/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Kernel { READONLY_AFTER_INIT FPUState Processor::s_clean_fpu_state; READONLY_AFTER_INIT static ProcessorContainer s_processors {}; READONLY_AFTER_INIT Atomic Processor::g_total_processors; READONLY_AFTER_INIT static volatile bool s_smp_enabled; static Atomic s_message_pool; Atomic Processor::s_idle_cpu_mask { 0 }; // The compiler can't see the calls to these functions inside assembly. // Declare them, to avoid dead code warnings. extern "C" void context_first_init(Thread* from_thread, Thread* to_thread, TrapFrame* trap) __attribute__((used)); extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread) __attribute__((used)); extern "C" FlatPtr do_init_context(Thread* thread, u32 flags) __attribute__((used)); bool Processor::is_smp_enabled() { return s_smp_enabled; } UNMAP_AFTER_INIT static void sse_init() { write_cr0((read_cr0() & 0xfffffffbu) | 0x2); write_cr4(read_cr4() | 0x600); } void exit_kernel_thread(void) { Thread::current()->exit(); } UNMAP_AFTER_INIT void Processor::cpu_detect() { // NOTE: This is called during Processor::early_initialize, we cannot // safely log at this point because we don't have kmalloc // initialized yet! auto set_feature = [&](CPUFeature f) { m_features = static_cast(static_cast(m_features) | static_cast(f)); }; m_features = static_cast(0); CPUID processor_info(0x1); if (processor_info.edx() & (1 << 4)) set_feature(CPUFeature::TSC); if (processor_info.edx() & (1 << 6)) set_feature(CPUFeature::PAE); if (processor_info.edx() & (1 << 13)) set_feature(CPUFeature::PGE); if (processor_info.edx() & (1 << 23)) set_feature(CPUFeature::MMX); if (processor_info.edx() & (1 << 24)) set_feature(CPUFeature::FXSR); if (processor_info.edx() & (1 << 25)) set_feature(CPUFeature::SSE); if (processor_info.edx() & (1 << 26)) set_feature(CPUFeature::SSE2); if (processor_info.ecx() & (1 << 0)) set_feature(CPUFeature::SSE3); if (processor_info.ecx() & (1 << 9)) set_feature(CPUFeature::SSSE3); if (processor_info.ecx() & (1 << 19)) set_feature(CPUFeature::SSE4_1); if (processor_info.ecx() & (1 << 20)) set_feature(CPUFeature::SSE4_2); if (processor_info.ecx() & (1 << 26)) set_feature(CPUFeature::XSAVE); if (processor_info.ecx() & (1 << 28)) set_feature(CPUFeature::AVX); if (processor_info.ecx() & (1 << 30)) set_feature(CPUFeature::RDRAND); if (processor_info.ecx() & (1u << 31)) set_feature(CPUFeature::HYPERVISOR); if (processor_info.edx() & (1 << 11)) { u32 stepping = processor_info.eax() & 0xf; u32 model = (processor_info.eax() >> 4) & 0xf; u32 family = (processor_info.eax() >> 8) & 0xf; if (!(family == 6 && model < 3 && stepping < 3)) set_feature(CPUFeature::SEP); if ((family == 6 && model >= 3) || (family == 0xf && model >= 0xe)) set_feature(CPUFeature::CONSTANT_TSC); } u32 max_extended_leaf = CPUID(0x80000000).eax(); if (max_extended_leaf >= 0x80000001) { CPUID extended_processor_info(0x80000001); if (extended_processor_info.edx() & (1 << 20)) set_feature(CPUFeature::NX); if (extended_processor_info.edx() & (1 << 27)) set_feature(CPUFeature::RDTSCP); if (extended_processor_info.edx() & (1 << 29)) set_feature(CPUFeature::LM); if (extended_processor_info.edx() & (1 << 11)) { // Only available in 64 bit mode set_feature(CPUFeature::SYSCALL); } } if (max_extended_leaf >= 0x80000007) { CPUID cpuid(0x80000007); if (cpuid.edx() & (1 << 8)) { set_feature(CPUFeature::CONSTANT_TSC); set_feature(CPUFeature::NONSTOP_TSC); } } if (max_extended_leaf >= 0x80000008) { // CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor. CPUID cpuid(0x80000008); m_physical_address_bit_width = cpuid.eax() & 0xff; } else { // For processors that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise. m_physical_address_bit_width = has_feature(CPUFeature::PAE) ? 36 : 32; } CPUID extended_features(0x7); if (extended_features.ebx() & (1 << 20)) set_feature(CPUFeature::SMAP); if (extended_features.ebx() & (1 << 7)) set_feature(CPUFeature::SMEP); if (extended_features.ecx() & (1 << 2)) set_feature(CPUFeature::UMIP); if (extended_features.ebx() & (1 << 18)) set_feature(CPUFeature::RDSEED); } UNMAP_AFTER_INIT void Processor::cpu_setup() { // NOTE: This is called during Processor::early_initialize, we cannot // safely log at this point because we don't have kmalloc // initialized yet! cpu_detect(); if (has_feature(CPUFeature::SSE)) { // enter_thread_context() assumes that if a x86 CPU supports SSE then it also supports FXSR. // SSE support without FXSR is an extremely unlikely scenario, so let's be pragmatic about it. VERIFY(has_feature(CPUFeature::FXSR)); sse_init(); } write_cr0(read_cr0() | 0x00010000); if (has_feature(CPUFeature::PGE)) { // Turn on CR4.PGE so the CPU will respect the G bit in page tables. write_cr4(read_cr4() | 0x80); } if (has_feature(CPUFeature::NX)) { // Turn on IA32_EFER.NXE asm volatile( "movl $0xc0000080, %ecx\n" "rdmsr\n" "orl $0x800, %eax\n" "wrmsr\n"); } if (has_feature(CPUFeature::SMEP)) { // Turn on CR4.SMEP write_cr4(read_cr4() | 0x100000); } if (has_feature(CPUFeature::SMAP)) { // Turn on CR4.SMAP write_cr4(read_cr4() | 0x200000); } if (has_feature(CPUFeature::UMIP)) { write_cr4(read_cr4() | 0x800); } if (has_feature(CPUFeature::TSC)) { write_cr4(read_cr4() | 0x4); } if (has_feature(CPUFeature::XSAVE)) { // Turn on CR4.OSXSAVE write_cr4(read_cr4() | 0x40000); // According to the Intel manual: "After reset, all bits (except bit 0) in XCR0 are cleared to zero; XCR0[0] is set to 1." // Sadly we can't trust this, for example VirtualBox starts with bits 0-4 set, so let's do it ourselves. write_xcr0(0x1); if (has_feature(CPUFeature::AVX)) { // Turn on SSE, AVX and x87 flags write_xcr0(read_xcr0() | 0x7); } } } String Processor::features_string() const { StringBuilder builder; auto feature_to_str = [](CPUFeature f) -> const char* { switch (f) { case CPUFeature::NX: return "nx"; case CPUFeature::PAE: return "pae"; case CPUFeature::PGE: return "pge"; case CPUFeature::RDRAND: return "rdrand"; case CPUFeature::RDSEED: return "rdseed"; case CPUFeature::SMAP: return "smap"; case CPUFeature::SMEP: return "smep"; case CPUFeature::SSE: return "sse"; case CPUFeature::TSC: return "tsc"; case CPUFeature::RDTSCP: return "rdtscp"; case CPUFeature::CONSTANT_TSC: return "constant_tsc"; case CPUFeature::NONSTOP_TSC: return "nonstop_tsc"; case CPUFeature::UMIP: return "umip"; case CPUFeature::SEP: return "sep"; case CPUFeature::SYSCALL: return "syscall"; case CPUFeature::MMX: return "mmx"; case CPUFeature::FXSR: return "fxsr"; case CPUFeature::SSE2: return "sse2"; case CPUFeature::SSE3: return "sse3"; case CPUFeature::SSSE3: return "ssse3"; case CPUFeature::SSE4_1: return "sse4.1"; case CPUFeature::SSE4_2: return "sse4.2"; case CPUFeature::XSAVE: return "xsave"; case CPUFeature::AVX: return "avx"; case CPUFeature::LM: return "lm"; case CPUFeature::HYPERVISOR: return "hypervisor"; // no default statement here intentionally so that we get // a warning if a new feature is forgotten to be added here } // Shouldn't ever happen return "???"; }; bool first = true; for (u32 flag = 1; flag != 0; flag <<= 1) { if ((static_cast(m_features) & flag) != 0) { if (first) first = false; else builder.append(' '); auto str = feature_to_str(static_cast(flag)); builder.append(str, strlen(str)); } } return builder.build(); } UNMAP_AFTER_INIT void Processor::early_initialize(u32 cpu) { m_self = this; m_cpu = cpu; m_in_irq = 0; m_in_critical = 0; m_invoke_scheduler_async = false; m_scheduler_initialized = false; m_in_scheduler = true; m_message_queue = nullptr; m_idle_thread = nullptr; m_current_thread = nullptr; m_info = nullptr; m_halt_requested = false; if (cpu == 0) { s_smp_enabled = false; g_total_processors.store(1u, AK::MemoryOrder::memory_order_release); } else { g_total_processors.fetch_add(1u, AK::MemoryOrder::memory_order_acq_rel); } deferred_call_pool_init(); cpu_setup(); gdt_init(); VERIFY(is_initialized()); // sanity check VERIFY(¤t() == this); // sanity check } UNMAP_AFTER_INIT void Processor::initialize(u32 cpu) { VERIFY(m_self == this); VERIFY(¤t() == this); // sanity check dmesgln("CPU[{}]: Supported features: {}", current_id(), features_string()); if (!has_feature(CPUFeature::RDRAND)) dmesgln("CPU[{}]: No RDRAND support detected, randomness will be poor", current_id()); dmesgln("CPU[{}]: Physical address bit width: {}", current_id(), m_physical_address_bit_width); if (cpu == 0) idt_init(); else flush_idt(); if (cpu == 0) { VERIFY((FlatPtr(&s_clean_fpu_state) & 0xF) == 0); asm volatile("fninit"); if (has_feature(CPUFeature::FXSR)) asm volatile("fxsave %0" : "=m"(s_clean_fpu_state)); else asm volatile("fnsave %0" : "=m"(s_clean_fpu_state)); if (has_feature(CPUFeature::HYPERVISOR)) detect_hypervisor(); } m_info = new ProcessorInfo(*this); { // We need to prevent races between APs starting up at the same time VERIFY(cpu < s_processors.size()); s_processors[cpu] = this; } } UNMAP_AFTER_INIT void Processor::detect_hypervisor() { CPUID hypervisor_leaf_range(0x40000000); // Get signature of hypervisor. alignas(sizeof(u32)) char hypervisor_signature_buffer[13]; *reinterpret_cast(hypervisor_signature_buffer) = hypervisor_leaf_range.ebx(); *reinterpret_cast(hypervisor_signature_buffer + 4) = hypervisor_leaf_range.ecx(); *reinterpret_cast(hypervisor_signature_buffer + 8) = hypervisor_leaf_range.edx(); hypervisor_signature_buffer[12] = '\0'; StringView hypervisor_signature(hypervisor_signature_buffer); dmesgln("CPU[{}]: CPUID hypervisor signature '{}' ({:#x} {:#x} {:#x}), max leaf {:#x}", current_id(), hypervisor_signature, hypervisor_leaf_range.ebx(), hypervisor_leaf_range.ecx(), hypervisor_leaf_range.edx(), hypervisor_leaf_range.eax()); if (hypervisor_signature == "Microsoft Hv"sv) detect_hypervisor_hyperv(hypervisor_leaf_range); } UNMAP_AFTER_INIT void Processor::detect_hypervisor_hyperv(CPUID const& hypervisor_leaf_range) { if (hypervisor_leaf_range.eax() < 0x40000001) return; CPUID hypervisor_interface(0x40000001); // Get signature of hypervisor interface. alignas(sizeof(u32)) char interface_signature_buffer[5]; *reinterpret_cast(interface_signature_buffer) = hypervisor_interface.eax(); interface_signature_buffer[4] = '\0'; StringView hyperv_interface_signature(interface_signature_buffer); dmesgln("CPU[{}]: Hyper-V interface signature '{}' ({:#x})", current_id(), hyperv_interface_signature, hypervisor_interface.eax()); if (hypervisor_leaf_range.eax() < 0x40000001) return; CPUID hypervisor_sysid(0x40000002); dmesgln("CPU[{}]: Hyper-V system identity {}.{}, build number {}", current_id(), hypervisor_sysid.ebx() >> 16, hypervisor_sysid.ebx() & 0xFFFF, hypervisor_sysid.eax()); if (hypervisor_leaf_range.eax() < 0x40000005 || hyperv_interface_signature != "Hv#1"sv) return; dmesgln("CPU[{}]: Hyper-V hypervisor detected", current_id()); // TODO: Actually do something with Hyper-V. } void Processor::write_raw_gdt_entry(u16 selector, u32 low, u32 high) { u16 i = (selector & 0xfffc) >> 3; u32 prev_gdt_length = m_gdt_length; if (i >= m_gdt_length) { m_gdt_length = i + 1; VERIFY(m_gdt_length <= sizeof(m_gdt) / sizeof(m_gdt[0])); m_gdtr.limit = (m_gdt_length + 1) * 8 - 1; } m_gdt[i].low = low; m_gdt[i].high = high; // clear selectors we may have skipped while (i < prev_gdt_length) { m_gdt[i].low = 0; m_gdt[i].high = 0; i++; } } void Processor::write_gdt_entry(u16 selector, Descriptor& descriptor) { write_raw_gdt_entry(selector, descriptor.low, descriptor.high); } Descriptor& Processor::get_gdt_entry(u16 selector) { u16 i = (selector & 0xfffc) >> 3; return *(Descriptor*)(&m_gdt[i]); } void Processor::flush_gdt() { m_gdtr.address = m_gdt; m_gdtr.limit = (m_gdt_length * 8) - 1; asm volatile("lgdt %0" ::"m"(m_gdtr) : "memory"); } const DescriptorTablePointer& Processor::get_gdtr() { return m_gdtr; } Vector Processor::capture_stack_trace(Thread& thread, size_t max_frames) { FlatPtr frame_ptr = 0, ip = 0; Vector stack_trace; auto walk_stack = [&](FlatPtr stack_ptr) { static constexpr size_t max_stack_frames = 4096; stack_trace.append(ip); size_t count = 1; while (stack_ptr && stack_trace.size() < max_stack_frames) { FlatPtr retaddr; count++; if (max_frames != 0 && count > max_frames) break; if (Memory::is_user_range(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2)) { if (copy_from_user(&retaddr, &((FlatPtr*)stack_ptr)[1]).is_error() || !retaddr) break; stack_trace.append(retaddr); if (copy_from_user(&stack_ptr, (FlatPtr*)stack_ptr).is_error()) break; } else { void* fault_at; if (!safe_memcpy(&retaddr, &((FlatPtr*)stack_ptr)[1], sizeof(FlatPtr), fault_at) || !retaddr) break; stack_trace.append(retaddr); if (!safe_memcpy(&stack_ptr, (FlatPtr*)stack_ptr, sizeof(FlatPtr), fault_at)) break; } } }; auto capture_current_thread = [&]() { frame_ptr = (FlatPtr)__builtin_frame_address(0); ip = (FlatPtr)__builtin_return_address(0); walk_stack(frame_ptr); }; // Since the thread may be running on another processor, there // is a chance a context switch may happen while we're trying // to get it. It also won't be entirely accurate and merely // reflect the status at the last context switch. SpinlockLocker lock(g_scheduler_lock); if (&thread == Processor::current_thread()) { VERIFY(thread.state() == Thread::Running); // Leave the scheduler lock. If we trigger page faults we may // need to be preempted. Since this is our own thread it won't // cause any problems as the stack won't change below this frame. lock.unlock(); capture_current_thread(); } else if (thread.is_active()) { VERIFY(thread.cpu() != Processor::current_id()); // If this is the case, the thread is currently running // on another processor. We can't trust the kernel stack as // it may be changing at any time. We need to probably send // an IPI to that processor, have it walk the stack and wait // until it returns the data back to us auto& proc = Processor::current(); smp_unicast( thread.cpu(), [&]() { dbgln("CPU[{}] getting stack for cpu #{}", Processor::current_id(), proc.id()); ScopedAddressSpaceSwitcher switcher(thread.process()); VERIFY(&Processor::current() != &proc); VERIFY(&thread == Processor::current_thread()); // NOTE: Because the other processor is still holding the // scheduler lock while waiting for this callback to finish, // the current thread on the target processor cannot change // TODO: What to do about page faults here? We might deadlock // because the other processor is still holding the // scheduler lock... capture_current_thread(); }, false); } else { switch (thread.state()) { case Thread::Running: VERIFY_NOT_REACHED(); // should have been handled above case Thread::Runnable: case Thread::Stopped: case Thread::Blocked: case Thread::Dying: case Thread::Dead: { // We need to retrieve ebp from what was last pushed to the kernel // stack. Before switching out of that thread, it switch_context // pushed the callee-saved registers, and the last of them happens // to be ebp. ScopedAddressSpaceSwitcher switcher(thread.process()); auto& regs = thread.regs(); auto* stack_top = reinterpret_cast(regs.sp()); if (Memory::is_user_range(VirtualAddress(stack_top), sizeof(FlatPtr))) { if (copy_from_user(&frame_ptr, &((FlatPtr*)stack_top)[0]).is_error()) frame_ptr = 0; } else { void* fault_at; if (!safe_memcpy(&frame_ptr, &((FlatPtr*)stack_top)[0], sizeof(FlatPtr), fault_at)) frame_ptr = 0; } ip = regs.ip(); // TODO: We need to leave the scheduler lock here, but we also // need to prevent the target thread from being run while // we walk the stack lock.unlock(); walk_stack(frame_ptr); break; } default: dbgln("Cannot capture stack trace for thread {} in state {}", thread, thread.state_string()); break; } } return stack_trace; } ProcessorContainer& Processor::processors() { return s_processors; } Processor& Processor::by_id(u32 id) { return *s_processors[id]; } void Processor::enter_trap(TrapFrame& trap, bool raise_irq) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(&Processor::current() == this); trap.prev_irq_level = m_in_irq; if (raise_irq) m_in_irq++; auto* current_thread = Processor::current_thread(); if (current_thread) { auto& current_trap = current_thread->current_trap(); trap.next_trap = current_trap; current_trap = &trap; // The cs register of this trap tells us where we will return back to auto new_previous_mode = ((trap.regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode; if (current_thread->set_previous_mode(new_previous_mode) && trap.prev_irq_level == 0) { current_thread->update_time_scheduled(Scheduler::current_time(), new_previous_mode == Thread::PreviousMode::KernelMode, false); } } else { trap.next_trap = nullptr; } } void Processor::exit_trap(TrapFrame& trap) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(&Processor::current() == this); // Temporarily enter a critical section. This is to prevent critical // sections entered and left within e.g. smp_process_pending_messages // to trigger a context switch while we're executing this function // See the comment at the end of the function why we don't use // ScopedCritical here. m_in_critical = m_in_critical + 1; VERIFY(m_in_irq >= trap.prev_irq_level); m_in_irq = trap.prev_irq_level; if (s_smp_enabled) smp_process_pending_messages(); // Process the deferred call queue. Among other things, this ensures // that any pending thread unblocks happen before we enter the scheduler. deferred_call_execute_pending(); auto* current_thread = Processor::current_thread(); if (current_thread) { auto& current_trap = current_thread->current_trap(); current_trap = trap.next_trap; Thread::PreviousMode new_previous_mode; if (current_trap) { VERIFY(current_trap->regs); // If we have another higher level trap then we probably returned // from an interrupt or irq handler. The cs register of the // new/higher level trap tells us what the mode prior to it was new_previous_mode = ((current_trap->regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode; } else { // If we don't have a higher level trap then we're back in user mode. // Which means that the previous mode prior to being back in user mode was kernel mode new_previous_mode = Thread::PreviousMode::KernelMode; } if (current_thread->set_previous_mode(new_previous_mode)) current_thread->update_time_scheduled(Scheduler::current_time(), true, false); } VERIFY_INTERRUPTS_DISABLED(); // Leave the critical section without actually enabling interrupts. // We don't want context switches to happen until we're explicitly // triggering a switch in check_invoke_scheduler. m_in_critical = m_in_critical - 1; if (!m_in_irq && !m_in_critical) check_invoke_scheduler(); } void Processor::check_invoke_scheduler() { InterruptDisabler disabler; VERIFY(!m_in_irq); VERIFY(!m_in_critical); VERIFY(&Processor::current() == this); if (m_invoke_scheduler_async && m_scheduler_initialized) { m_invoke_scheduler_async = false; Scheduler::invoke_async(); } } void Processor::flush_tlb_local(VirtualAddress vaddr, size_t page_count) { auto ptr = vaddr.as_ptr(); while (page_count > 0) { // clang-format off asm volatile("invlpg %0" : : "m"(*ptr) : "memory"); // clang-format on ptr += PAGE_SIZE; page_count--; } } void Processor::flush_tlb(Memory::PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count) { if (s_smp_enabled && (!Memory::is_user_address(vaddr) || Process::current().thread_count() > 1)) smp_broadcast_flush_tlb(page_directory, vaddr, page_count); else flush_tlb_local(vaddr, page_count); } void Processor::smp_return_to_pool(ProcessorMessage& msg) { ProcessorMessage* next = nullptr; for (;;) { msg.next = next; if (s_message_pool.compare_exchange_strong(next, &msg, AK::MemoryOrder::memory_order_acq_rel)) break; Processor::pause(); } } ProcessorMessage& Processor::smp_get_from_pool() { ProcessorMessage* msg; // The assumption is that messages are never removed from the pool! for (;;) { msg = s_message_pool.load(AK::MemoryOrder::memory_order_consume); if (!msg) { if (!Processor::current().smp_process_pending_messages()) { Processor::pause(); } continue; } // If another processor were to use this message in the meanwhile, // "msg" is still valid (because it never gets freed). We'd detect // this because the expected value "msg" and pool would // no longer match, and the compare_exchange will fail. But accessing // "msg->next" is always safe here. if (s_message_pool.compare_exchange_strong(msg, msg->next, AK::MemoryOrder::memory_order_acq_rel)) { // We successfully "popped" this available message break; } } VERIFY(msg != nullptr); return *msg; } u32 Processor::smp_wake_n_idle_processors(u32 wake_count) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(wake_count > 0); if (!s_smp_enabled) return 0; // Wake at most N - 1 processors if (wake_count >= Processor::count()) { wake_count = Processor::count() - 1; VERIFY(wake_count > 0); } u32 current_id = Processor::current_id(); u32 did_wake_count = 0; auto& apic = APIC::the(); while (did_wake_count < wake_count) { // Try to get a set of idle CPUs and flip them to busy u32 idle_mask = s_idle_cpu_mask.load(AK::MemoryOrder::memory_order_relaxed) & ~(1u << current_id); u32 idle_count = __builtin_popcountl(idle_mask); if (idle_count == 0) break; // No (more) idle processor available u32 found_mask = 0; for (u32 i = 0; i < idle_count; i++) { u32 cpu = __builtin_ffsl(idle_mask) - 1; idle_mask &= ~(1u << cpu); found_mask |= 1u << cpu; } idle_mask = s_idle_cpu_mask.fetch_and(~found_mask, AK::MemoryOrder::memory_order_acq_rel) & found_mask; if (idle_mask == 0) continue; // All of them were flipped to busy, try again idle_count = __builtin_popcountl(idle_mask); for (u32 i = 0; i < idle_count; i++) { u32 cpu = __builtin_ffsl(idle_mask) - 1; idle_mask &= ~(1u << cpu); // Send an IPI to that CPU to wake it up. There is a possibility // someone else woke it up as well, or that it woke up due to // a timer interrupt. But we tried hard to avoid this... apic.send_ipi(cpu); did_wake_count++; } } return did_wake_count; } UNMAP_AFTER_INIT void Processor::smp_enable() { size_t msg_pool_size = Processor::count() * 100u; size_t msg_entries_cnt = Processor::count(); auto msgs = new ProcessorMessage[msg_pool_size]; auto msg_entries = new ProcessorMessageEntry[msg_pool_size * msg_entries_cnt]; size_t msg_entry_i = 0; for (size_t i = 0; i < msg_pool_size; i++, msg_entry_i += msg_entries_cnt) { auto& msg = msgs[i]; msg.next = i < msg_pool_size - 1 ? &msgs[i + 1] : nullptr; msg.per_proc_entries = &msg_entries[msg_entry_i]; for (size_t k = 0; k < msg_entries_cnt; k++) msg_entries[msg_entry_i + k].msg = &msg; } s_message_pool.store(&msgs[0], AK::MemoryOrder::memory_order_release); // Start sending IPI messages s_smp_enabled = true; } void Processor::smp_cleanup_message(ProcessorMessage& msg) { switch (msg.type) { case ProcessorMessage::Callback: msg.callback_value().~Function(); break; default: break; } } bool Processor::smp_process_pending_messages() { VERIFY(s_smp_enabled); bool did_process = false; enter_critical(); if (auto pending_msgs = m_message_queue.exchange(nullptr, AK::MemoryOrder::memory_order_acq_rel)) { // We pulled the stack of pending messages in LIFO order, so we need to reverse the list first auto reverse_list = [](ProcessorMessageEntry* list) -> ProcessorMessageEntry* { ProcessorMessageEntry* rev_list = nullptr; while (list) { auto next = list->next; list->next = rev_list; rev_list = list; list = next; } return rev_list; }; pending_msgs = reverse_list(pending_msgs); // now process in the right order ProcessorMessageEntry* next_msg; for (auto cur_msg = pending_msgs; cur_msg; cur_msg = next_msg) { next_msg = cur_msg->next; auto msg = cur_msg->msg; dbgln_if(SMP_DEBUG, "SMP[{}]: Processing message {}", current_id(), VirtualAddress(msg)); switch (msg->type) { case ProcessorMessage::Callback: msg->invoke_callback(); break; case ProcessorMessage::FlushTlb: if (Memory::is_user_address(VirtualAddress(msg->flush_tlb.ptr))) { // We assume that we don't cross into kernel land! VERIFY(Memory::is_user_range(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count * PAGE_SIZE)); if (read_cr3() != msg->flush_tlb.page_directory->cr3()) { // This processor isn't using this page directory right now, we can ignore this request dbgln_if(SMP_DEBUG, "SMP[{}]: No need to flush {} pages at {}", current_id(), msg->flush_tlb.page_count, VirtualAddress(msg->flush_tlb.ptr)); break; } } flush_tlb_local(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count); break; } bool is_async = msg->async; // Need to cache this value *before* dropping the ref count! auto prev_refs = msg->refs.fetch_sub(1u, AK::MemoryOrder::memory_order_acq_rel); VERIFY(prev_refs != 0); if (prev_refs == 1) { // All processors handled this. If this is an async message, // we need to clean it up and return it to the pool if (is_async) { smp_cleanup_message(*msg); smp_return_to_pool(*msg); } } if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed)) halt_this(); } did_process = true; } else if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed)) { halt_this(); } leave_critical(); return did_process; } bool Processor::smp_enqueue_message(ProcessorMessage& msg) { // Note that it's quite possible that the other processor may pop // the queue at any given time. We rely on the fact that the messages // are pooled and never get freed! auto& msg_entry = msg.per_proc_entries[id()]; VERIFY(msg_entry.msg == &msg); ProcessorMessageEntry* next = nullptr; for (;;) { msg_entry.next = next; if (m_message_queue.compare_exchange_strong(next, &msg_entry, AK::MemoryOrder::memory_order_acq_rel)) break; Processor::pause(); } // If the enqueued message was the only message in the queue when posted, // we return true. This is used by callers when deciding whether to generate an IPI. return next == nullptr; } void Processor::smp_broadcast_message(ProcessorMessage& msg) { auto& current_processor = Processor::current(); dbgln_if(SMP_DEBUG, "SMP[{}]: Broadcast message {} to cpus: {} processor: {}", current_processor.id(), VirtualAddress(&msg), count(), VirtualAddress(¤t_processor)); msg.refs.store(count() - 1, AK::MemoryOrder::memory_order_release); VERIFY(msg.refs > 0); bool need_broadcast = false; for_each( [&](Processor& proc) { if (&proc != ¤t_processor) { if (proc.smp_enqueue_message(msg)) need_broadcast = true; } }); // Now trigger an IPI on all other APs (unless all targets already had messages queued) if (need_broadcast) APIC::the().broadcast_ipi(); } void Processor::smp_broadcast_wait_sync(ProcessorMessage& msg) { auto& cur_proc = Processor::current(); VERIFY(!msg.async); // If synchronous then we must cleanup and return the message back // to the pool. Otherwise, the last processor to complete it will return it while (msg.refs.load(AK::MemoryOrder::memory_order_consume) != 0) { Processor::pause(); // We need to process any messages that may have been sent to // us while we're waiting. This also checks if another processor // may have requested us to halt. cur_proc.smp_process_pending_messages(); } smp_cleanup_message(msg); smp_return_to_pool(msg); } void Processor::smp_unicast_message(u32 cpu, ProcessorMessage& msg, bool async) { auto& current_processor = Processor::current(); VERIFY(cpu != current_processor.id()); auto& target_processor = processors()[cpu]; msg.async = async; dbgln_if(SMP_DEBUG, "SMP[{}]: Send message {} to cpu #{} processor: {}", current_processor.id(), VirtualAddress(&msg), cpu, VirtualAddress(&target_processor)); msg.refs.store(1u, AK::MemoryOrder::memory_order_release); if (target_processor->smp_enqueue_message(msg)) { APIC::the().send_ipi(cpu); } if (!async) { // If synchronous then we must cleanup and return the message back // to the pool. Otherwise, the last processor to complete it will return it while (msg.refs.load(AK::MemoryOrder::memory_order_consume) != 0) { Processor::pause(); // We need to process any messages that may have been sent to // us while we're waiting. This also checks if another processor // may have requested us to halt. current_processor.smp_process_pending_messages(); } smp_cleanup_message(msg); smp_return_to_pool(msg); } } void Processor::smp_unicast(u32 cpu, Function callback, bool async) { auto& msg = smp_get_from_pool(); msg.type = ProcessorMessage::Callback; new (msg.callback_storage) ProcessorMessage::CallbackFunction(move(callback)); smp_unicast_message(cpu, msg, async); } void Processor::smp_broadcast_flush_tlb(Memory::PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count) { auto& msg = smp_get_from_pool(); msg.async = false; msg.type = ProcessorMessage::FlushTlb; msg.flush_tlb.page_directory = page_directory; msg.flush_tlb.ptr = vaddr.as_ptr(); msg.flush_tlb.page_count = page_count; smp_broadcast_message(msg); // While the other processors handle this request, we'll flush ours flush_tlb_local(vaddr, page_count); // Now wait until everybody is done as well smp_broadcast_wait_sync(msg); } void Processor::smp_broadcast_halt() { // We don't want to use a message, because this could have been triggered // by being out of memory and we might not be able to get a message for_each( [&](Processor& proc) { proc.m_halt_requested.store(true, AK::MemoryOrder::memory_order_release); }); // Now trigger an IPI on all other APs APIC::the().broadcast_ipi(); } void Processor::Processor::halt() { if (s_smp_enabled) smp_broadcast_halt(); halt_this(); } UNMAP_AFTER_INIT void Processor::deferred_call_pool_init() { size_t pool_count = sizeof(m_deferred_call_pool) / sizeof(m_deferred_call_pool[0]); for (size_t i = 0; i < pool_count; i++) { auto& entry = m_deferred_call_pool[i]; entry.next = i < pool_count - 1 ? &m_deferred_call_pool[i + 1] : nullptr; new (entry.handler_storage) DeferredCallEntry::HandlerFunction; entry.was_allocated = false; } m_pending_deferred_calls = nullptr; m_free_deferred_call_pool_entry = &m_deferred_call_pool[0]; } void Processor::deferred_call_return_to_pool(DeferredCallEntry* entry) { VERIFY(m_in_critical); VERIFY(!entry->was_allocated); entry->handler_value() = {}; entry->next = m_free_deferred_call_pool_entry; m_free_deferred_call_pool_entry = entry; } DeferredCallEntry* Processor::deferred_call_get_free() { VERIFY(m_in_critical); if (m_free_deferred_call_pool_entry) { // Fast path, we have an entry in our pool auto* entry = m_free_deferred_call_pool_entry; m_free_deferred_call_pool_entry = entry->next; VERIFY(!entry->was_allocated); return entry; } auto* entry = new DeferredCallEntry; new (entry->handler_storage) DeferredCallEntry::HandlerFunction; entry->was_allocated = true; return entry; } void Processor::deferred_call_execute_pending() { VERIFY(m_in_critical); if (!m_pending_deferred_calls) return; auto* pending_list = m_pending_deferred_calls; m_pending_deferred_calls = nullptr; // We pulled the stack of pending deferred calls in LIFO order, so we need to reverse the list first auto reverse_list = [](DeferredCallEntry* list) -> DeferredCallEntry* { DeferredCallEntry* rev_list = nullptr; while (list) { auto next = list->next; list->next = rev_list; rev_list = list; list = next; } return rev_list; }; pending_list = reverse_list(pending_list); do { pending_list->invoke_handler(); // Return the entry back to the pool, or free it auto* next = pending_list->next; if (pending_list->was_allocated) { pending_list->handler_value().~Function(); delete pending_list; } else deferred_call_return_to_pool(pending_list); pending_list = next; } while (pending_list); } void Processor::deferred_call_queue_entry(DeferredCallEntry* entry) { VERIFY(m_in_critical); entry->next = m_pending_deferred_calls; m_pending_deferred_calls = entry; } void Processor::deferred_call_queue(Function callback) { // NOTE: If we are called outside of a critical section and outside // of an irq handler, the function will be executed before we return! ScopedCritical critical; auto& cur_proc = Processor::current(); auto* entry = cur_proc.deferred_call_get_free(); entry->handler_value() = move(callback); cur_proc.deferred_call_queue_entry(entry); } UNMAP_AFTER_INIT void Processor::gdt_init() { m_gdt_length = 0; m_gdtr.address = nullptr; m_gdtr.limit = 0; write_raw_gdt_entry(0x0000, 0x00000000, 0x00000000); #if ARCH(I386) write_raw_gdt_entry(GDT_SELECTOR_CODE0, 0x0000ffff, 0x00cf9a00); // code0 write_raw_gdt_entry(GDT_SELECTOR_DATA0, 0x0000ffff, 0x00cf9200); // data0 write_raw_gdt_entry(GDT_SELECTOR_CODE3, 0x0000ffff, 0x00cffa00); // code3 write_raw_gdt_entry(GDT_SELECTOR_DATA3, 0x0000ffff, 0x00cff200); // data3 #else write_raw_gdt_entry(GDT_SELECTOR_CODE0, 0x0000ffff, 0x00af9a00); // code0 write_raw_gdt_entry(GDT_SELECTOR_CODE3, 0x0000ffff, 0x00affa00); // code3 write_raw_gdt_entry(GDT_SELECTOR_DATA3, 0x0000ffff, 0x008ff200); // data3 #endif #if ARCH(I386) Descriptor tls_descriptor {}; tls_descriptor.low = tls_descriptor.high = 0; tls_descriptor.dpl = 3; tls_descriptor.segment_present = 1; tls_descriptor.granularity = 0; tls_descriptor.operation_size64 = 0; tls_descriptor.operation_size32 = 1; tls_descriptor.descriptor_type = 1; tls_descriptor.type = 2; write_gdt_entry(GDT_SELECTOR_TLS, tls_descriptor); // tls3 Descriptor gs_descriptor {}; gs_descriptor.set_base(VirtualAddress { this }); gs_descriptor.set_limit(sizeof(Processor) - 1); gs_descriptor.dpl = 0; gs_descriptor.segment_present = 1; gs_descriptor.granularity = 0; gs_descriptor.operation_size64 = 0; gs_descriptor.operation_size32 = 1; gs_descriptor.descriptor_type = 1; gs_descriptor.type = 2; write_gdt_entry(GDT_SELECTOR_PROC, gs_descriptor); // gs0 #endif Descriptor tss_descriptor {}; tss_descriptor.set_base(VirtualAddress { (size_t)&m_tss & 0xffffffff }); tss_descriptor.set_limit(sizeof(TSS) - 1); tss_descriptor.dpl = 0; tss_descriptor.segment_present = 1; tss_descriptor.granularity = 0; tss_descriptor.operation_size64 = 0; tss_descriptor.operation_size32 = 1; tss_descriptor.descriptor_type = 0; tss_descriptor.type = 9; write_gdt_entry(GDT_SELECTOR_TSS, tss_descriptor); // tss #if ARCH(X86_64) Descriptor tss_descriptor_part2 {}; tss_descriptor_part2.low = (size_t)&m_tss >> 32; write_gdt_entry(GDT_SELECTOR_TSS_PART2, tss_descriptor_part2); #endif flush_gdt(); load_task_register(GDT_SELECTOR_TSS); #if ARCH(X86_64) MSR gs_base(MSR_GS_BASE); gs_base.set((u64)this); #else asm volatile( "mov %%ax, %%ds\n" "mov %%ax, %%es\n" "mov %%ax, %%fs\n" "mov %%ax, %%ss\n" ::"a"(GDT_SELECTOR_DATA0) : "memory"); set_gs(GDT_SELECTOR_PROC); #endif #if ARCH(I386) // Make sure CS points to the kernel code descriptor. // clang-format off asm volatile( "ljmpl $" __STRINGIFY(GDT_SELECTOR_CODE0) ", $sanity\n" "sanity:\n"); // clang-format on #endif } extern "C" void context_first_init([[maybe_unused]] Thread* from_thread, [[maybe_unused]] Thread* to_thread, [[maybe_unused]] TrapFrame* trap) { VERIFY(!are_interrupts_enabled()); VERIFY(is_kernel_mode()); dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context <-- from {} {} to {} {} (context_first_init)", VirtualAddress(from_thread), *from_thread, VirtualAddress(to_thread), *to_thread); VERIFY(to_thread == Thread::current()); Scheduler::enter_current(*from_thread, true); auto in_critical = to_thread->saved_critical(); VERIFY(in_critical > 0); Processor::restore_in_critical(in_critical); // Since we got here and don't have Scheduler::context_switch in the // call stack (because this is the first time we switched into this // context), we need to notify the scheduler so that it can release // the scheduler lock. We don't want to enable interrupts at this point // as we're still in the middle of a context switch. Doing so could // trigger a context switch within a context switch, leading to a crash. FlatPtr flags = trap->regs->flags(); Scheduler::leave_on_first_switch(flags & ~0x200); } extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread) { VERIFY(from_thread == to_thread || from_thread->state() != Thread::Running); VERIFY(to_thread->state() == Thread::Running); bool has_fxsr = Processor::current().has_feature(CPUFeature::FXSR); Processor::set_current_thread(*to_thread); auto& from_regs = from_thread->regs(); auto& to_regs = to_thread->regs(); if (has_fxsr) asm volatile("fxsave %0" : "=m"(from_thread->fpu_state())); else asm volatile("fnsave %0" : "=m"(from_thread->fpu_state())); #if ARCH(I386) from_regs.fs = get_fs(); from_regs.gs = get_gs(); set_fs(to_regs.fs); set_gs(to_regs.gs); #endif if (from_thread->process().is_traced()) read_debug_registers_into(from_thread->debug_register_state()); if (to_thread->process().is_traced()) { write_debug_registers_from(to_thread->debug_register_state()); } else { clear_debug_registers(); } auto& processor = Processor::current(); #if ARCH(I386) auto& tls_descriptor = processor.get_gdt_entry(GDT_SELECTOR_TLS); tls_descriptor.set_base(to_thread->thread_specific_data()); tls_descriptor.set_limit(to_thread->thread_specific_region_size()); #else MSR fs_base_msr(MSR_FS_BASE); fs_base_msr.set(to_thread->thread_specific_data().get()); #endif if (from_regs.cr3 != to_regs.cr3) write_cr3(to_regs.cr3); to_thread->set_cpu(processor.id()); auto in_critical = to_thread->saved_critical(); VERIFY(in_critical > 0); Processor::restore_in_critical(in_critical); if (has_fxsr) asm volatile("fxrstor %0" ::"m"(to_thread->fpu_state())); else asm volatile("frstor %0" ::"m"(to_thread->fpu_state())); // TODO: ioperm? } extern "C" FlatPtr do_init_context(Thread* thread, u32 flags) { VERIFY_INTERRUPTS_DISABLED(); thread->regs().set_flags(flags); return Processor::current().init_context(*thread, true); } void Processor::assume_context(Thread& thread, FlatPtr flags) { dbgln_if(CONTEXT_SWITCH_DEBUG, "Assume context for thread {} {}", VirtualAddress(&thread), thread); VERIFY_INTERRUPTS_DISABLED(); Scheduler::prepare_after_exec(); // in_critical() should be 2 here. The critical section in Process::exec // and then the scheduler lock VERIFY(Processor::in_critical() == 2); do_assume_context(&thread, flags); VERIFY_NOT_REACHED(); } }