/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Kernel { static DescriptorTablePointer s_idtr; static Descriptor s_idt[256]; static GenericInterruptHandler* s_interrupt_handler[GENERIC_INTERRUPT_HANDLERS_COUNT]; static EntropySource s_entropy_source_interrupts{EntropySource::Static::Interrupts}; // The compiler can't see the calls to these functions inside assembly. // Declare them, to avoid dead code warnings. extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread); extern "C" void context_first_init(Thread* from_thread, Thread* to_thread, TrapFrame* trap); extern "C" u32 do_init_context(Thread* thread, u32 flags); extern "C" void exit_kernel_thread(void); extern "C" void pre_init_finished(void); extern "C" void post_init_finished(void); extern "C" void handle_interrupt(TrapFrame*); #define EH_ENTRY(ec, title) \ extern "C" void title##_asm_entry(); \ extern "C" void title##_handler(TrapFrame*); \ asm( \ ".globl " #title "_asm_entry\n" \ "" #title "_asm_entry: \n" \ " pusha\n" \ " pushl %ds\n" \ " pushl %es\n" \ " pushl %fs\n" \ " pushl %gs\n" \ " pushl %ss\n" \ " mov $" __STRINGIFY(GDT_SELECTOR_DATA0) ", %ax\n" \ " mov %ax, %ds\n" \ " mov %ax, %es\n" \ " mov $" __STRINGIFY(GDT_SELECTOR_PROC) ", %ax\n" \ " mov %ax, %fs\n" \ " pushl %esp \n" /* set TrapFrame::regs */ \ " subl $" __STRINGIFY(TRAP_FRAME_SIZE - 4) ", %esp \n" \ " pushl %esp \n" \ " cld\n" \ " call enter_trap_no_irq \n" \ " call " #title "_handler\n" \ " jmp common_trap_exit \n"); #define EH_ENTRY_NO_CODE(ec, title) \ extern "C" void title##_handler(TrapFrame*); \ extern "C" void title##_asm_entry(); \ asm( \ ".globl " #title "_asm_entry\n" \ "" #title "_asm_entry: \n" \ " pushl $0x0\n" \ " pusha\n" \ " pushl %ds\n" \ " pushl %es\n" \ " pushl %fs\n" \ " pushl %gs\n" \ " pushl %ss\n" \ " mov $" __STRINGIFY(GDT_SELECTOR_DATA0) ", %ax\n" \ " mov %ax, %ds\n" \ " mov %ax, %es\n" \ " mov $" __STRINGIFY(GDT_SELECTOR_PROC) ", %ax\n" \ " mov %ax, %fs\n" \ " pushl %esp \n" /* set TrapFrame::regs */ \ " subl $" __STRINGIFY(TRAP_FRAME_SIZE - 4) ", %esp \n" \ " pushl %esp \n" \ " cld\n" \ " call enter_trap_no_irq \n" \ " call " #title "_handler\n" \ " jmp common_trap_exit \n"); static void dump(const RegisterState& regs) { u16 ss; u32 esp; if (!(regs.cs & 3)) { ss = regs.ss; esp = regs.esp; } else { ss = regs.userspace_ss; esp = regs.userspace_esp; } klog() << "exception code: " << String::format("%04x", regs.exception_code) << " (isr: " << String::format("%04x", regs.isr_number); klog() << " pc=" << String::format("%04x", (u16)regs.cs) << ":" << String::format("%08x", regs.eip) << " flags=" << String::format("%04x", (u16)regs.eflags); klog() << " stk=" << String::format("%04x", ss) << ":" << String::format("%08x", esp); klog() << " ds=" << String::format("%04x", (u16)regs.ds) << " es=" << String::format("%04x", (u16)regs.es) << " fs=" << String::format("%04x", (u16)regs.fs) << " gs=" << String::format("%04x", (u16)regs.gs); klog() << "eax=" << String::format("%08x", regs.eax) << " ebx=" << String::format("%08x", regs.ebx) << " ecx=" << String::format("%08x", regs.ecx) << " edx=" << String::format("%08x", regs.edx); klog() << "ebp=" << String::format("%08x", regs.ebp) << " esp=" << String::format("%08x", regs.esp) << " esi=" << String::format("%08x", regs.esi) << " edi=" << String::format("%08x", regs.edi); u32 cr0; asm("movl %%cr0, %%eax" : "=a"(cr0)); u32 cr2; asm("movl %%cr2, %%eax" : "=a"(cr2)); u32 cr3 = read_cr3(); u32 cr4; asm("movl %%cr4, %%eax" : "=a"(cr4)); klog() << "cr0=" << String::format("%08x", cr0) << " cr2=" << String::format("%08x", cr2) << " cr3=" << String::format("%08x", cr3) << " cr4=" << String::format("%08x", cr4); auto process = Process::current(); u8 code[8]; void* fault_at; if (process && safe_memcpy(code, (void*)regs.eip, 8, fault_at)) { SmapDisabler disabler; klog() << "code: " << String::format("%02x", code[0]) << " " << String::format("%02x", code[1]) << " " << String::format("%02x", code[2]) << " " << String::format("%02x", code[3]) << " " << String::format("%02x", code[4]) << " " << String::format("%02x", code[5]) << " " << String::format("%02x", code[6]) << " " << String::format("%02x", code[7]); } } void handle_crash(RegisterState& regs, const char* description, int signal, bool out_of_memory) { auto process = Process::current(); if (!process) { klog() << description << " with !current"; Processor::halt(); } // If a process crashed while inspecting another process, // make sure we switch back to the right page tables. MM.enter_process_paging_scope(*process); klog() << "CRASH: CPU #" << Processor::id() << " " << description << ". Ring " << (regs.cs & 3) << "."; dump(regs); if (!(regs.cs & 3)) { klog() << "Crash in ring 0 :("; dump_backtrace(); Processor::halt(); } cli(); process->crash(signal, regs.eip, out_of_memory); } EH_ENTRY_NO_CODE(6, illegal_instruction); void illegal_instruction_handler(TrapFrame* trap) { clac(); handle_crash(*trap->regs, "Illegal instruction", SIGILL); } EH_ENTRY_NO_CODE(0, divide_error); void divide_error_handler(TrapFrame* trap) { clac(); handle_crash(*trap->regs, "Divide error", SIGFPE); } EH_ENTRY(13, general_protection_fault); void general_protection_fault_handler(TrapFrame* trap) { clac(); handle_crash(*trap->regs, "General protection fault", SIGSEGV); } // 7: FPU not available exception EH_ENTRY_NO_CODE(7, fpu_exception); void fpu_exception_handler(TrapFrame*) { // Just clear the TS flag. We've already restored the FPU state eagerly. // FIXME: It would be nice if we didn't have to do this at all. asm volatile("clts"); } // 14: Page Fault EH_ENTRY(14, page_fault); void page_fault_handler(TrapFrame* trap) { clac(); auto& regs = *trap->regs; u32 fault_address; asm("movl %%cr2, %%eax" : "=a"(fault_address)); if constexpr (PAGE_FAULT_DEBUG) { u32 fault_page_directory = read_cr3(); dbgln("CPU #{} ring {} {} page fault in PD={:#x}, {}{} {}", Processor::is_initialized() ? Processor::id() : 0, regs.cs & 3, regs.exception_code & 1 ? "PV" : "NP", fault_page_directory, regs.exception_code & 8 ? "reserved-bit " : "", regs.exception_code & 2 ? "write" : "read", VirtualAddress(fault_address)); dump(regs); } bool faulted_in_kernel = !(regs.cs & 3); if (faulted_in_kernel && Processor::current().in_irq()) { // If we're faulting in an IRQ handler, first check if we failed // due to safe_memcpy, safe_strnlen, or safe_memset. If we did, // gracefully continue immediately. Because we're in an IRQ handler // we can't really try to resolve the page fault in a meaningful // way, so we need to do this before calling into // MemoryManager::handle_page_fault, which would just bail and // request a crash if (handle_safe_access_fault(regs, fault_address)) return; } auto current_thread = Thread::current(); if (current_thread) current_thread->set_handling_page_fault(true); ScopeGuard guard = [current_thread] { if (current_thread) current_thread->set_handling_page_fault(false); }; if (!faulted_in_kernel && !MM.validate_user_stack(current_thread->process(), VirtualAddress(regs.userspace_esp))) { dbgln("Invalid stack pointer: {}", VirtualAddress(regs.userspace_esp)); handle_crash(regs, "Bad stack on page fault", SIGSTKFLT); ASSERT_NOT_REACHED(); } auto response = MM.handle_page_fault(PageFault(regs.exception_code, VirtualAddress(fault_address))); if (response == PageFaultResponse::ShouldCrash || response == PageFaultResponse::OutOfMemory) { if (faulted_in_kernel && handle_safe_access_fault(regs, fault_address)) { // If this would be a ring0 (kernel) fault and the fault was triggered by // safe_memcpy, safe_strnlen, or safe_memset then we resume execution at // the appropriate _fault label rather than crashing return; } if (response != PageFaultResponse::OutOfMemory) { if (current_thread->has_signal_handler(SIGSEGV)) { current_thread->send_urgent_signal_to_self(SIGSEGV); return; } } dbgln("Unrecoverable page fault, {}{}{} address {}", regs.exception_code & PageFaultFlags::ReservedBitViolation ? "reserved bit violation / " : "", regs.exception_code & PageFaultFlags::InstructionFetch ? "instruction fetch / " : "", regs.exception_code & PageFaultFlags::Write ? "write to" : "read from", VirtualAddress(fault_address)); u32 malloc_scrub_pattern = explode_byte(MALLOC_SCRUB_BYTE); u32 free_scrub_pattern = explode_byte(FREE_SCRUB_BYTE); u32 kmalloc_scrub_pattern = explode_byte(KMALLOC_SCRUB_BYTE); u32 kfree_scrub_pattern = explode_byte(KFREE_SCRUB_BYTE); u32 slab_alloc_scrub_pattern = explode_byte(SLAB_ALLOC_SCRUB_BYTE); u32 slab_dealloc_scrub_pattern = explode_byte(SLAB_DEALLOC_SCRUB_BYTE); if ((fault_address & 0xffff0000) == (malloc_scrub_pattern & 0xffff0000)) { dbgln("Note: Address {} looks like it may be uninitialized malloc() memory", VirtualAddress(fault_address)); } else if ((fault_address & 0xffff0000) == (free_scrub_pattern & 0xffff0000)) { dbgln("Note: Address {} looks like it may be recently free()'d memory", VirtualAddress(fault_address)); } else if ((fault_address & 0xffff0000) == (kmalloc_scrub_pattern & 0xffff0000)) { dbgln("Note: Address {} looks like it may be uninitialized kmalloc() memory", VirtualAddress(fault_address)); } else if ((fault_address & 0xffff0000) == (kfree_scrub_pattern & 0xffff0000)) { dbgln("Note: Address {} looks like it may be recently kfree()'d memory", VirtualAddress(fault_address)); } else if ((fault_address & 0xffff0000) == (slab_alloc_scrub_pattern & 0xffff0000)) { dbgln("Note: Address {} looks like it may be uninitialized slab_alloc() memory", VirtualAddress(fault_address)); } else if ((fault_address & 0xffff0000) == (slab_dealloc_scrub_pattern & 0xffff0000)) { dbgln("Note: Address {} looks like it may be recently slab_dealloc()'d memory", VirtualAddress(fault_address)); } else if (fault_address < 4096) { dbgln("Note: Address {} looks like a possible nullptr dereference", VirtualAddress(fault_address)); } handle_crash(regs, "Page Fault", SIGSEGV, response == PageFaultResponse::OutOfMemory); } else if (response == PageFaultResponse::Continue) { #if PAGE_FAULT_DEBUG dbgln("Continuing after resolved page fault"); #endif } else { ASSERT_NOT_REACHED(); } } EH_ENTRY_NO_CODE(1, debug); void debug_handler(TrapFrame* trap) { clac(); auto& regs = *trap->regs; auto current_thread = Thread::current(); auto& process = current_thread->process(); if ((regs.cs & 3) == 0) { klog() << "Debug Exception in Ring0"; Processor::halt(); return; } constexpr u8 REASON_SINGLESTEP = 14; bool is_reason_singlestep = (read_dr6() & (1 << REASON_SINGLESTEP)); if (!is_reason_singlestep) return; if (auto tracer = process.tracer()) { tracer->set_regs(regs); } current_thread->send_urgent_signal_to_self(SIGTRAP); } EH_ENTRY_NO_CODE(3, breakpoint); void breakpoint_handler(TrapFrame* trap) { clac(); auto& regs = *trap->regs; auto current_thread = Thread::current(); auto& process = current_thread->process(); if ((regs.cs & 3) == 0) { klog() << "Breakpoint Trap in Ring0"; Processor::halt(); return; } if (auto tracer = process.tracer()) { tracer->set_regs(regs); } current_thread->send_urgent_signal_to_self(SIGTRAP); } #define EH(i, msg) \ static void _exception##i() \ { \ klog() << msg; \ u32 cr0, cr2, cr3, cr4; \ asm("movl %%cr0, %%eax" \ : "=a"(cr0)); \ asm("movl %%cr2, %%eax" \ : "=a"(cr2)); \ asm("movl %%cr3, %%eax" \ : "=a"(cr3)); \ asm("movl %%cr4, %%eax" \ : "=a"(cr4)); \ klog() << "CR0=" << String::format("%x", cr0) << " CR2=" << String::format("%x", cr2) << " CR3=" << String::format("%x", cr3) << " CR4=" << String::format("%x", cr4); \ Processor::halt(); \ } EH(2, "Unknown error") EH(4, "Overflow") EH(5, "Bounds check") EH(8, "Double fault") EH(9, "Coprocessor segment overrun") EH(10, "Invalid TSS") EH(11, "Segment not present") EH(12, "Stack exception") EH(15, "Unknown error") EH(16, "Coprocessor error") const DescriptorTablePointer& get_idtr() { return s_idtr; } static void unimp_trap() { klog() << "Unhandled IRQ."; Processor::Processor::halt(); } GenericInterruptHandler& get_interrupt_handler(u8 interrupt_number) { ASSERT(s_interrupt_handler[interrupt_number] != nullptr); return *s_interrupt_handler[interrupt_number]; } static void revert_to_unused_handler(u8 interrupt_number) { new UnhandledInterruptHandler(interrupt_number); } void register_generic_interrupt_handler(u8 interrupt_number, GenericInterruptHandler& handler) { ASSERT(interrupt_number < GENERIC_INTERRUPT_HANDLERS_COUNT); if (s_interrupt_handler[interrupt_number] != nullptr) { if (s_interrupt_handler[interrupt_number]->type() == HandlerType::UnhandledInterruptHandler) { s_interrupt_handler[interrupt_number] = &handler; return; } if (s_interrupt_handler[interrupt_number]->is_shared_handler() && !s_interrupt_handler[interrupt_number]->is_sharing_with_others()) { ASSERT(s_interrupt_handler[interrupt_number]->type() == HandlerType::SharedIRQHandler); static_cast(s_interrupt_handler[interrupt_number])->register_handler(handler); return; } if (!s_interrupt_handler[interrupt_number]->is_shared_handler()) { if (s_interrupt_handler[interrupt_number]->type() == HandlerType::SpuriousInterruptHandler) { static_cast(s_interrupt_handler[interrupt_number])->register_handler(handler); return; } ASSERT(s_interrupt_handler[interrupt_number]->type() == HandlerType::IRQHandler); auto& previous_handler = *s_interrupt_handler[interrupt_number]; s_interrupt_handler[interrupt_number] = nullptr; SharedIRQHandler::initialize(interrupt_number); static_cast(s_interrupt_handler[interrupt_number])->register_handler(previous_handler); static_cast(s_interrupt_handler[interrupt_number])->register_handler(handler); return; } ASSERT_NOT_REACHED(); } else { s_interrupt_handler[interrupt_number] = &handler; } } void unregister_generic_interrupt_handler(u8 interrupt_number, GenericInterruptHandler& handler) { ASSERT(s_interrupt_handler[interrupt_number] != nullptr); if (s_interrupt_handler[interrupt_number]->type() == HandlerType::UnhandledInterruptHandler) { dbgln("Trying to unregister unused handler (?)"); return; } if (s_interrupt_handler[interrupt_number]->is_shared_handler() && !s_interrupt_handler[interrupt_number]->is_sharing_with_others()) { ASSERT(s_interrupt_handler[interrupt_number]->type() == HandlerType::SharedIRQHandler); static_cast(s_interrupt_handler[interrupt_number])->unregister_handler(handler); if (!static_cast(s_interrupt_handler[interrupt_number])->sharing_devices_count()) { revert_to_unused_handler(interrupt_number); } return; } if (!s_interrupt_handler[interrupt_number]->is_shared_handler()) { ASSERT(s_interrupt_handler[interrupt_number]->type() == HandlerType::IRQHandler); revert_to_unused_handler(interrupt_number); return; } ASSERT_NOT_REACHED(); } void register_interrupt_handler(u8 index, void (*f)()) { s_idt[index].low = 0x00080000 | LSW((f)); s_idt[index].high = ((u32)(f)&0xffff0000) | 0x8e00; } void register_user_callable_interrupt_handler(u8 index, void (*f)()) { s_idt[index].low = 0x00080000 | LSW((f)); s_idt[index].high = ((u32)(f)&0xffff0000) | 0xef00; } void flush_idt() { asm("lidt %0" ::"m"(s_idtr)); } static void idt_init() { s_idtr.address = s_idt; s_idtr.limit = 256 * 8 - 1; register_interrupt_handler(0x00, divide_error_asm_entry); register_user_callable_interrupt_handler(0x01, debug_asm_entry); register_interrupt_handler(0x02, _exception2); register_user_callable_interrupt_handler(0x03, breakpoint_asm_entry); register_interrupt_handler(0x04, _exception4); register_interrupt_handler(0x05, _exception5); register_interrupt_handler(0x06, illegal_instruction_asm_entry); register_interrupt_handler(0x07, fpu_exception_asm_entry); register_interrupt_handler(0x08, _exception8); register_interrupt_handler(0x09, _exception9); register_interrupt_handler(0x0a, _exception10); register_interrupt_handler(0x0b, _exception11); register_interrupt_handler(0x0c, _exception12); register_interrupt_handler(0x0d, general_protection_fault_asm_entry); register_interrupt_handler(0x0e, page_fault_asm_entry); register_interrupt_handler(0x0f, _exception15); register_interrupt_handler(0x10, _exception16); for (u8 i = 0x11; i < 0x50; i++) register_interrupt_handler(i, unimp_trap); register_interrupt_handler(0x50, interrupt_80_asm_entry); register_interrupt_handler(0x51, interrupt_81_asm_entry); register_interrupt_handler(0x52, interrupt_82_asm_entry); register_interrupt_handler(0x53, interrupt_83_asm_entry); register_interrupt_handler(0x54, interrupt_84_asm_entry); register_interrupt_handler(0x55, interrupt_85_asm_entry); register_interrupt_handler(0x56, interrupt_86_asm_entry); register_interrupt_handler(0x57, interrupt_87_asm_entry); register_interrupt_handler(0x58, interrupt_88_asm_entry); register_interrupt_handler(0x59, interrupt_89_asm_entry); register_interrupt_handler(0x5a, interrupt_90_asm_entry); register_interrupt_handler(0x5b, interrupt_91_asm_entry); register_interrupt_handler(0x5c, interrupt_92_asm_entry); register_interrupt_handler(0x5d, interrupt_93_asm_entry); register_interrupt_handler(0x5e, interrupt_94_asm_entry); register_interrupt_handler(0x5f, interrupt_95_asm_entry); register_interrupt_handler(0x60, interrupt_96_asm_entry); register_interrupt_handler(0x61, interrupt_97_asm_entry); register_interrupt_handler(0x62, interrupt_98_asm_entry); register_interrupt_handler(0x63, interrupt_99_asm_entry); register_interrupt_handler(0x64, interrupt_100_asm_entry); register_interrupt_handler(0x65, interrupt_101_asm_entry); register_interrupt_handler(0x66, interrupt_102_asm_entry); register_interrupt_handler(0x67, interrupt_103_asm_entry); register_interrupt_handler(0x68, interrupt_104_asm_entry); register_interrupt_handler(0x69, interrupt_105_asm_entry); register_interrupt_handler(0x6a, interrupt_106_asm_entry); register_interrupt_handler(0x6b, interrupt_107_asm_entry); register_interrupt_handler(0x6c, interrupt_108_asm_entry); register_interrupt_handler(0x6d, interrupt_109_asm_entry); register_interrupt_handler(0x6e, interrupt_110_asm_entry); register_interrupt_handler(0x6f, interrupt_111_asm_entry); register_interrupt_handler(0x70, interrupt_112_asm_entry); register_interrupt_handler(0x71, interrupt_113_asm_entry); register_interrupt_handler(0x72, interrupt_114_asm_entry); register_interrupt_handler(0x73, interrupt_115_asm_entry); register_interrupt_handler(0x74, interrupt_116_asm_entry); register_interrupt_handler(0x75, interrupt_117_asm_entry); register_interrupt_handler(0x76, interrupt_118_asm_entry); register_interrupt_handler(0x77, interrupt_119_asm_entry); register_interrupt_handler(0x78, interrupt_120_asm_entry); register_interrupt_handler(0x79, interrupt_121_asm_entry); register_interrupt_handler(0x7a, interrupt_122_asm_entry); register_interrupt_handler(0x7b, interrupt_123_asm_entry); register_interrupt_handler(0x7c, interrupt_124_asm_entry); register_interrupt_handler(0x7d, interrupt_125_asm_entry); register_interrupt_handler(0x7e, interrupt_126_asm_entry); register_interrupt_handler(0x7f, interrupt_127_asm_entry); register_interrupt_handler(0x80, interrupt_128_asm_entry); register_interrupt_handler(0x81, interrupt_129_asm_entry); register_interrupt_handler(0x82, interrupt_130_asm_entry); register_interrupt_handler(0x83, interrupt_131_asm_entry); register_interrupt_handler(0x84, interrupt_132_asm_entry); register_interrupt_handler(0x85, interrupt_133_asm_entry); register_interrupt_handler(0x86, interrupt_134_asm_entry); register_interrupt_handler(0x87, interrupt_135_asm_entry); register_interrupt_handler(0x88, interrupt_136_asm_entry); register_interrupt_handler(0x89, interrupt_137_asm_entry); register_interrupt_handler(0x8a, interrupt_138_asm_entry); register_interrupt_handler(0x8b, interrupt_139_asm_entry); register_interrupt_handler(0x8c, interrupt_140_asm_entry); register_interrupt_handler(0x8d, interrupt_141_asm_entry); register_interrupt_handler(0x8e, interrupt_142_asm_entry); register_interrupt_handler(0x8f, interrupt_143_asm_entry); register_interrupt_handler(0x90, interrupt_144_asm_entry); register_interrupt_handler(0x91, interrupt_145_asm_entry); register_interrupt_handler(0x92, interrupt_146_asm_entry); register_interrupt_handler(0x93, interrupt_147_asm_entry); register_interrupt_handler(0x94, interrupt_148_asm_entry); register_interrupt_handler(0x95, interrupt_149_asm_entry); register_interrupt_handler(0x96, interrupt_150_asm_entry); register_interrupt_handler(0x97, interrupt_151_asm_entry); register_interrupt_handler(0x98, interrupt_152_asm_entry); register_interrupt_handler(0x99, interrupt_153_asm_entry); register_interrupt_handler(0x9a, interrupt_154_asm_entry); register_interrupt_handler(0x9b, interrupt_155_asm_entry); register_interrupt_handler(0x9c, interrupt_156_asm_entry); register_interrupt_handler(0x9d, interrupt_157_asm_entry); register_interrupt_handler(0x9e, interrupt_158_asm_entry); register_interrupt_handler(0x9f, interrupt_159_asm_entry); register_interrupt_handler(0xa0, interrupt_160_asm_entry); register_interrupt_handler(0xa1, interrupt_161_asm_entry); register_interrupt_handler(0xa2, interrupt_162_asm_entry); register_interrupt_handler(0xa3, interrupt_163_asm_entry); register_interrupt_handler(0xa4, interrupt_164_asm_entry); register_interrupt_handler(0xa5, interrupt_165_asm_entry); register_interrupt_handler(0xa6, interrupt_166_asm_entry); register_interrupt_handler(0xa7, interrupt_167_asm_entry); register_interrupt_handler(0xa8, interrupt_168_asm_entry); register_interrupt_handler(0xa9, interrupt_169_asm_entry); register_interrupt_handler(0xaa, interrupt_170_asm_entry); register_interrupt_handler(0xab, interrupt_171_asm_entry); register_interrupt_handler(0xac, interrupt_172_asm_entry); register_interrupt_handler(0xad, interrupt_173_asm_entry); register_interrupt_handler(0xae, interrupt_174_asm_entry); register_interrupt_handler(0xaf, interrupt_175_asm_entry); register_interrupt_handler(0xb0, interrupt_176_asm_entry); register_interrupt_handler(0xb1, interrupt_177_asm_entry); register_interrupt_handler(0xb2, interrupt_178_asm_entry); register_interrupt_handler(0xb3, interrupt_179_asm_entry); register_interrupt_handler(0xb4, interrupt_180_asm_entry); register_interrupt_handler(0xb5, interrupt_181_asm_entry); register_interrupt_handler(0xb6, interrupt_182_asm_entry); register_interrupt_handler(0xb7, interrupt_183_asm_entry); register_interrupt_handler(0xb8, interrupt_184_asm_entry); register_interrupt_handler(0xb9, interrupt_185_asm_entry); register_interrupt_handler(0xba, interrupt_186_asm_entry); register_interrupt_handler(0xbb, interrupt_187_asm_entry); register_interrupt_handler(0xbc, interrupt_188_asm_entry); register_interrupt_handler(0xbd, interrupt_189_asm_entry); register_interrupt_handler(0xbe, interrupt_190_asm_entry); register_interrupt_handler(0xbf, interrupt_191_asm_entry); register_interrupt_handler(0xc0, interrupt_192_asm_entry); register_interrupt_handler(0xc1, interrupt_193_asm_entry); register_interrupt_handler(0xc2, interrupt_194_asm_entry); register_interrupt_handler(0xc3, interrupt_195_asm_entry); register_interrupt_handler(0xc4, interrupt_196_asm_entry); register_interrupt_handler(0xc5, interrupt_197_asm_entry); register_interrupt_handler(0xc6, interrupt_198_asm_entry); register_interrupt_handler(0xc7, interrupt_199_asm_entry); register_interrupt_handler(0xc8, interrupt_200_asm_entry); register_interrupt_handler(0xc9, interrupt_201_asm_entry); register_interrupt_handler(0xca, interrupt_202_asm_entry); register_interrupt_handler(0xcb, interrupt_203_asm_entry); register_interrupt_handler(0xcc, interrupt_204_asm_entry); register_interrupt_handler(0xcd, interrupt_205_asm_entry); register_interrupt_handler(0xce, interrupt_206_asm_entry); register_interrupt_handler(0xcf, interrupt_207_asm_entry); register_interrupt_handler(0xd0, interrupt_208_asm_entry); register_interrupt_handler(0xd1, interrupt_209_asm_entry); register_interrupt_handler(0xd2, interrupt_210_asm_entry); register_interrupt_handler(0xd3, interrupt_211_asm_entry); register_interrupt_handler(0xd4, interrupt_212_asm_entry); register_interrupt_handler(0xd5, interrupt_213_asm_entry); register_interrupt_handler(0xd6, interrupt_214_asm_entry); register_interrupt_handler(0xd7, interrupt_215_asm_entry); register_interrupt_handler(0xd8, interrupt_216_asm_entry); register_interrupt_handler(0xd9, interrupt_217_asm_entry); register_interrupt_handler(0xda, interrupt_218_asm_entry); register_interrupt_handler(0xdb, interrupt_219_asm_entry); register_interrupt_handler(0xdc, interrupt_220_asm_entry); register_interrupt_handler(0xdd, interrupt_221_asm_entry); register_interrupt_handler(0xde, interrupt_222_asm_entry); register_interrupt_handler(0xdf, interrupt_223_asm_entry); register_interrupt_handler(0xe0, interrupt_224_asm_entry); register_interrupt_handler(0xe1, interrupt_225_asm_entry); register_interrupt_handler(0xe2, interrupt_226_asm_entry); register_interrupt_handler(0xe3, interrupt_227_asm_entry); register_interrupt_handler(0xe4, interrupt_228_asm_entry); register_interrupt_handler(0xe5, interrupt_229_asm_entry); register_interrupt_handler(0xe6, interrupt_230_asm_entry); register_interrupt_handler(0xe7, interrupt_231_asm_entry); register_interrupt_handler(0xe8, interrupt_232_asm_entry); register_interrupt_handler(0xe9, interrupt_233_asm_entry); register_interrupt_handler(0xea, interrupt_234_asm_entry); register_interrupt_handler(0xeb, interrupt_235_asm_entry); register_interrupt_handler(0xec, interrupt_236_asm_entry); register_interrupt_handler(0xed, interrupt_237_asm_entry); register_interrupt_handler(0xee, interrupt_238_asm_entry); register_interrupt_handler(0xef, interrupt_239_asm_entry); register_interrupt_handler(0xf0, interrupt_240_asm_entry); register_interrupt_handler(0xf1, interrupt_241_asm_entry); register_interrupt_handler(0xf2, interrupt_242_asm_entry); register_interrupt_handler(0xf3, interrupt_243_asm_entry); register_interrupt_handler(0xf4, interrupt_244_asm_entry); register_interrupt_handler(0xf5, interrupt_245_asm_entry); register_interrupt_handler(0xf6, interrupt_246_asm_entry); register_interrupt_handler(0xf7, interrupt_247_asm_entry); register_interrupt_handler(0xf8, interrupt_248_asm_entry); register_interrupt_handler(0xf9, interrupt_249_asm_entry); register_interrupt_handler(0xfa, interrupt_250_asm_entry); register_interrupt_handler(0xfb, interrupt_251_asm_entry); register_interrupt_handler(0xfc, interrupt_252_asm_entry); register_interrupt_handler(0xfd, interrupt_253_asm_entry); register_interrupt_handler(0xfe, interrupt_254_asm_entry); register_interrupt_handler(0xff, interrupt_255_asm_entry); dbgln("Installing Unhandled Handlers"); for (u8 i = 0; i < GENERIC_INTERRUPT_HANDLERS_COUNT; ++i) { new UnhandledInterruptHandler(i); } flush_idt(); } void load_task_register(u16 selector) { asm("ltr %0" ::"r"(selector)); } void handle_interrupt(TrapFrame* trap) { clac(); auto& regs = *trap->regs; ASSERT(regs.isr_number >= IRQ_VECTOR_BASE && regs.isr_number <= (IRQ_VECTOR_BASE + GENERIC_INTERRUPT_HANDLERS_COUNT)); u8 irq = (u8)(regs.isr_number - 0x50); s_entropy_source_interrupts.add_random_event(irq); auto* handler = s_interrupt_handler[irq]; ASSERT(handler); handler->increment_invoking_counter(); handler->handle_interrupt(regs); handler->eoi(); } void enter_trap_no_irq(TrapFrame* trap) { InterruptDisabler disable; Processor::current().enter_trap(*trap, false); } void enter_trap(TrapFrame* trap) { InterruptDisabler disable; Processor::current().enter_trap(*trap, true); } void exit_trap(TrapFrame* trap) { InterruptDisabler disable; return Processor::current().exit_trap(*trap); } static void sse_init() { asm volatile( "mov %cr0, %eax\n" "andl $0xfffffffb, %eax\n" "orl $0x2, %eax\n" "mov %eax, %cr0\n" "mov %cr4, %eax\n" "orl $0x600, %eax\n" "mov %eax, %cr4\n"); } u32 read_cr0() { u32 cr0; asm("movl %%cr0, %%eax" : "=a"(cr0)); return cr0; } u32 read_cr3() { u32 cr3; asm("movl %%cr3, %%eax" : "=a"(cr3)); return cr3; } void write_cr3(u32 cr3) { // NOTE: If you're here from a GPF crash, it's very likely that a PDPT entry is incorrect, not this! asm volatile("movl %%eax, %%cr3" ::"a"(cr3) : "memory"); } u32 read_cr4() { u32 cr4; asm("movl %%cr4, %%eax" : "=a"(cr4)); return cr4; } u32 read_dr6() { u32 dr6; asm("movl %%dr6, %%eax" : "=a"(dr6)); return dr6; } FPUState Processor::s_clean_fpu_state; static Vector* s_processors; static SpinLock s_processor_lock; volatile u32 Processor::g_total_processors; static volatile bool s_smp_enabled; Vector& Processor::processors() { ASSERT(s_processors); return *s_processors; } Processor& Processor::by_id(u32 cpu) { // s_processors does not need to be protected by a lock of any kind. // It is populated early in the boot process, and the BSP is waiting // for all APs to finish, after which this array never gets modified // again, so it's safe to not protect access to it here auto& procs = processors(); ASSERT(procs[cpu] != nullptr); ASSERT(procs.size() > cpu); return *procs[cpu]; } [[noreturn]] static inline void halt_this() { for (;;) { asm volatile("cli; hlt"); } } void Processor::cpu_detect() { // NOTE: This is called during Processor::early_initialize, we cannot // safely log at this point because we don't have kmalloc // initialized yet! auto set_feature = [&](CPUFeature f) { m_features = static_cast(static_cast(m_features) | static_cast(f)); }; m_features = static_cast(0); CPUID processor_info(0x1); if (processor_info.edx() & (1 << 4)) set_feature(CPUFeature::TSC); if (processor_info.edx() & (1 << 6)) set_feature(CPUFeature::PAE); if (processor_info.edx() & (1 << 13)) set_feature(CPUFeature::PGE); if (processor_info.edx() & (1 << 23)) set_feature(CPUFeature::MMX); if (processor_info.edx() & (1 << 25)) set_feature(CPUFeature::SSE); if (processor_info.edx() & (1 << 26)) set_feature(CPUFeature::SSE2); if (processor_info.ecx() & (1 << 0)) set_feature(CPUFeature::SSE3); if (processor_info.ecx() & (1 << 9)) set_feature(CPUFeature::SSSE3); if (processor_info.ecx() & (1 << 19)) set_feature(CPUFeature::SSE4_1); if (processor_info.ecx() & (1 << 20)) set_feature(CPUFeature::SSE4_2); if (processor_info.ecx() & (1 << 30)) set_feature(CPUFeature::RDRAND); if (processor_info.edx() & (1 << 11)) { u32 stepping = processor_info.eax() & 0xf; u32 model = (processor_info.eax() >> 4) & 0xf; u32 family = (processor_info.eax() >> 8) & 0xf; if (!(family == 6 && model < 3 && stepping < 3)) set_feature(CPUFeature::SEP); if ((family == 6 && model >= 3) || (family == 0xf && model >= 0xe)) set_feature(CPUFeature::CONSTANT_TSC); } u32 max_extended_leaf = CPUID(0x80000000).eax(); ASSERT(max_extended_leaf >= 0x80000001); CPUID extended_processor_info(0x80000001); if (extended_processor_info.edx() & (1 << 20)) set_feature(CPUFeature::NX); if (extended_processor_info.edx() & (1 << 27)) set_feature(CPUFeature::RDTSCP); if (extended_processor_info.edx() & (1 << 11)) { // Only available in 64 bit mode set_feature(CPUFeature::SYSCALL); } if (max_extended_leaf >= 0x80000007) { CPUID cpuid(0x80000007); if (cpuid.edx() & (1 << 8)) { set_feature(CPUFeature::CONSTANT_TSC); set_feature(CPUFeature::NONSTOP_TSC); } } if (max_extended_leaf >= 0x80000008) { // CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor. CPUID cpuid(0x80000008); m_physical_address_bit_width = cpuid.eax() & 0xff; } else { // For processors that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise. m_physical_address_bit_width = has_feature(CPUFeature::PAE) ? 36 : 32; } CPUID extended_features(0x7); if (extended_features.ebx() & (1 << 20)) set_feature(CPUFeature::SMAP); if (extended_features.ebx() & (1 << 7)) set_feature(CPUFeature::SMEP); if (extended_features.ecx() & (1 << 2)) set_feature(CPUFeature::UMIP); if (extended_features.ebx() & (1 << 18)) set_feature(CPUFeature::RDSEED); } void Processor::cpu_setup() { // NOTE: This is called during Processor::early_initialize, we cannot // safely log at this point because we don't have kmalloc // initialized yet! cpu_detect(); if (has_feature(CPUFeature::SSE)) sse_init(); asm volatile( "movl %%cr0, %%eax\n" "orl $0x00010000, %%eax\n" "movl %%eax, %%cr0\n" :: : "%eax", "memory"); if (has_feature(CPUFeature::PGE)) { // Turn on CR4.PGE so the CPU will respect the G bit in page tables. asm volatile( "mov %cr4, %eax\n" "orl $0x80, %eax\n" "mov %eax, %cr4\n"); } if (has_feature(CPUFeature::NX)) { // Turn on IA32_EFER.NXE asm volatile( "movl $0xc0000080, %ecx\n" "rdmsr\n" "orl $0x800, %eax\n" "wrmsr\n"); } if (has_feature(CPUFeature::SMEP)) { // Turn on CR4.SMEP asm volatile( "mov %cr4, %eax\n" "orl $0x100000, %eax\n" "mov %eax, %cr4\n"); } if (has_feature(CPUFeature::SMAP)) { // Turn on CR4.SMAP asm volatile( "mov %cr4, %eax\n" "orl $0x200000, %eax\n" "mov %eax, %cr4\n"); } if (has_feature(CPUFeature::UMIP)) { asm volatile( "mov %cr4, %eax\n" "orl $0x800, %eax\n" "mov %eax, %cr4\n"); } if (has_feature(CPUFeature::TSC)) { asm volatile( "mov %cr4, %eax\n" "orl $0x4, %eax\n" "mov %eax, %cr4\n"); } } String Processor::features_string() const { StringBuilder builder; auto feature_to_str = [](CPUFeature f) -> const char* { switch (f) { case CPUFeature::NX: return "nx"; case CPUFeature::PAE: return "pae"; case CPUFeature::PGE: return "pge"; case CPUFeature::RDRAND: return "rdrand"; case CPUFeature::RDSEED: return "rdseed"; case CPUFeature::SMAP: return "smap"; case CPUFeature::SMEP: return "smep"; case CPUFeature::SSE: return "sse"; case CPUFeature::TSC: return "tsc"; case CPUFeature::RDTSCP: return "rdtscp"; case CPUFeature::CONSTANT_TSC: return "constant_tsc"; case CPUFeature::NONSTOP_TSC: return "nonstop_tsc"; case CPUFeature::UMIP: return "umip"; case CPUFeature::SEP: return "sep"; case CPUFeature::SYSCALL: return "syscall"; case CPUFeature::MMX: return "mmx"; case CPUFeature::SSE2: return "sse2"; case CPUFeature::SSE3: return "sse3"; case CPUFeature::SSSE3: return "ssse3"; case CPUFeature::SSE4_1: return "sse4.1"; case CPUFeature::SSE4_2: return "sse4.2"; // no default statement here intentionally so that we get // a warning if a new feature is forgotten to be added here } // Shouldn't ever happen return "???"; }; bool first = true; for (u32 flag = 1; flag != 0; flag <<= 1) { if ((static_cast(m_features) & flag) != 0) { if (first) first = false; else builder.append(' '); auto str = feature_to_str(static_cast(flag)); builder.append(str, strlen(str)); } } return builder.build(); } void Processor::early_initialize(u32 cpu) { m_self = this; m_cpu = cpu; m_in_irq = 0; m_in_critical = 0; m_invoke_scheduler_async = false; m_scheduler_initialized = false; m_message_queue = nullptr; m_idle_thread = nullptr; m_current_thread = nullptr; m_scheduler_data = nullptr; m_mm_data = nullptr; m_info = nullptr; m_halt_requested = false; if (cpu == 0) { s_smp_enabled = false; atomic_store(&g_total_processors, 1u, AK::MemoryOrder::memory_order_release); } else { atomic_fetch_add(&g_total_processors, 1u, AK::MemoryOrder::memory_order_acq_rel); } deferred_call_pool_init(); cpu_setup(); gdt_init(); ASSERT(is_initialized()); // sanity check ASSERT(¤t() == this); // sanity check } void Processor::initialize(u32 cpu) { ASSERT(m_self == this); ASSERT(¤t() == this); // sanity check klog() << "CPU[" << id() << "]: Supported features: " << features_string(); if (!has_feature(CPUFeature::RDRAND)) klog() << "CPU[" << id() << "]: No RDRAND support detected, randomness will be poor"; klog() << "CPU[" << id() << "]: Physical address bit width: " << m_physical_address_bit_width; if (cpu == 0) idt_init(); else flush_idt(); if (cpu == 0) { ASSERT((FlatPtr(&s_clean_fpu_state) & 0xF) == 0); asm volatile("fninit"); asm volatile("fxsave %0" : "=m"(s_clean_fpu_state)); } m_info = new ProcessorInfo(*this); { ScopedSpinLock lock(s_processor_lock); // We need to prevent races between APs starting up at the same time if (!s_processors) s_processors = new Vector(); if (cpu >= s_processors->size()) s_processors->resize(cpu + 1); (*s_processors)[cpu] = this; } } void Processor::write_raw_gdt_entry(u16 selector, u32 low, u32 high) { u16 i = (selector & 0xfffc) >> 3; u32 prev_gdt_length = m_gdt_length; if (i > m_gdt_length) { m_gdt_length = i + 1; ASSERT(m_gdt_length <= sizeof(m_gdt) / sizeof(m_gdt[0])); m_gdtr.limit = (m_gdt_length + 1) * 8 - 1; } m_gdt[i].low = low; m_gdt[i].high = high; // clear selectors we may have skipped while (i < prev_gdt_length) { m_gdt[i].low = 0; m_gdt[i].high = 0; i++; } } void Processor::write_gdt_entry(u16 selector, Descriptor& descriptor) { write_raw_gdt_entry(selector, descriptor.low, descriptor.high); } Descriptor& Processor::get_gdt_entry(u16 selector) { u16 i = (selector & 0xfffc) >> 3; return *(Descriptor*)(&m_gdt[i]); } void Processor::flush_gdt() { m_gdtr.address = m_gdt; m_gdtr.limit = (m_gdt_length * 8) - 1; asm volatile("lgdt %0" ::"m"(m_gdtr) : "memory"); } const DescriptorTablePointer& Processor::get_gdtr() { return m_gdtr; } Vector Processor::capture_stack_trace(Thread& thread, size_t max_frames) { FlatPtr frame_ptr = 0, eip = 0; Vector stack_trace; auto walk_stack = [&](FlatPtr stack_ptr) { stack_trace.append(eip); size_t count = 1; while (stack_ptr) { FlatPtr retaddr; count++; if (max_frames != 0 && count > max_frames) break; if (is_user_range(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2)) { if (!copy_from_user(&retaddr, &((FlatPtr*)stack_ptr)[1]) || !retaddr) break; stack_trace.append(retaddr); if (!copy_from_user(&stack_ptr, (FlatPtr*)stack_ptr)) break; } else { void* fault_at; if (!safe_memcpy(&retaddr, &((FlatPtr*)stack_ptr)[1], sizeof(FlatPtr), fault_at) || !retaddr) break; stack_trace.append(retaddr); if (!safe_memcpy(&stack_ptr, (FlatPtr*)stack_ptr, sizeof(FlatPtr), fault_at)) break; } } }; auto capture_current_thread = [&]() { frame_ptr = (FlatPtr)__builtin_frame_address(0); eip = (FlatPtr)__builtin_return_address(0); walk_stack(frame_ptr); }; // Since the thread may be running on another processor, there // is a chance a context switch may happen while we're trying // to get it. It also won't be entirely accurate and merely // reflect the status at the last context switch. ScopedSpinLock lock(g_scheduler_lock); if (&thread == Processor::current_thread()) { ASSERT(thread.state() == Thread::Running); // Leave the scheduler lock. If we trigger page faults we may // need to be preempted. Since this is our own thread it won't // cause any problems as the stack won't change below this frame. lock.unlock(); capture_current_thread(); } else if (thread.is_active()) { ASSERT(thread.cpu() != Processor::id()); // If this is the case, the thread is currently running // on another processor. We can't trust the kernel stack as // it may be changing at any time. We need to probably send // an IPI to that processor, have it walk the stack and wait // until it returns the data back to us auto& proc = Processor::current(); smp_unicast(thread.cpu(), [&]() { dbgln("CPU[{}] getting stack for cpu #{}", Processor::id(), proc.get_id()); ProcessPagingScope paging_scope(thread.process()); ASSERT(&Processor::current() != &proc); ASSERT(&thread == Processor::current_thread()); // NOTE: Because the other processor is still holding the // scheduler lock while waiting for this callback to finish, // the current thread on the target processor cannot change // TODO: What to do about page faults here? We might deadlock // because the other processor is still holding the // scheduler lock... capture_current_thread(); }, false); } else { switch (thread.state()) { case Thread::Running: ASSERT_NOT_REACHED(); // should have been handled above case Thread::Runnable: case Thread::Stopped: case Thread::Blocked: case Thread::Dying: case Thread::Dead: { // We need to retrieve ebp from what was last pushed to the kernel // stack. Before switching out of that thread, it switch_context // pushed the callee-saved registers, and the last of them happens // to be ebp. ProcessPagingScope paging_scope(thread.process()); auto& tss = thread.tss(); u32* stack_top = reinterpret_cast(tss.esp); if (is_user_range(VirtualAddress(stack_top), sizeof(FlatPtr))) { if (!copy_from_user(&frame_ptr, &((FlatPtr*)stack_top)[0])) frame_ptr = 0; } else { void* fault_at; if (!safe_memcpy(&frame_ptr, &((FlatPtr*)stack_top)[0], sizeof(FlatPtr), fault_at)) frame_ptr = 0; } eip = tss.eip; // TODO: We need to leave the scheduler lock here, but we also // need to prevent the target thread from being run while // we walk the stack lock.unlock(); walk_stack(frame_ptr); break; } default: dbgln("Cannot capture stack trace for thread {} in state {}", thread, thread.state_string()); break; } } return stack_trace; } extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread) { ASSERT(from_thread == to_thread || from_thread->state() != Thread::Running); ASSERT(to_thread->state() == Thread::Running); Processor::set_current_thread(*to_thread); auto& from_tss = from_thread->tss(); auto& to_tss = to_thread->tss(); asm volatile("fxsave %0" : "=m"(from_thread->fpu_state())); from_tss.fs = get_fs(); from_tss.gs = get_gs(); set_fs(to_tss.fs); set_gs(to_tss.gs); auto& processor = Processor::current(); auto& tls_descriptor = processor.get_gdt_entry(GDT_SELECTOR_TLS); tls_descriptor.set_base(to_thread->thread_specific_data().as_ptr()); tls_descriptor.set_limit(to_thread->thread_specific_region_size()); if (from_tss.cr3 != to_tss.cr3) write_cr3(to_tss.cr3); to_thread->set_cpu(processor.get_id()); processor.restore_in_critical(to_thread->saved_critical()); asm volatile("fxrstor %0" ::"m"(to_thread->fpu_state())); // TODO: debug registers // TODO: ioperm? } #define ENTER_THREAD_CONTEXT_ARGS_SIZE (2 * 4) // to_thread, from_thread void Processor::switch_context(Thread*& from_thread, Thread*& to_thread) { ASSERT(!in_irq()); ASSERT(m_in_critical == 1); ASSERT(is_kernel_mode()); dbgln("switch_context --> switching out of: {} {}", VirtualAddress(from_thread), *from_thread); from_thread->save_critical(m_in_critical); // Switch to new thread context, passing from_thread and to_thread // through to the new context using registers edx and eax asm volatile( // NOTE: changing how much we push to the stack affects // SWITCH_CONTEXT_TO_STACK_SIZE and thread_context_first_enter()! "pushfl \n" "pushl %%ebx \n" "pushl %%esi \n" "pushl %%edi \n" "pushl %%ebp \n" "movl %%esp, %[from_esp] \n" "movl $1f, %[from_eip] \n" "movl %[to_esp0], %%ebx \n" "movl %%ebx, %[tss_esp0] \n" "movl %[to_esp], %%esp \n" "pushl %[to_thread] \n" "pushl %[from_thread] \n" "pushl %[to_eip] \n" "cld \n" "jmp enter_thread_context \n" "1: \n" "popl %%edx \n" "popl %%eax \n" "popl %%ebp \n" "popl %%edi \n" "popl %%esi \n" "popl %%ebx \n" "popfl \n" : [from_esp] "=m" (from_thread->tss().esp), [from_eip] "=m" (from_thread->tss().eip), [tss_esp0] "=m" (m_tss.esp0), "=d" (from_thread), // needed so that from_thread retains the correct value "=a" (to_thread) // needed so that to_thread retains the correct value : [to_esp] "g" (to_thread->tss().esp), [to_esp0] "g" (to_thread->tss().esp0), [to_eip] "c" (to_thread->tss().eip), [from_thread] "d" (from_thread), [to_thread] "a" (to_thread) : "memory" ); dbgln("switch_context <-- from {} {} to {} {}", VirtualAddress(from_thread), *from_thread, VirtualAddress(to_thread), *to_thread); Processor::current().restore_in_critical(to_thread->saved_critical()); } extern "C" void context_first_init([[maybe_unused]] Thread* from_thread, [[maybe_unused]] Thread* to_thread, [[maybe_unused]] TrapFrame* trap) { ASSERT(!are_interrupts_enabled()); ASSERT(is_kernel_mode()); dbgln("switch_context <-- from {} {} to {} {} (context_first_init)", VirtualAddress(from_thread), *from_thread, VirtualAddress(to_thread), *to_thread); ASSERT(to_thread == Thread::current()); Scheduler::enter_current(*from_thread, true); // Since we got here and don't have Scheduler::context_switch in the // call stack (because this is the first time we switched into this // context), we need to notify the scheduler so that it can release // the scheduler lock. We don't want to enable interrupts at this point // as we're still in the middle of a context switch. Doing so could // trigger a context switch within a context switch, leading to a crash. Scheduler::leave_on_first_switch(trap->regs->eflags & ~0x200); } extern "C" void thread_context_first_enter(void); asm( // enter_thread_context returns to here first time a thread is executing ".globl thread_context_first_enter \n" "thread_context_first_enter: \n" // switch_context will have pushed from_thread and to_thread to our new // stack prior to thread_context_first_enter() being called, and the // pointer to TrapFrame was the top of the stack before that " movl 8(%esp), %ebx \n" // save pointer to TrapFrame " cld \n" " call context_first_init \n" " addl $" __STRINGIFY(ENTER_THREAD_CONTEXT_ARGS_SIZE) ", %esp \n" " movl %ebx, 0(%esp) \n" // push pointer to TrapFrame " jmp common_trap_exit \n" ); void exit_kernel_thread(void) { Thread::current()->exit(); } u32 Processor::init_context(Thread& thread, bool leave_crit) { ASSERT(is_kernel_mode()); ASSERT(g_scheduler_lock.is_locked()); if (leave_crit) { // Leave the critical section we set up in in Process::exec, // but because we still have the scheduler lock we should end up with 1 m_in_critical--; // leave it without triggering anything or restoring flags ASSERT(in_critical() == 1); } u32 kernel_stack_top = thread.kernel_stack_top(); u32 stack_top = kernel_stack_top; // TODO: handle NT? ASSERT((cpu_flags() & 0x24000) == 0); // Assume !(NT | VM) auto& tss = thread.tss(); bool return_to_user = (tss.cs & 3) != 0; // make room for an interrupt frame if (!return_to_user) { // userspace_esp and userspace_ss are not popped off by iret // unless we're switching back to user mode stack_top -= sizeof(RegisterState) - 2 * sizeof(u32); // For kernel threads we'll push the thread function argument // which should be in tss.esp and exit_kernel_thread as return // address. stack_top -= 2 * sizeof(u32); *reinterpret_cast(kernel_stack_top - 2 * sizeof(u32)) = tss.esp; *reinterpret_cast(kernel_stack_top - 3 * sizeof(u32)) = FlatPtr(&exit_kernel_thread); } else { stack_top -= sizeof(RegisterState); } // we want to end up 16-byte aligned, %esp + 4 should be aligned stack_top -= sizeof(u32); *reinterpret_cast(kernel_stack_top - sizeof(u32)) = 0; // set up the stack so that after returning from thread_context_first_enter() // we will end up either in kernel mode or user mode, depending on how the thread is set up // However, the first step is to always start in kernel mode with thread_context_first_enter RegisterState& iretframe = *reinterpret_cast(stack_top); iretframe.ss = tss.ss; iretframe.gs = tss.gs; iretframe.fs = tss.fs; iretframe.es = tss.es; iretframe.ds = tss.ds; iretframe.edi = tss.edi; iretframe.esi = tss.esi; iretframe.ebp = tss.ebp; iretframe.esp = 0; iretframe.ebx = tss.ebx; iretframe.edx = tss.edx; iretframe.ecx = tss.ecx; iretframe.eax = tss.eax; iretframe.eflags = tss.eflags; iretframe.eip = tss.eip; iretframe.cs = tss.cs; if (return_to_user) { iretframe.userspace_esp = tss.esp; iretframe.userspace_ss = tss.ss; } // make space for a trap frame stack_top -= sizeof(TrapFrame); TrapFrame& trap = *reinterpret_cast(stack_top); trap.regs = &iretframe; trap.prev_irq_level = 0; trap.next_trap = nullptr; stack_top -= sizeof(u32); // pointer to TrapFrame *reinterpret_cast(stack_top) = stack_top + 4; if constexpr (CONTEXT_SWITCH_DEBUG) { if (return_to_user) { dbgln("init_context {} ({}) set up to execute at eip={}:{}, esp={}, stack_top={}, user_top={}:{}", thread, VirtualAddress(&thread), iretframe.cs, tss.eip, VirtualAddress(tss.esp), VirtualAddress(stack_top), iretframe.userspace_ss, iretframe.userspace_esp); } else { dbgln("init_context {} ({}) set up to execute at eip={}:{}, esp={}, stack_top={}", thread, VirtualAddress(&thread), iretframe.cs, tss.eip, VirtualAddress(tss.esp), VirtualAddress(stack_top)); } } // make switch_context() always first return to thread_context_first_enter() // in kernel mode, so set up these values so that we end up popping iretframe // off the stack right after the context switch completed, at which point // control is transferred to what iretframe is pointing to. tss.eip = FlatPtr(&thread_context_first_enter); tss.esp0 = kernel_stack_top; tss.esp = stack_top; tss.cs = GDT_SELECTOR_CODE0; tss.ds = GDT_SELECTOR_DATA0; tss.es = GDT_SELECTOR_DATA0; tss.gs = GDT_SELECTOR_DATA0; tss.ss = GDT_SELECTOR_DATA0; tss.fs = GDT_SELECTOR_PROC; return stack_top; } extern "C" u32 do_init_context(Thread* thread, u32 flags) { ASSERT_INTERRUPTS_DISABLED(); thread->tss().eflags = flags; return Processor::current().init_context(*thread, true); } extern "C" void do_assume_context(Thread* thread, u32 flags); asm( ".global do_assume_context \n" "do_assume_context: \n" " movl 4(%esp), %ebx \n" " movl 8(%esp), %esi \n" // We're going to call Processor::init_context, so just make sure // we have enough stack space so we don't stomp over it " subl $(" __STRINGIFY(4 + REGISTER_STATE_SIZE + TRAP_FRAME_SIZE + 4) "), %esp \n" " pushl %esi \n" " pushl %ebx \n" " cld \n" " call do_init_context \n" " addl $8, %esp \n" " movl %eax, %esp \n" // move stack pointer to what Processor::init_context set up for us " pushl %ebx \n" // push to_thread " pushl %ebx \n" // push from_thread " pushl $thread_context_first_enter \n" // should be same as tss.eip " jmp enter_thread_context \n" ); void Processor::assume_context(Thread& thread, u32 flags) { dbgln("Assume context for thread {} {}", VirtualAddress(&thread), thread); ASSERT_INTERRUPTS_DISABLED(); Scheduler::prepare_after_exec(); // in_critical() should be 2 here. The critical section in Process::exec // and then the scheduler lock ASSERT(Processor::current().in_critical() == 2); do_assume_context(&thread, flags); ASSERT_NOT_REACHED(); } extern "C" void pre_init_finished(void) { ASSERT(g_scheduler_lock.own_lock()); // Because init_finished() will wait on the other APs, we need // to release the scheduler lock so that the other APs can also get // to this point // The target flags will get restored upon leaving the trap u32 prev_flags = cpu_flags(); Scheduler::leave_on_first_switch(prev_flags); } extern "C" void post_init_finished(void) { // We need to re-acquire the scheduler lock before a context switch // transfers control into the idle loop, which needs the lock held Scheduler::prepare_for_idle_loop(); } void Processor::initialize_context_switching(Thread& initial_thread) { ASSERT(initial_thread.process().is_kernel_process()); auto& tss = initial_thread.tss(); m_tss = tss; m_tss.esp0 = tss.esp0; m_tss.ss0 = GDT_SELECTOR_DATA0; // user mode needs to be able to switch to kernel mode: m_tss.cs = m_tss.ds = m_tss.es = m_tss.gs = m_tss.ss = GDT_SELECTOR_CODE0 | 3; m_tss.fs = GDT_SELECTOR_PROC | 3; m_scheduler_initialized = true; asm volatile( "movl %[new_esp], %%esp \n" // switch to new stack "pushl %[from_to_thread] \n" // to_thread "pushl %[from_to_thread] \n" // from_thread "pushl $" __STRINGIFY(GDT_SELECTOR_CODE0) " \n" "pushl %[new_eip] \n" // save the entry eip to the stack "movl %%esp, %%ebx \n" "addl $20, %%ebx \n" // calculate pointer to TrapFrame "pushl %%ebx \n" "cld \n" "pushl %[cpu] \n" // push argument for init_finished before register is clobbered "call pre_init_finished \n" "call init_finished \n" "addl $4, %%esp \n" "call post_init_finished \n" "call enter_trap_no_irq \n" "addl $4, %%esp \n" "lret \n" :: [new_esp] "g" (tss.esp), [new_eip] "a" (tss.eip), [from_to_thread] "b" (&initial_thread), [cpu] "c" (id()) ); ASSERT_NOT_REACHED(); } void Processor::enter_trap(TrapFrame& trap, bool raise_irq) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(&Processor::current() == this); trap.prev_irq_level = m_in_irq; if (raise_irq) m_in_irq++; auto* current_thread = Processor::current_thread(); if (current_thread) { auto& current_trap = current_thread->current_trap(); trap.next_trap = current_trap; current_trap = &trap; // The cs register of this trap tells us where we will return back to current_thread->set_previous_mode(((trap.regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode); } else { trap.next_trap = nullptr; } } void Processor::exit_trap(TrapFrame& trap) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(&Processor::current() == this); ASSERT(m_in_irq >= trap.prev_irq_level); m_in_irq = trap.prev_irq_level; smp_process_pending_messages(); if (!m_in_irq && !m_in_critical) check_invoke_scheduler(); auto* current_thread = Processor::current_thread(); if (current_thread) { auto& current_trap = current_thread->current_trap(); current_trap = trap.next_trap; if (current_trap) { ASSERT(current_trap->regs); // If we have another higher level trap then we probably returned // from an interrupt or irq handler. The cs register of the // new/higher level trap tells us what the mode prior to it was current_thread->set_previous_mode(((current_trap->regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode); } else { // If we don't have a higher level trap then we're back in user mode. // Unless we're a kernel process, in which case we're always in kernel mode current_thread->set_previous_mode(current_thread->process().is_kernel_process() ? Thread::PreviousMode::KernelMode : Thread::PreviousMode::UserMode); } } } void Processor::check_invoke_scheduler() { ASSERT(!m_in_irq); ASSERT(!m_in_critical); if (m_invoke_scheduler_async && m_scheduler_initialized) { m_invoke_scheduler_async = false; Scheduler::invoke_async(); } } void Processor::flush_tlb_local(VirtualAddress vaddr, size_t page_count) { auto ptr = vaddr.as_ptr(); while (page_count > 0) { asm volatile("invlpg %0" : : "m"(*ptr) : "memory"); ptr += PAGE_SIZE; page_count--; } } void Processor::flush_tlb(const PageDirectory* page_directory, VirtualAddress vaddr, size_t page_count) { if (s_smp_enabled) smp_broadcast_flush_tlb(page_directory, vaddr, page_count); else flush_tlb_local(vaddr, page_count); } static volatile ProcessorMessage* s_message_pool; void Processor::smp_return_to_pool(ProcessorMessage& msg) { ProcessorMessage* next = nullptr; do { msg.next = next; } while (!atomic_compare_exchange_strong(&s_message_pool, next, &msg, AK::MemoryOrder::memory_order_acq_rel)); } ProcessorMessage& Processor::smp_get_from_pool() { ProcessorMessage* msg; // The assumption is that messages are never removed from the pool! for (;;) { msg = atomic_load(&s_message_pool, AK::MemoryOrder::memory_order_consume); if (!msg) { if (!Processor::current().smp_process_pending_messages()) { // TODO: pause for a bit? } continue; } // If another processor were to use this message in the meanwhile, // "msg" is still valid (because it never gets freed). We'd detect // this because the expected value "msg" and pool would // no longer match, and the compare_exchange will fail. But accessing // "msg->next" is always safe here. if (atomic_compare_exchange_strong(&s_message_pool, msg, msg->next, AK::MemoryOrder::memory_order_acq_rel)) { // We successfully "popped" this available message break; } } ASSERT(msg != nullptr); return *msg; } void Processor::smp_enable() { size_t msg_pool_size = Processor::count() * 100u; size_t msg_entries_cnt = Processor::count(); auto msgs = new ProcessorMessage[msg_pool_size]; auto msg_entries = new ProcessorMessageEntry[msg_pool_size * msg_entries_cnt]; size_t msg_entry_i = 0; for (size_t i = 0; i < msg_pool_size; i++, msg_entry_i += msg_entries_cnt) { auto& msg = msgs[i]; msg.next = i < msg_pool_size - 1 ? &msgs[i + 1] : nullptr; msg.per_proc_entries = &msg_entries[msg_entry_i]; for (size_t k = 0; k < msg_entries_cnt; k++) msg_entries[msg_entry_i + k].msg = &msg; } atomic_store(&s_message_pool, &msgs[0], AK::MemoryOrder::memory_order_release); // Start sending IPI messages s_smp_enabled = true; } void Processor::smp_cleanup_message(ProcessorMessage& msg) { switch (msg.type) { case ProcessorMessage::CallbackWithData: if (msg.callback_with_data.free) msg.callback_with_data.free(msg.callback_with_data.data); break; default: break; } } bool Processor::smp_process_pending_messages() { bool did_process = false; u32 prev_flags; enter_critical(prev_flags); if (auto pending_msgs = atomic_exchange(&m_message_queue, nullptr, AK::MemoryOrder::memory_order_acq_rel)) { // We pulled the stack of pending messages in LIFO order, so we need to reverse the list first auto reverse_list = [](ProcessorMessageEntry* list) -> ProcessorMessageEntry* { ProcessorMessageEntry* rev_list = nullptr; while (list) { auto next = list->next; list->next = rev_list; rev_list = list; list = next; } return rev_list; }; pending_msgs = reverse_list(pending_msgs); // now process in the right order ProcessorMessageEntry* next_msg; for (auto cur_msg = pending_msgs; cur_msg; cur_msg = next_msg) { next_msg = cur_msg->next; auto msg = cur_msg->msg; dbgln("SMP[{}]: Processing message {}", id(), VirtualAddress(msg)); switch (msg->type) { case ProcessorMessage::Callback: msg->callback.handler(); break; case ProcessorMessage::CallbackWithData: msg->callback_with_data.handler(msg->callback_with_data.data); break; case ProcessorMessage::FlushTlb: if (is_user_address(VirtualAddress(msg->flush_tlb.ptr))) { // We assume that we don't cross into kernel land! ASSERT(is_user_range(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count * PAGE_SIZE)); if (read_cr3() != msg->flush_tlb.page_directory->cr3()) { // This processor isn't using this page directory right now, we can ignore this request dbgln("SMP[{}]: No need to flush {} pages at {}", id(), msg->flush_tlb.page_count, VirtualAddress(msg->flush_tlb.ptr)); break; } } flush_tlb_local(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count); break; } bool is_async = msg->async; // Need to cache this value *before* dropping the ref count! auto prev_refs = atomic_fetch_sub(&msg->refs, 1u, AK::MemoryOrder::memory_order_acq_rel); ASSERT(prev_refs != 0); if (prev_refs == 1) { // All processors handled this. If this is an async message, // we need to clean it up and return it to the pool if (is_async) { smp_cleanup_message(*msg); smp_return_to_pool(*msg); } } if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed)) halt_this(); } did_process = true; } else if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed)) { halt_this(); } leave_critical(prev_flags); return did_process; } bool Processor::smp_queue_message(ProcessorMessage& msg) { // Note that it's quite possible that the other processor may pop // the queue at any given time. We rely on the fact that the messages // are pooled and never get freed! auto& msg_entry = msg.per_proc_entries[id()]; ASSERT(msg_entry.msg == &msg); ProcessorMessageEntry* next = nullptr; do { msg_entry.next = next; } while (!atomic_compare_exchange_strong(&m_message_queue, next, &msg_entry, AK::MemoryOrder::memory_order_acq_rel)); return next == nullptr; } void Processor::smp_broadcast_message(ProcessorMessage& msg) { auto& cur_proc = Processor::current(); dbgln("SMP[{}]: Broadcast message {} to cpus: {} proc: {}", cur_proc.get_id(), VirtualAddress(&msg), count(), VirtualAddress(&cur_proc)); atomic_store(&msg.refs, count() - 1, AK::MemoryOrder::memory_order_release); ASSERT(msg.refs > 0); bool need_broadcast = false; for_each( [&](Processor& proc) -> IterationDecision { if (&proc != &cur_proc) { if (proc.smp_queue_message(msg)) need_broadcast = true; } return IterationDecision::Continue; }); // Now trigger an IPI on all other APs (unless all targets already had messages queued) if (need_broadcast) APIC::the().broadcast_ipi(); } void Processor::smp_broadcast_wait_sync(ProcessorMessage& msg) { auto& cur_proc = Processor::current(); ASSERT(!msg.async); // If synchronous then we must cleanup and return the message back // to the pool. Otherwise, the last processor to complete it will return it while (atomic_load(&msg.refs, AK::MemoryOrder::memory_order_consume) != 0) { // TODO: pause for a bit? // We need to process any messages that may have been sent to // us while we're waiting. This also checks if another processor // may have requested us to halt. cur_proc.smp_process_pending_messages(); } smp_cleanup_message(msg); smp_return_to_pool(msg); } void Processor::smp_broadcast(void (*callback)(void*), void* data, void (*free_data)(void*), bool async) { auto& msg = smp_get_from_pool(); msg.async = async; msg.type = ProcessorMessage::CallbackWithData; msg.callback_with_data.handler = callback; msg.callback_with_data.data = data; msg.callback_with_data.free = free_data; smp_broadcast_message(msg); if (!async) smp_broadcast_wait_sync(msg); } void Processor::smp_broadcast(void (*callback)(), bool async) { auto& msg = smp_get_from_pool(); msg.async = async; msg.type = ProcessorMessage::CallbackWithData; msg.callback.handler = callback; smp_broadcast_message(msg); if (!async) smp_broadcast_wait_sync(msg); } void Processor::smp_unicast_message(u32 cpu, ProcessorMessage& msg, bool async) { auto& cur_proc = Processor::current(); ASSERT(cpu != cur_proc.get_id()); auto& target_proc = processors()[cpu]; msg.async = async; dbgln("SMP[{}]: Send message {} to cpu #{} proc: {}", cur_proc.get_id(), VirtualAddress(&msg), cpu, VirtualAddress(&target_proc)); atomic_store(&msg.refs, 1u, AK::MemoryOrder::memory_order_release); if (target_proc->smp_queue_message(msg)) { APIC::the().send_ipi(cpu); } if (!async) { // If synchronous then we must cleanup and return the message back // to the pool. Otherwise, the last processor to complete it will return it while (atomic_load(&msg.refs, AK::MemoryOrder::memory_order_consume) != 0) { // TODO: pause for a bit? // We need to process any messages that may have been sent to // us while we're waiting. This also checks if another processor // may have requested us to halt. cur_proc.smp_process_pending_messages(); } smp_cleanup_message(msg); smp_return_to_pool(msg); } } void Processor::smp_unicast(u32 cpu, void (*callback)(void*), void* data, void (*free_data)(void*), bool async) { auto& msg = smp_get_from_pool(); msg.type = ProcessorMessage::CallbackWithData; msg.callback_with_data.handler = callback; msg.callback_with_data.data = data; msg.callback_with_data.free = free_data; smp_unicast_message(cpu, msg, async); } void Processor::smp_unicast(u32 cpu, void (*callback)(), bool async) { auto& msg = smp_get_from_pool(); msg.type = ProcessorMessage::CallbackWithData; msg.callback.handler = callback; smp_unicast_message(cpu, msg, async); } void Processor::smp_broadcast_flush_tlb(const PageDirectory* page_directory, VirtualAddress vaddr, size_t page_count) { auto& msg = smp_get_from_pool(); msg.async = false; msg.type = ProcessorMessage::FlushTlb; msg.flush_tlb.page_directory = page_directory; msg.flush_tlb.ptr = vaddr.as_ptr(); msg.flush_tlb.page_count = page_count; smp_broadcast_message(msg); // While the other processors handle this request, we'll flush ours flush_tlb_local(vaddr, page_count); // Now wait until everybody is done as well smp_broadcast_wait_sync(msg); } void Processor::smp_broadcast_halt() { // We don't want to use a message, because this could have been triggered // by being out of memory and we might not be able to get a message for_each( [&](Processor& proc) -> IterationDecision { proc.m_halt_requested.store(true, AK::MemoryOrder::memory_order_release); return IterationDecision::Continue; }); // Now trigger an IPI on all other APs APIC::the().broadcast_ipi(); } void Processor::Processor::halt() { if (s_smp_enabled) smp_broadcast_halt(); halt_this(); } void Processor::deferred_call_pool_init() { size_t pool_count = sizeof(m_deferred_call_pool) / sizeof(m_deferred_call_pool[0]); for (size_t i = 0; i < pool_count; i++) { auto& entry = m_deferred_call_pool[i]; entry.next = i < pool_count - 1 ? &m_deferred_call_pool[i + 1] : nullptr; entry.was_allocated = false; } m_pending_deferred_calls = nullptr; m_free_deferred_call_pool_entry = &m_deferred_call_pool[0]; } void Processor::deferred_call_return_to_pool(DeferredCallEntry* entry) { ASSERT(m_in_critical); ASSERT(!entry->was_allocated); entry->next = m_free_deferred_call_pool_entry; m_free_deferred_call_pool_entry = entry; } DeferredCallEntry* Processor::deferred_call_get_free() { ASSERT(m_in_critical); if (m_free_deferred_call_pool_entry) { // Fast path, we have an entry in our pool auto* entry = m_free_deferred_call_pool_entry; m_free_deferred_call_pool_entry = entry->next; ASSERT(!entry->was_allocated); return entry; } auto* entry = new DeferredCallEntry; entry->was_allocated = true; return entry; } void Processor::deferred_call_execute_pending() { ASSERT(m_in_critical); if (!m_pending_deferred_calls) return; auto* pending_list = m_pending_deferred_calls; m_pending_deferred_calls = nullptr; // We pulled the stack of pending deferred calls in LIFO order, so we need to reverse the list first auto reverse_list = [](DeferredCallEntry* list) -> DeferredCallEntry* { DeferredCallEntry* rev_list = nullptr; while (list) { auto next = list->next; list->next = rev_list; rev_list = list; list = next; } return rev_list; }; pending_list = reverse_list(pending_list); do { // Call the appropriate callback handler if (pending_list->have_data) { pending_list->callback_with_data.handler(pending_list->callback_with_data.data); if (pending_list->callback_with_data.free) pending_list->callback_with_data.free(pending_list->callback_with_data.data); } else { pending_list->callback.handler(); } // Return the entry back to the pool, or free it auto* next = pending_list->next; if (pending_list->was_allocated) delete pending_list; else deferred_call_return_to_pool(pending_list); pending_list = next; } while (pending_list); } void Processor::deferred_call_queue_entry(DeferredCallEntry* entry) { ASSERT(m_in_critical); entry->next = m_pending_deferred_calls; m_pending_deferred_calls = entry; } void Processor::deferred_call_queue(void (*callback)()) { // NOTE: If we are called outside of a critical section and outside // of an irq handler, the function will be executed before we return! ScopedCritical critical; auto& cur_proc = Processor::current(); auto* entry = cur_proc.deferred_call_get_free(); entry->have_data = false; entry->callback.handler = callback; cur_proc.deferred_call_queue_entry(entry); } void Processor::deferred_call_queue(void (*callback)(void*), void* data, void (*free_data)(void*)) { // NOTE: If we are called outside of a critical section and outside // of an irq handler, the function will be executed before we return! ScopedCritical critical; auto& cur_proc = Processor::current(); auto* entry = cur_proc.deferred_call_get_free(); entry->have_data = true; entry->callback_with_data.handler = callback; entry->callback_with_data.data = data; entry->callback_with_data.free = free_data; cur_proc.deferred_call_queue_entry(entry); } void Processor::gdt_init() { m_gdt_length = 0; m_gdtr.address = nullptr; m_gdtr.limit = 0; write_raw_gdt_entry(0x0000, 0x00000000, 0x00000000); write_raw_gdt_entry(GDT_SELECTOR_CODE0, 0x0000ffff, 0x00cf9a00); // code0 write_raw_gdt_entry(GDT_SELECTOR_DATA0, 0x0000ffff, 0x00cf9200); // data0 write_raw_gdt_entry(GDT_SELECTOR_CODE3, 0x0000ffff, 0x00cffa00); // code3 write_raw_gdt_entry(GDT_SELECTOR_DATA3, 0x0000ffff, 0x00cff200); // data3 Descriptor tls_descriptor; tls_descriptor.low = tls_descriptor.high = 0; tls_descriptor.dpl = 3; tls_descriptor.segment_present = 1; tls_descriptor.granularity = 0; tls_descriptor.zero = 0; tls_descriptor.operation_size = 1; tls_descriptor.descriptor_type = 1; tls_descriptor.type = 2; write_gdt_entry(GDT_SELECTOR_TLS, tls_descriptor); // tls3 Descriptor fs_descriptor; fs_descriptor.set_base(this); fs_descriptor.set_limit(sizeof(Processor)); fs_descriptor.dpl = 0; fs_descriptor.segment_present = 1; fs_descriptor.granularity = 0; fs_descriptor.zero = 0; fs_descriptor.operation_size = 1; fs_descriptor.descriptor_type = 1; fs_descriptor.type = 2; write_gdt_entry(GDT_SELECTOR_PROC, fs_descriptor); // fs0 Descriptor tss_descriptor; tss_descriptor.set_base(&m_tss); tss_descriptor.set_limit(sizeof(TSS32)); tss_descriptor.dpl = 0; tss_descriptor.segment_present = 1; tss_descriptor.granularity = 0; tss_descriptor.zero = 0; tss_descriptor.operation_size = 1; tss_descriptor.descriptor_type = 0; tss_descriptor.type = 9; write_gdt_entry(GDT_SELECTOR_TSS, tss_descriptor); // tss flush_gdt(); load_task_register(GDT_SELECTOR_TSS); asm volatile( "mov %%ax, %%ds\n" "mov %%ax, %%es\n" "mov %%ax, %%gs\n" "mov %%ax, %%ss\n" ::"a"(GDT_SELECTOR_DATA0) : "memory"); set_fs(GDT_SELECTOR_PROC); // Make sure CS points to the kernel code descriptor. asm volatile( "ljmpl $" __STRINGIFY(GDT_SELECTOR_CODE0) ", $sanity\n" "sanity:\n"); } void Processor::set_thread_specific(u8* data, size_t len) { auto& descriptor = get_gdt_entry(GDT_SELECTOR_TLS); descriptor.set_base(data); descriptor.set_limit(len); } } #ifdef DEBUG void __assertion_failed(const char* msg, const char* file, unsigned line, const char* func) { asm volatile("cli"); klog() << "ASSERTION FAILED: " << msg << "\n" << file << ":" << line << " in " << func; // Switch back to the current process's page tables if there are any. // Otherwise stack walking will be a disaster. auto process = Process::current(); if (process) MM.enter_process_paging_scope(*process); Kernel::dump_backtrace(); Processor::halt(); } #endif NonMaskableInterruptDisabler::NonMaskableInterruptDisabler() { IO::out8(0x70, IO::in8(0x70) | 0x80); } NonMaskableInterruptDisabler::~NonMaskableInterruptDisabler() { IO::out8(0x70, IO::in8(0x70) & 0x7F); }