(unsigned index, unsigned count, const UserOrKernelBuffer& data, bool allow_cache) { ASSERT(m_logical_block_size); #ifdef BBFS_DEBUG klog() << "BlockBasedFileSystem::write_blocks " << index << " x" << count; #endif for (unsigned i = 0; i < count; ++i) write_block(index + i, data.offset(i * block_size()), block_size(), 0, allow_cache); return 0; } int BlockBasedFS::read_block(unsigned index, UserOrKernelBuffer* buffer, size_t count, size_t offset, bool allow_cache) const { ASSERT(m_logical_block_size); ASSERT(offset + count <= block_size()); #ifdef BBFS_DEBUG klog() << "BlockBasedFileSystem::read_block " << index; #endif if (!allow_cache) { const_cast(this)->flush_specific_block_if_needed(index); u32 base_offset = static_cast(index) * static_cast(block_size()) + static_cast(offset); file_description().seek(base_offset, SEEK_SET); auto nread = file_description().read(*buffer, count); if (nread.is_error()) return -EIO; ASSERT(nread.value() == count); return 0; } auto& entry = cache().get(index); if (!entry.has_data) { u32 base_offset = static_cast(index) * static_cast(block_size()); file_description().seek(base_offset, SEEK_SET); auto entry_data_buffer = UserOrKernelBuffer::for_kernel_buffer(entry.data); auto nread = file_description().read(entry_data_buffer, block_size()); if (nread.is_error()) return -EIO; ASSERT(nread.value() == block_size()); entry.has_data = true; } if (buffer && !buffer->write(entry.data + offset, count)) return -EFAULT; return 0; } int BlockBasedFS::read_blocks(unsigned index, unsigned count, UserOrKernelBuffer& buffer, bool allow_cache) const { ASSERT(m_logical_block_size); if (!count) return false; if (count == 1) return read_block(index, &buffer, block_size(), 0, allow_cache); auto out = buffer; for (unsigned i = 0; i < count; ++i) { auto err = read_block(index + i, &out, block_size(), 0, allow_cache); if (err < 0) return err; out = out.offset(block_size()); } return 0; } void BlockBasedFS::flush_specific_block_if_needed(unsigned index) { LOCKER(m_lock); if (!cache().is_dirty()) return; Vector cleaned_entries; cache().for_each_dirty_entry([&](CacheEntry& entry) { if (entry.block_index != index) { u32 base_offset = static_cast(entry.block_index) * static_cast(block_size()); file_description().seek(base_offset, SEEK_SET); // FIXME: Should this error path be surfaced somehow? auto entry_data_buffer = UserOrKernelBuffer::for_kernel_buffer(entry.data); (void)file_description().write(entry_data_buffer, block_size()); cleaned_entries.append(&entry); } }); // NOTE: We make a separate pass to mark entries clean since marking them clean // moves them out of the dirty list which would disturb the iteration above. for (auto* entry : cleaned_entries) cache().mark_clean(*entry); } void BlockBasedFS::flush_writes_impl() { LOCKER(m_lock); if (!cache().is_dirty()) return; u32 count = 0; cache().for_each_dirty_entry([&](CacheEntry& entry) { u32 base_offset = static_cast(entry.block_index) * static_cast(block_size()); file_description().seek(base_offset, SEEK_SET); // FIXME: Should this error path be surfaced somehow? auto entry_data_buffer = UserOrKernelBuffer::for_kernel_buffer(entry.data); (void)file_description().write(entry_data_buffer, block_size()); ++count; }); cache().mark_all_clean(); dbg() << class_name() << ": Flushed " << count << " blocks to disk"; } void BlockBasedFS::flush_writes() { flush_writes_impl(); } DiskCache& BlockBasedFS::cache() const { if (!m_cache) m_cache = make(const_cast(*this)); return *m_cache; } }