/* * Copyright (c) 2018-2020, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern FlatPtr start_of_unmap_after_init; extern FlatPtr end_of_unmap_after_init; extern FlatPtr start_of_ro_after_init; extern FlatPtr end_of_ro_after_init; namespace Kernel { READONLY_AFTER_INIT static DescriptorTablePointer s_idtr; READONLY_AFTER_INIT static IDTEntry s_idt[256]; static GenericInterruptHandler* s_interrupt_handler[GENERIC_INTERRUPT_HANDLERS_COUNT]; static EntropySource s_entropy_source_interrupts { EntropySource::Static::Interrupts }; // The compiler can't see the calls to these functions inside assembly. // Declare them, to avoid dead code warnings. extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread); extern "C" void context_first_init(Thread* from_thread, Thread* to_thread, TrapFrame* trap); extern "C" u32 do_init_context(Thread* thread, u32 flags); extern "C" void exit_kernel_thread(void); extern "C" void pre_init_finished(void); extern "C" void post_init_finished(void); extern "C" void handle_interrupt(TrapFrame*); // clang-format off #if ARCH(I386) #define EH_ENTRY(ec, title) \ extern "C" void title##_asm_entry(); \ extern "C" void title##_handler(TrapFrame*); \ asm( \ ".globl " #title "_asm_entry\n" \ "" #title "_asm_entry: \n" \ " pusha\n" \ " pushl %ds\n" \ " pushl %es\n" \ " pushl %fs\n" \ " pushl %gs\n" \ " pushl %ss\n" \ " mov $" __STRINGIFY(GDT_SELECTOR_DATA0) ", %ax\n" \ " mov %ax, %ds\n" \ " mov %ax, %es\n" \ " mov $" __STRINGIFY(GDT_SELECTOR_PROC) ", %ax\n" \ " mov %ax, %fs\n" \ " pushl %esp \n" /* set TrapFrame::regs */ \ " subl $" __STRINGIFY(TRAP_FRAME_SIZE - 4) ", %esp \n" \ " pushl %esp \n" \ " cld\n" \ " call enter_trap_no_irq \n" \ " call " #title "_handler\n" \ " jmp common_trap_exit \n"); #define EH_ENTRY_NO_CODE(ec, title) \ extern "C" void title##_handler(TrapFrame*); \ extern "C" void title##_asm_entry(); \ asm( \ ".globl " #title "_asm_entry\n" \ "" #title "_asm_entry: \n" \ " pushl $0x0\n" \ " pusha\n" \ " pushl %ds\n" \ " pushl %es\n" \ " pushl %fs\n" \ " pushl %gs\n" \ " pushl %ss\n" \ " mov $" __STRINGIFY(GDT_SELECTOR_DATA0) ", %ax\n" \ " mov %ax, %ds\n" \ " mov %ax, %es\n" \ " mov $" __STRINGIFY(GDT_SELECTOR_PROC) ", %ax\n" \ " mov %ax, %fs\n" \ " pushl %esp \n" /* set TrapFrame::regs */ \ " subl $" __STRINGIFY(TRAP_FRAME_SIZE - 4) ", %esp \n" \ " pushl %esp \n" \ " cld\n" \ " call enter_trap_no_irq \n" \ " call " #title "_handler\n" \ " jmp common_trap_exit \n"); #elif ARCH(X86_64) #define EH_ENTRY(ec, title) \ extern "C" void title##_asm_entry(); \ extern "C" void title##_handler(TrapFrame*); \ asm( \ ".globl " #title "_asm_entry\n" \ "" #title "_asm_entry: \n" \ " cli;hlt;\n" \ ); #define EH_ENTRY_NO_CODE(ec, title) \ extern "C" void title##_handler(TrapFrame*); \ extern "C" void title##_asm_entry(); \ asm( \ ".globl " #title "_asm_entry\n" \ "" #title "_asm_entry: \n" \ " cli;hlt;\n" \ ); #endif // clang-format on static void dump(const RegisterState& regs) { u16 ss; u32 esp; if (!(regs.cs & 3)) { ss = regs.ss; esp = regs.esp; } else { ss = regs.userspace_ss; esp = regs.userspace_esp; } dbgln("Exception code: {:04x} (isr: {:04x})", regs.exception_code, regs.isr_number); dbgln(" pc={:04x}:{:08x} eflags={:08x}", (u16)regs.cs, regs.eip, regs.eflags); dbgln(" stack={:04x}:{:08x}", ss, esp); dbgln(" ds={:04x} es={:04x} fs={:04x} gs={:04x}", (u16)regs.ds, (u16)regs.es, (u16)regs.fs, (u16)regs.gs); dbgln(" eax={:08x} ebx={:08x} ecx={:08x} edx={:08x}", regs.eax, regs.ebx, regs.ecx, regs.edx); dbgln(" ebp={:08x} esp={:08x} esi={:08x} edi={:08x}", regs.ebp, regs.esp, regs.esi, regs.edi); dbgln(" cr0={:08x} cr2={:08x} cr3={:08x} cr4={:08x}", read_cr0(), read_cr2(), read_cr3(), read_cr4()); } void handle_crash(RegisterState& regs, const char* description, int signal, bool out_of_memory) { auto process = Process::current(); if (!process) { PANIC("{} with !current", description); } // If a process crashed while inspecting another process, // make sure we switch back to the right page tables. MM.enter_process_paging_scope(*process); dmesgln("CRASH: CPU #{} {} in ring {}", Processor::id(), description, (regs.cs & 3)); dump(regs); if (!(regs.cs & 3)) { PANIC("Crash in ring 0"); } process->crash(signal, regs.eip, out_of_memory); } EH_ENTRY_NO_CODE(6, illegal_instruction); void illegal_instruction_handler(TrapFrame* trap) { clac(); handle_crash(*trap->regs, "Illegal instruction", SIGILL); } EH_ENTRY_NO_CODE(0, divide_error); void divide_error_handler(TrapFrame* trap) { clac(); handle_crash(*trap->regs, "Divide error", SIGFPE); } EH_ENTRY(13, general_protection_fault); void general_protection_fault_handler(TrapFrame* trap) { clac(); handle_crash(*trap->regs, "General protection fault", SIGSEGV); } // 7: FPU not available exception EH_ENTRY_NO_CODE(7, fpu_exception); void fpu_exception_handler(TrapFrame*) { // Just clear the TS flag. We've already restored the FPU state eagerly. // FIXME: It would be nice if we didn't have to do this at all. asm volatile("clts"); } // 14: Page Fault EH_ENTRY(14, page_fault); void page_fault_handler(TrapFrame* trap) { clac(); auto& regs = *trap->regs; auto fault_address = read_cr2(); if constexpr (PAGE_FAULT_DEBUG) { u32 fault_page_directory = read_cr3(); dbgln("CPU #{} ring {} {} page fault in PD={:#x}, {}{} {}", Processor::is_initialized() ? Processor::id() : 0, regs.cs & 3, regs.exception_code & 1 ? "PV" : "NP", fault_page_directory, regs.exception_code & 8 ? "reserved-bit " : "", regs.exception_code & 2 ? "write" : "read", VirtualAddress(fault_address)); dump(regs); } bool faulted_in_kernel = !(regs.cs & 3); if (faulted_in_kernel && Processor::current().in_irq()) { // If we're faulting in an IRQ handler, first check if we failed // due to safe_memcpy, safe_strnlen, or safe_memset. If we did, // gracefully continue immediately. Because we're in an IRQ handler // we can't really try to resolve the page fault in a meaningful // way, so we need to do this before calling into // MemoryManager::handle_page_fault, which would just bail and // request a crash if (handle_safe_access_fault(regs, fault_address)) return; } auto current_thread = Thread::current(); if (current_thread) current_thread->set_handling_page_fault(true); ScopeGuard guard = [current_thread] { if (current_thread) current_thread->set_handling_page_fault(false); }; if (!faulted_in_kernel && !MM.validate_user_stack(current_thread->process(), VirtualAddress(regs.userspace_esp))) { dbgln("Invalid stack pointer: {}", VirtualAddress(regs.userspace_esp)); handle_crash(regs, "Bad stack on page fault", SIGSTKFLT); } if (fault_address >= (FlatPtr)&start_of_ro_after_init && fault_address < (FlatPtr)&end_of_ro_after_init) { dump(regs); PANIC("Attempt to write into READONLY_AFTER_INIT section"); } if (fault_address >= (FlatPtr)&start_of_unmap_after_init && fault_address < (FlatPtr)&end_of_unmap_after_init) { dump(regs); PANIC("Attempt to access UNMAP_AFTER_INIT section"); } PageFault fault { regs.exception_code, VirtualAddress { fault_address } }; auto response = MM.handle_page_fault(fault); if (response == PageFaultResponse::ShouldCrash || response == PageFaultResponse::OutOfMemory) { if (faulted_in_kernel && handle_safe_access_fault(regs, fault_address)) { // If this would be a ring0 (kernel) fault and the fault was triggered by // safe_memcpy, safe_strnlen, or safe_memset then we resume execution at // the appropriate _fault label rather than crashing return; } if (response != PageFaultResponse::OutOfMemory) { if (current_thread->has_signal_handler(SIGSEGV)) { current_thread->send_urgent_signal_to_self(SIGSEGV); return; } } dbgln("Unrecoverable page fault, {}{}{} address {}", regs.exception_code & PageFaultFlags::ReservedBitViolation ? "reserved bit violation / " : "", regs.exception_code & PageFaultFlags::InstructionFetch ? "instruction fetch / " : "", regs.exception_code & PageFaultFlags::Write ? "write to" : "read from", VirtualAddress(fault_address)); u32 malloc_scrub_pattern = explode_byte(MALLOC_SCRUB_BYTE); u32 free_scrub_pattern = explode_byte(FREE_SCRUB_BYTE); u32 kmalloc_scrub_pattern = explode_byte(KMALLOC_SCRUB_BYTE); u32 kfree_scrub_pattern = explode_byte(KFREE_SCRUB_BYTE); u32 slab_alloc_scrub_pattern = explode_byte(SLAB_ALLOC_SCRUB_BYTE); u32 slab_dealloc_scrub_pattern = explode_byte(SLAB_DEALLOC_SCRUB_BYTE); if ((fault_address & 0xffff0000) == (malloc_scrub_pattern & 0xffff0000)) { dbgln("Note: Address {} looks like it may be uninitialized malloc() memory", VirtualAddress(fault_address)); } else if ((fault_address & 0xffff0000) == (free_scrub_pattern & 0xffff0000)) { dbgln("Note: Address {} looks like it may be recently free()'d memory", VirtualAddress(fault_address)); } else if ((fault_address & 0xffff0000) == (kmalloc_scrub_pattern & 0xffff0000)) { dbgln("Note: Address {} looks like it may be uninitialized kmalloc() memory", VirtualAddress(fault_address)); } else if ((fault_address & 0xffff0000) == (kfree_scrub_pattern & 0xffff0000)) { dbgln("Note: Address {} looks like it may be recently kfree()'d memory", VirtualAddress(fault_address)); } else if ((fault_address & 0xffff0000) == (slab_alloc_scrub_pattern & 0xffff0000)) { dbgln("Note: Address {} looks like it may be uninitialized slab_alloc() memory", VirtualAddress(fault_address)); } else if ((fault_address & 0xffff0000) == (slab_dealloc_scrub_pattern & 0xffff0000)) { dbgln("Note: Address {} looks like it may be recently slab_dealloc()'d memory", VirtualAddress(fault_address)); } else if (fault_address < 4096) { dbgln("Note: Address {} looks like a possible nullptr dereference", VirtualAddress(fault_address)); } auto& current_process = current_thread->process(); if (current_process.is_user_process()) { current_process.set_coredump_metadata("fault_address", String::formatted("{:p}", fault_address)); current_process.set_coredump_metadata("fault_type", fault.type() == PageFault::Type::PageNotPresent ? "NotPresent" : "ProtectionViolation"); String fault_access; if (fault.is_instruction_fetch()) fault_access = "Execute"; else fault_access = fault.access() == PageFault::Access::Read ? "Read" : "Write"; current_process.set_coredump_metadata("fault_access", fault_access); } handle_crash(regs, "Page Fault", SIGSEGV, response == PageFaultResponse::OutOfMemory); } else if (response == PageFaultResponse::Continue) { #if PAGE_FAULT_DEBUG dbgln("Continuing after resolved page fault"); #endif } else { VERIFY_NOT_REACHED(); } } EH_ENTRY_NO_CODE(1, debug); void debug_handler(TrapFrame* trap) { clac(); auto& regs = *trap->regs; auto current_thread = Thread::current(); auto& process = current_thread->process(); if ((regs.cs & 3) == 0) { PANIC("Debug exception in ring 0"); } constexpr u8 REASON_SINGLESTEP = 14; auto debug_status = read_dr6(); auto should_trap_mask = (1 << REASON_SINGLESTEP) | 0b1111; if ((debug_status & should_trap_mask) == 0) return; if (auto tracer = process.tracer()) { tracer->set_regs(regs); } current_thread->send_urgent_signal_to_self(SIGTRAP); write_dr6(debug_status & ~(should_trap_mask)); } EH_ENTRY_NO_CODE(3, breakpoint); void breakpoint_handler(TrapFrame* trap) { clac(); auto& regs = *trap->regs; auto current_thread = Thread::current(); auto& process = current_thread->process(); if ((regs.cs & 3) == 0) { PANIC("Breakpoint trap in ring 0"); } if (auto tracer = process.tracer()) { tracer->set_regs(regs); } current_thread->send_urgent_signal_to_self(SIGTRAP); } #define EH(i, msg) \ static void _exception##i() \ { \ dbgln("{}", msg); \ PANIC("cr0={:08x} cr2={:08x} cr3={:08x} cr4={:08x}", read_cr0(), read_cr2(), read_cr3(), read_cr4()); \ } EH(2, "Unknown error") EH(4, "Overflow") EH(5, "Bounds check") EH(8, "Double fault") EH(9, "Coprocessor segment overrun") EH(10, "Invalid TSS") EH(11, "Segment not present") EH(12, "Stack exception") EH(15, "Unknown error") EH(16, "Coprocessor error") const DescriptorTablePointer& get_idtr() { return s_idtr; } static void unimp_trap() { PANIC("Unhandled IRQ"); } GenericInterruptHandler& get_interrupt_handler(u8 interrupt_number) { auto*& handler_slot = s_interrupt_handler[interrupt_number]; VERIFY(handler_slot != nullptr); return *handler_slot; } static void revert_to_unused_handler(u8 interrupt_number) { auto handler = new UnhandledInterruptHandler(interrupt_number); handler->register_interrupt_handler(); } void register_generic_interrupt_handler(u8 interrupt_number, GenericInterruptHandler& handler) { VERIFY(interrupt_number < GENERIC_INTERRUPT_HANDLERS_COUNT); auto*& handler_slot = s_interrupt_handler[interrupt_number]; if (handler_slot != nullptr) { if (handler_slot->type() == HandlerType::UnhandledInterruptHandler) { if (handler_slot) { auto* unhandled_handler = static_cast(handler_slot); unhandled_handler->unregister_interrupt_handler(); delete unhandled_handler; } handler_slot = &handler; return; } if (handler_slot->is_shared_handler() && !handler_slot->is_sharing_with_others()) { VERIFY(handler_slot->type() == HandlerType::SharedIRQHandler); static_cast(handler_slot)->register_handler(handler); return; } if (!handler_slot->is_shared_handler()) { if (handler_slot->type() == HandlerType::SpuriousInterruptHandler) { static_cast(handler_slot)->register_handler(handler); return; } VERIFY(handler_slot->type() == HandlerType::IRQHandler); auto& previous_handler = *handler_slot; handler_slot = nullptr; SharedIRQHandler::initialize(interrupt_number); VERIFY(handler_slot); static_cast(handler_slot)->register_handler(previous_handler); static_cast(handler_slot)->register_handler(handler); return; } VERIFY_NOT_REACHED(); } else { handler_slot = &handler; } } void unregister_generic_interrupt_handler(u8 interrupt_number, GenericInterruptHandler& handler) { auto*& handler_slot = s_interrupt_handler[interrupt_number]; VERIFY(handler_slot != nullptr); if (handler_slot->type() == HandlerType::UnhandledInterruptHandler) { dbgln("Trying to unregister unused handler (?)"); return; } if (handler_slot->is_shared_handler() && !handler_slot->is_sharing_with_others()) { VERIFY(handler_slot->type() == HandlerType::SharedIRQHandler); auto* shared_handler = static_cast(handler_slot); shared_handler->unregister_handler(handler); if (!shared_handler->sharing_devices_count()) { handler_slot = nullptr; revert_to_unused_handler(interrupt_number); } return; } if (!handler_slot->is_shared_handler()) { VERIFY(handler_slot->type() == HandlerType::IRQHandler); handler_slot = nullptr; revert_to_unused_handler(interrupt_number); return; } VERIFY_NOT_REACHED(); } UNMAP_AFTER_INIT void register_interrupt_handler(u8 index, void (*handler)()) { // FIXME: Why is that with selector 8? // FIXME: Is the Gate Type really required to be an Interrupt // FIXME: What's up with that storage segment 0? s_idt[index] = IDTEntry((FlatPtr)handler, 8, IDTEntryType::InterruptGate32, 0, 0); } UNMAP_AFTER_INIT void register_user_callable_interrupt_handler(u8 index, void (*handler)()) { // FIXME: Why is that with selector 8? // FIXME: Is the Gate Type really required to be a Trap // FIXME: What's up with that storage segment 0? s_idt[index] = IDTEntry((FlatPtr)handler, 8, IDTEntryType::TrapGate32, 0, 3); } UNMAP_AFTER_INIT void flush_idt() { asm("lidt %0" ::"m"(s_idtr)); } UNMAP_AFTER_INIT static void idt_init() { s_idtr.address = s_idt; s_idtr.limit = 256 * 8 - 1; register_interrupt_handler(0x00, divide_error_asm_entry); register_user_callable_interrupt_handler(0x01, debug_asm_entry); register_interrupt_handler(0x02, _exception2); register_user_callable_interrupt_handler(0x03, breakpoint_asm_entry); register_interrupt_handler(0x04, _exception4); register_interrupt_handler(0x05, _exception5); register_interrupt_handler(0x06, illegal_instruction_asm_entry); register_interrupt_handler(0x07, fpu_exception_asm_entry); register_interrupt_handler(0x08, _exception8); register_interrupt_handler(0x09, _exception9); register_interrupt_handler(0x0a, _exception10); register_interrupt_handler(0x0b, _exception11); register_interrupt_handler(0x0c, _exception12); register_interrupt_handler(0x0d, general_protection_fault_asm_entry); register_interrupt_handler(0x0e, page_fault_asm_entry); register_interrupt_handler(0x0f, _exception15); register_interrupt_handler(0x10, _exception16); for (u8 i = 0x11; i < 0x50; i++) register_interrupt_handler(i, unimp_trap); register_interrupt_handler(0x50, interrupt_80_asm_entry); register_interrupt_handler(0x51, interrupt_81_asm_entry); register_interrupt_handler(0x52, interrupt_82_asm_entry); register_interrupt_handler(0x53, interrupt_83_asm_entry); register_interrupt_handler(0x54, interrupt_84_asm_entry); register_interrupt_handler(0x55, interrupt_85_asm_entry); register_interrupt_handler(0x56, interrupt_86_asm_entry); register_interrupt_handler(0x57, interrupt_87_asm_entry); register_interrupt_handler(0x58, interrupt_88_asm_entry); register_interrupt_handler(0x59, interrupt_89_asm_entry); register_interrupt_handler(0x5a, interrupt_90_asm_entry); register_interrupt_handler(0x5b, interrupt_91_asm_entry); register_interrupt_handler(0x5c, interrupt_92_asm_entry); register_interrupt_handler(0x5d, interrupt_93_asm_entry); register_interrupt_handler(0x5e, interrupt_94_asm_entry); register_interrupt_handler(0x5f, interrupt_95_asm_entry); register_interrupt_handler(0x60, interrupt_96_asm_entry); register_interrupt_handler(0x61, interrupt_97_asm_entry); register_interrupt_handler(0x62, interrupt_98_asm_entry); register_interrupt_handler(0x63, interrupt_99_asm_entry); register_interrupt_handler(0x64, interrupt_100_asm_entry); register_interrupt_handler(0x65, interrupt_101_asm_entry); register_interrupt_handler(0x66, interrupt_102_asm_entry); register_interrupt_handler(0x67, interrupt_103_asm_entry); register_interrupt_handler(0x68, interrupt_104_asm_entry); register_interrupt_handler(0x69, interrupt_105_asm_entry); register_interrupt_handler(0x6a, interrupt_106_asm_entry); register_interrupt_handler(0x6b, interrupt_107_asm_entry); register_interrupt_handler(0x6c, interrupt_108_asm_entry); register_interrupt_handler(0x6d, interrupt_109_asm_entry); register_interrupt_handler(0x6e, interrupt_110_asm_entry); register_interrupt_handler(0x6f, interrupt_111_asm_entry); register_interrupt_handler(0x70, interrupt_112_asm_entry); register_interrupt_handler(0x71, interrupt_113_asm_entry); register_interrupt_handler(0x72, interrupt_114_asm_entry); register_interrupt_handler(0x73, interrupt_115_asm_entry); register_interrupt_handler(0x74, interrupt_116_asm_entry); register_interrupt_handler(0x75, interrupt_117_asm_entry); register_interrupt_handler(0x76, interrupt_118_asm_entry); register_interrupt_handler(0x77, interrupt_119_asm_entry); register_interrupt_handler(0x78, interrupt_120_asm_entry); register_interrupt_handler(0x79, interrupt_121_asm_entry); register_interrupt_handler(0x7a, interrupt_122_asm_entry); register_interrupt_handler(0x7b, interrupt_123_asm_entry); register_interrupt_handler(0x7c, interrupt_124_asm_entry); register_interrupt_handler(0x7d, interrupt_125_asm_entry); register_interrupt_handler(0x7e, interrupt_126_asm_entry); register_interrupt_handler(0x7f, interrupt_127_asm_entry); register_interrupt_handler(0x80, interrupt_128_asm_entry); register_interrupt_handler(0x81, interrupt_129_asm_entry); register_interrupt_handler(0x82, interrupt_130_asm_entry); register_interrupt_handler(0x83, interrupt_131_asm_entry); register_interrupt_handler(0x84, interrupt_132_asm_entry); register_interrupt_handler(0x85, interrupt_133_asm_entry); register_interrupt_handler(0x86, interrupt_134_asm_entry); register_interrupt_handler(0x87, interrupt_135_asm_entry); register_interrupt_handler(0x88, interrupt_136_asm_entry); register_interrupt_handler(0x89, interrupt_137_asm_entry); register_interrupt_handler(0x8a, interrupt_138_asm_entry); register_interrupt_handler(0x8b, interrupt_139_asm_entry); register_interrupt_handler(0x8c, interrupt_140_asm_entry); register_interrupt_handler(0x8d, interrupt_141_asm_entry); register_interrupt_handler(0x8e, interrupt_142_asm_entry); register_interrupt_handler(0x8f, interrupt_143_asm_entry); register_interrupt_handler(0x90, interrupt_144_asm_entry); register_interrupt_handler(0x91, interrupt_145_asm_entry); register_interrupt_handler(0x92, interrupt_146_asm_entry); register_interrupt_handler(0x93, interrupt_147_asm_entry); register_interrupt_handler(0x94, interrupt_148_asm_entry); register_interrupt_handler(0x95, interrupt_149_asm_entry); register_interrupt_handler(0x96, interrupt_150_asm_entry); register_interrupt_handler(0x97, interrupt_151_asm_entry); register_interrupt_handler(0x98, interrupt_152_asm_entry); register_interrupt_handler(0x99, interrupt_153_asm_entry); register_interrupt_handler(0x9a, interrupt_154_asm_entry); register_interrupt_handler(0x9b, interrupt_155_asm_entry); register_interrupt_handler(0x9c, interrupt_156_asm_entry); register_interrupt_handler(0x9d, interrupt_157_asm_entry); register_interrupt_handler(0x9e, interrupt_158_asm_entry); register_interrupt_handler(0x9f, interrupt_159_asm_entry); register_interrupt_handler(0xa0, interrupt_160_asm_entry); register_interrupt_handler(0xa1, interrupt_161_asm_entry); register_interrupt_handler(0xa2, interrupt_162_asm_entry); register_interrupt_handler(0xa3, interrupt_163_asm_entry); register_interrupt_handler(0xa4, interrupt_164_asm_entry); register_interrupt_handler(0xa5, interrupt_165_asm_entry); register_interrupt_handler(0xa6, interrupt_166_asm_entry); register_interrupt_handler(0xa7, interrupt_167_asm_entry); register_interrupt_handler(0xa8, interrupt_168_asm_entry); register_interrupt_handler(0xa9, interrupt_169_asm_entry); register_interrupt_handler(0xaa, interrupt_170_asm_entry); register_interrupt_handler(0xab, interrupt_171_asm_entry); register_interrupt_handler(0xac, interrupt_172_asm_entry); register_interrupt_handler(0xad, interrupt_173_asm_entry); register_interrupt_handler(0xae, interrupt_174_asm_entry); register_interrupt_handler(0xaf, interrupt_175_asm_entry); register_interrupt_handler(0xb0, interrupt_176_asm_entry); register_interrupt_handler(0xb1, interrupt_177_asm_entry); register_interrupt_handler(0xb2, interrupt_178_asm_entry); register_interrupt_handler(0xb3, interrupt_179_asm_entry); register_interrupt_handler(0xb4, interrupt_180_asm_entry); register_interrupt_handler(0xb5, interrupt_181_asm_entry); register_interrupt_handler(0xb6, interrupt_182_asm_entry); register_interrupt_handler(0xb7, interrupt_183_asm_entry); register_interrupt_handler(0xb8, interrupt_184_asm_entry); register_interrupt_handler(0xb9, interrupt_185_asm_entry); register_interrupt_handler(0xba, interrupt_186_asm_entry); register_interrupt_handler(0xbb, interrupt_187_asm_entry); register_interrupt_handler(0xbc, interrupt_188_asm_entry); register_interrupt_handler(0xbd, interrupt_189_asm_entry); register_interrupt_handler(0xbe, interrupt_190_asm_entry); register_interrupt_handler(0xbf, interrupt_191_asm_entry); register_interrupt_handler(0xc0, interrupt_192_asm_entry); register_interrupt_handler(0xc1, interrupt_193_asm_entry); register_interrupt_handler(0xc2, interrupt_194_asm_entry); register_interrupt_handler(0xc3, interrupt_195_asm_entry); register_interrupt_handler(0xc4, interrupt_196_asm_entry); register_interrupt_handler(0xc5, interrupt_197_asm_entry); register_interrupt_handler(0xc6, interrupt_198_asm_entry); register_interrupt_handler(0xc7, interrupt_199_asm_entry); register_interrupt_handler(0xc8, interrupt_200_asm_entry); register_interrupt_handler(0xc9, interrupt_201_asm_entry); register_interrupt_handler(0xca, interrupt_202_asm_entry); register_interrupt_handler(0xcb, interrupt_203_asm_entry); register_interrupt_handler(0xcc, interrupt_204_asm_entry); register_interrupt_handler(0xcd, interrupt_205_asm_entry); register_interrupt_handler(0xce, interrupt_206_asm_entry); register_interrupt_handler(0xcf, interrupt_207_asm_entry); register_interrupt_handler(0xd0, interrupt_208_asm_entry); register_interrupt_handler(0xd1, interrupt_209_asm_entry); register_interrupt_handler(0xd2, interrupt_210_asm_entry); register_interrupt_handler(0xd3, interrupt_211_asm_entry); register_interrupt_handler(0xd4, interrupt_212_asm_entry); register_interrupt_handler(0xd5, interrupt_213_asm_entry); register_interrupt_handler(0xd6, interrupt_214_asm_entry); register_interrupt_handler(0xd7, interrupt_215_asm_entry); register_interrupt_handler(0xd8, interrupt_216_asm_entry); register_interrupt_handler(0xd9, interrupt_217_asm_entry); register_interrupt_handler(0xda, interrupt_218_asm_entry); register_interrupt_handler(0xdb, interrupt_219_asm_entry); register_interrupt_handler(0xdc, interrupt_220_asm_entry); register_interrupt_handler(0xdd, interrupt_221_asm_entry); register_interrupt_handler(0xde, interrupt_222_asm_entry); register_interrupt_handler(0xdf, interrupt_223_asm_entry); register_interrupt_handler(0xe0, interrupt_224_asm_entry); register_interrupt_handler(0xe1, interrupt_225_asm_entry); register_interrupt_handler(0xe2, interrupt_226_asm_entry); register_interrupt_handler(0xe3, interrupt_227_asm_entry); register_interrupt_handler(0xe4, interrupt_228_asm_entry); register_interrupt_handler(0xe5, interrupt_229_asm_entry); register_interrupt_handler(0xe6, interrupt_230_asm_entry); register_interrupt_handler(0xe7, interrupt_231_asm_entry); register_interrupt_handler(0xe8, interrupt_232_asm_entry); register_interrupt_handler(0xe9, interrupt_233_asm_entry); register_interrupt_handler(0xea, interrupt_234_asm_entry); register_interrupt_handler(0xeb, interrupt_235_asm_entry); register_interrupt_handler(0xec, interrupt_236_asm_entry); register_interrupt_handler(0xed, interrupt_237_asm_entry); register_interrupt_handler(0xee, interrupt_238_asm_entry); register_interrupt_handler(0xef, interrupt_239_asm_entry); register_interrupt_handler(0xf0, interrupt_240_asm_entry); register_interrupt_handler(0xf1, interrupt_241_asm_entry); register_interrupt_handler(0xf2, interrupt_242_asm_entry); register_interrupt_handler(0xf3, interrupt_243_asm_entry); register_interrupt_handler(0xf4, interrupt_244_asm_entry); register_interrupt_handler(0xf5, interrupt_245_asm_entry); register_interrupt_handler(0xf6, interrupt_246_asm_entry); register_interrupt_handler(0xf7, interrupt_247_asm_entry); register_interrupt_handler(0xf8, interrupt_248_asm_entry); register_interrupt_handler(0xf9, interrupt_249_asm_entry); register_interrupt_handler(0xfa, interrupt_250_asm_entry); register_interrupt_handler(0xfb, interrupt_251_asm_entry); register_interrupt_handler(0xfc, interrupt_252_asm_entry); register_interrupt_handler(0xfd, interrupt_253_asm_entry); register_interrupt_handler(0xfe, interrupt_254_asm_entry); register_interrupt_handler(0xff, interrupt_255_asm_entry); dbgln("Installing Unhandled Handlers"); for (u8 i = 0; i < GENERIC_INTERRUPT_HANDLERS_COUNT; ++i) { auto* handler = new UnhandledInterruptHandler(i); handler->register_interrupt_handler(); } flush_idt(); } void load_task_register(u16 selector) { asm("ltr %0" ::"r"(selector)); } void handle_interrupt(TrapFrame* trap) { clac(); auto& regs = *trap->regs; VERIFY(regs.isr_number >= IRQ_VECTOR_BASE && regs.isr_number <= (IRQ_VECTOR_BASE + GENERIC_INTERRUPT_HANDLERS_COUNT)); u8 irq = (u8)(regs.isr_number - 0x50); s_entropy_source_interrupts.add_random_event(irq); auto* handler = s_interrupt_handler[irq]; VERIFY(handler); handler->increment_invoking_counter(); handler->handle_interrupt(regs); handler->eoi(); } void enter_trap_no_irq(TrapFrame* trap) { InterruptDisabler disable; Processor::current().enter_trap(*trap, false); } void enter_trap(TrapFrame* trap) { InterruptDisabler disable; Processor::current().enter_trap(*trap, true); } void exit_trap(TrapFrame* trap) { InterruptDisabler disable; return Processor::current().exit_trap(*trap); } UNMAP_AFTER_INIT void write_cr0(FlatPtr value) { #if ARCH(I386) asm volatile("mov %%eax, %%cr0" ::"a"(value)); #else asm volatile("mov %%rax, %%cr0" ::"a"(value)); #endif } UNMAP_AFTER_INIT void write_cr4(FlatPtr value) { #if ARCH(I386) asm volatile("mov %%eax, %%cr4" ::"a"(value)); #else asm volatile("mov %%rax, %%cr4" ::"a"(value)); #endif } UNMAP_AFTER_INIT static void sse_init() { write_cr0((read_cr0() & 0xfffffffbu) | 0x2); write_cr4(read_cr4() | 0x600); } FlatPtr read_cr0() { FlatPtr cr0; #if ARCH(I386) asm("mov %%cr0, %%eax" : "=a"(cr0)); #else asm("mov %%cr0, %%rax" : "=a"(cr0)); #endif return cr0; } FlatPtr read_cr2() { FlatPtr cr2; #if ARCH(I386) asm("mov %%cr2, %%eax" : "=a"(cr2)); #else asm("mov %%cr2, %%rax" : "=a"(cr2)); #endif return cr2; } FlatPtr read_cr3() { FlatPtr cr3; #if ARCH(I386) asm("mov %%cr3, %%eax" : "=a"(cr3)); #else asm("mov %%cr3, %%rax" : "=a"(cr3)); #endif return cr3; } void write_cr3(FlatPtr cr3) { // NOTE: If you're here from a GPF crash, it's very likely that a PDPT entry is incorrect, not this! #if ARCH(I386) asm volatile("mov %%eax, %%cr3" ::"a"(cr3) : "memory"); #else asm volatile("mov %%rax, %%cr3" ::"a"(cr3) : "memory"); #endif } FlatPtr read_cr4() { FlatPtr cr4; #if ARCH(I386) asm("mov %%cr4, %%eax" : "=a"(cr4)); #else asm("mov %%cr4, %%rax" : "=a"(cr4)); #endif return cr4; } void read_debug_registers_into(DebugRegisterState& state) { state.dr0 = read_dr0(); state.dr1 = read_dr1(); state.dr2 = read_dr2(); state.dr3 = read_dr3(); state.dr6 = read_dr6(); state.dr7 = read_dr7(); } void write_debug_registers_from(const DebugRegisterState& state) { write_dr0(state.dr0); write_dr1(state.dr1); write_dr2(state.dr2); write_dr3(state.dr3); write_dr6(state.dr6); write_dr7(state.dr7); } void clear_debug_registers() { write_dr0(0); write_dr1(0); write_dr2(0); write_dr3(0); write_dr7(1 << 10); // Bit 10 is reserved and must be set to 1. } #if ARCH(I386) # define DEFINE_DEBUG_REGISTER(index) \ FlatPtr read_dr##index() \ { \ FlatPtr value; \ asm("mov %%dr" #index ", %%eax" \ : "=a"(value)); \ return value; \ } \ void write_dr##index(FlatPtr value) \ { \ asm volatile("mov %%eax, %%dr" #index ::"a"(value)); \ } #else # define DEFINE_DEBUG_REGISTER(index) \ FlatPtr read_dr##index() \ { \ FlatPtr value; \ asm("mov %%dr" #index ", %%rax" \ : "=a"(value)); \ return value; \ } \ void write_dr##index(FlatPtr value) \ { \ asm volatile("mov %%rax, %%dr" #index ::"a"(value)); \ } #endif DEFINE_DEBUG_REGISTER(0); DEFINE_DEBUG_REGISTER(1); DEFINE_DEBUG_REGISTER(2); DEFINE_DEBUG_REGISTER(3); DEFINE_DEBUG_REGISTER(6); DEFINE_DEBUG_REGISTER(7); #define XCR_XFEATURE_ENABLED_MASK 0 UNMAP_AFTER_INIT u64 read_xcr0() { u32 eax, edx; asm volatile("xgetbv" : "=a"(eax), "=d"(edx) : "c"(XCR_XFEATURE_ENABLED_MASK)); return eax + ((u64)edx << 32); } UNMAP_AFTER_INIT void write_xcr0(u64 value) { u32 eax = value; u32 edx = value >> 32; asm volatile("xsetbv" ::"a"(eax), "d"(edx), "c"(XCR_XFEATURE_ENABLED_MASK)); } READONLY_AFTER_INIT FPUState Processor::s_clean_fpu_state; READONLY_AFTER_INIT static Vector* s_processors; static SpinLock s_processor_lock; READONLY_AFTER_INIT volatile u32 Processor::g_total_processors; static volatile bool s_smp_enabled; Vector& Processor::processors() { VERIFY(s_processors); return *s_processors; } Processor& Processor::by_id(u32 cpu) { // s_processors does not need to be protected by a lock of any kind. // It is populated early in the boot process, and the BSP is waiting // for all APs to finish, after which this array never gets modified // again, so it's safe to not protect access to it here auto& procs = processors(); VERIFY(procs[cpu] != nullptr); VERIFY(procs.size() > cpu); return *procs[cpu]; } [[noreturn]] static inline void halt_this() { for (;;) { asm volatile("cli; hlt"); } } UNMAP_AFTER_INIT void Processor::cpu_detect() { // NOTE: This is called during Processor::early_initialize, we cannot // safely log at this point because we don't have kmalloc // initialized yet! auto set_feature = [&](CPUFeature f) { m_features = static_cast(static_cast(m_features) | static_cast(f)); }; m_features = static_cast(0); CPUID processor_info(0x1); if (processor_info.edx() & (1 << 4)) set_feature(CPUFeature::TSC); if (processor_info.edx() & (1 << 6)) set_feature(CPUFeature::PAE); if (processor_info.edx() & (1 << 13)) set_feature(CPUFeature::PGE); if (processor_info.edx() & (1 << 23)) set_feature(CPUFeature::MMX); if (processor_info.edx() & (1 << 25)) set_feature(CPUFeature::SSE); if (processor_info.edx() & (1 << 26)) set_feature(CPUFeature::SSE2); if (processor_info.ecx() & (1 << 0)) set_feature(CPUFeature::SSE3); if (processor_info.ecx() & (1 << 9)) set_feature(CPUFeature::SSSE3); if (processor_info.ecx() & (1 << 19)) set_feature(CPUFeature::SSE4_1); if (processor_info.ecx() & (1 << 20)) set_feature(CPUFeature::SSE4_2); if (processor_info.ecx() & (1 << 26)) set_feature(CPUFeature::XSAVE); if (processor_info.ecx() & (1 << 28)) set_feature(CPUFeature::AVX); if (processor_info.ecx() & (1 << 30)) set_feature(CPUFeature::RDRAND); if (processor_info.edx() & (1 << 11)) { u32 stepping = processor_info.eax() & 0xf; u32 model = (processor_info.eax() >> 4) & 0xf; u32 family = (processor_info.eax() >> 8) & 0xf; if (!(family == 6 && model < 3 && stepping < 3)) set_feature(CPUFeature::SEP); if ((family == 6 && model >= 3) || (family == 0xf && model >= 0xe)) set_feature(CPUFeature::CONSTANT_TSC); } u32 max_extended_leaf = CPUID(0x80000000).eax(); VERIFY(max_extended_leaf >= 0x80000001); CPUID extended_processor_info(0x80000001); if (extended_processor_info.edx() & (1 << 20)) set_feature(CPUFeature::NX); if (extended_processor_info.edx() & (1 << 27)) set_feature(CPUFeature::RDTSCP); if (extended_processor_info.edx() & (1 << 11)) { // Only available in 64 bit mode set_feature(CPUFeature::SYSCALL); } if (max_extended_leaf >= 0x80000007) { CPUID cpuid(0x80000007); if (cpuid.edx() & (1 << 8)) { set_feature(CPUFeature::CONSTANT_TSC); set_feature(CPUFeature::NONSTOP_TSC); } } if (max_extended_leaf >= 0x80000008) { // CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor. CPUID cpuid(0x80000008); m_physical_address_bit_width = cpuid.eax() & 0xff; } else { // For processors that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise. m_physical_address_bit_width = has_feature(CPUFeature::PAE) ? 36 : 32; } CPUID extended_features(0x7); if (extended_features.ebx() & (1 << 20)) set_feature(CPUFeature::SMAP); if (extended_features.ebx() & (1 << 7)) set_feature(CPUFeature::SMEP); if (extended_features.ecx() & (1 << 2)) set_feature(CPUFeature::UMIP); if (extended_features.ebx() & (1 << 18)) set_feature(CPUFeature::RDSEED); } UNMAP_AFTER_INIT void Processor::cpu_setup() { // NOTE: This is called during Processor::early_initialize, we cannot // safely log at this point because we don't have kmalloc // initialized yet! cpu_detect(); if (has_feature(CPUFeature::SSE)) sse_init(); write_cr0(read_cr0() | 0x00010000); if (has_feature(CPUFeature::PGE)) { // Turn on CR4.PGE so the CPU will respect the G bit in page tables. write_cr4(read_cr4() | 0x80); } if (has_feature(CPUFeature::NX)) { // Turn on IA32_EFER.NXE asm volatile( "movl $0xc0000080, %ecx\n" "rdmsr\n" "orl $0x800, %eax\n" "wrmsr\n"); } if (has_feature(CPUFeature::SMEP)) { // Turn on CR4.SMEP write_cr4(read_cr4() | 0x100000); } if (has_feature(CPUFeature::SMAP)) { // Turn on CR4.SMAP write_cr4(read_cr4() | 0x200000); } if (has_feature(CPUFeature::UMIP)) { write_cr4(read_cr4() | 0x800); } if (has_feature(CPUFeature::TSC)) { write_cr4(read_cr4() | 0x4); } if (has_feature(CPUFeature::XSAVE)) { // Turn on CR4.OSXSAVE write_cr4(read_cr4() | 0x40000); // According to the Intel manual: "After reset, all bits (except bit 0) in XCR0 are cleared to zero; XCR0[0] is set to 1." // Sadly we can't trust this, for example VirtualBox starts with bits 0-4 set, so let's do it ourselves. write_xcr0(0x1); if (has_feature(CPUFeature::AVX)) { // Turn on SSE, AVX and x87 flags write_xcr0(read_xcr0() | 0x7); } } } String Processor::features_string() const { StringBuilder builder; auto feature_to_str = [](CPUFeature f) -> const char* { switch (f) { case CPUFeature::NX: return "nx"; case CPUFeature::PAE: return "pae"; case CPUFeature::PGE: return "pge"; case CPUFeature::RDRAND: return "rdrand"; case CPUFeature::RDSEED: return "rdseed"; case CPUFeature::SMAP: return "smap"; case CPUFeature::SMEP: return "smep"; case CPUFeature::SSE: return "sse"; case CPUFeature::TSC: return "tsc"; case CPUFeature::RDTSCP: return "rdtscp"; case CPUFeature::CONSTANT_TSC: return "constant_tsc"; case CPUFeature::NONSTOP_TSC: return "nonstop_tsc"; case CPUFeature::UMIP: return "umip"; case CPUFeature::SEP: return "sep"; case CPUFeature::SYSCALL: return "syscall"; case CPUFeature::MMX: return "mmx"; case CPUFeature::SSE2: return "sse2"; case CPUFeature::SSE3: return "sse3"; case CPUFeature::SSSE3: return "ssse3"; case CPUFeature::SSE4_1: return "sse4.1"; case CPUFeature::SSE4_2: return "sse4.2"; case CPUFeature::XSAVE: return "xsave"; case CPUFeature::AVX: return "avx"; // no default statement here intentionally so that we get // a warning if a new feature is forgotten to be added here } // Shouldn't ever happen return "???"; }; bool first = true; for (u32 flag = 1; flag != 0; flag <<= 1) { if ((static_cast(m_features) & flag) != 0) { if (first) first = false; else builder.append(' '); auto str = feature_to_str(static_cast(flag)); builder.append(str, strlen(str)); } } return builder.build(); } String Processor::platform_string() const { return "i386"; } UNMAP_AFTER_INIT void Processor::early_initialize(u32 cpu) { m_self = this; m_cpu = cpu; m_in_irq = 0; m_in_critical = 0; m_invoke_scheduler_async = false; m_scheduler_initialized = false; m_message_queue = nullptr; m_idle_thread = nullptr; m_current_thread = nullptr; m_scheduler_data = nullptr; m_mm_data = nullptr; m_info = nullptr; m_halt_requested = false; if (cpu == 0) { s_smp_enabled = false; atomic_store(&g_total_processors, 1u, AK::MemoryOrder::memory_order_release); } else { atomic_fetch_add(&g_total_processors, 1u, AK::MemoryOrder::memory_order_acq_rel); } deferred_call_pool_init(); cpu_setup(); gdt_init(); VERIFY(is_initialized()); // sanity check VERIFY(¤t() == this); // sanity check } UNMAP_AFTER_INIT void Processor::initialize(u32 cpu) { VERIFY(m_self == this); VERIFY(¤t() == this); // sanity check dmesgln("CPU[{}]: Supported features: {}", id(), features_string()); if (!has_feature(CPUFeature::RDRAND)) dmesgln("CPU[{}]: No RDRAND support detected, randomness will be poor", id()); dmesgln("CPU[{}]: Physical address bit width: {}", id(), m_physical_address_bit_width); if (cpu == 0) idt_init(); else flush_idt(); if (cpu == 0) { VERIFY((FlatPtr(&s_clean_fpu_state) & 0xF) == 0); asm volatile("fninit"); asm volatile("fxsave %0" : "=m"(s_clean_fpu_state)); } m_info = new ProcessorInfo(*this); { ScopedSpinLock lock(s_processor_lock); // We need to prevent races between APs starting up at the same time if (!s_processors) s_processors = new Vector(); if (cpu >= s_processors->size()) s_processors->resize(cpu + 1); (*s_processors)[cpu] = this; } } void Processor::write_raw_gdt_entry(u16 selector, u32 low, u32 high) { u16 i = (selector & 0xfffc) >> 3; u32 prev_gdt_length = m_gdt_length; if (i > m_gdt_length) { m_gdt_length = i + 1; VERIFY(m_gdt_length <= sizeof(m_gdt) / sizeof(m_gdt[0])); m_gdtr.limit = (m_gdt_length + 1) * 8 - 1; } m_gdt[i].low = low; m_gdt[i].high = high; // clear selectors we may have skipped while (i < prev_gdt_length) { m_gdt[i].low = 0; m_gdt[i].high = 0; i++; } } void Processor::write_gdt_entry(u16 selector, Descriptor& descriptor) { write_raw_gdt_entry(selector, descriptor.low, descriptor.high); } Descriptor& Processor::get_gdt_entry(u16 selector) { u16 i = (selector & 0xfffc) >> 3; return *(Descriptor*)(&m_gdt[i]); } void Processor::flush_gdt() { m_gdtr.address = m_gdt; m_gdtr.limit = (m_gdt_length * 8) - 1; asm volatile("lgdt %0" ::"m"(m_gdtr) : "memory"); } const DescriptorTablePointer& Processor::get_gdtr() { return m_gdtr; } Vector Processor::capture_stack_trace(Thread& thread, size_t max_frames) { FlatPtr frame_ptr = 0, eip = 0; Vector stack_trace; auto walk_stack = [&](FlatPtr stack_ptr) { static constexpr size_t max_stack_frames = 4096; stack_trace.append(eip); size_t count = 1; while (stack_ptr && stack_trace.size() < max_stack_frames) { FlatPtr retaddr; count++; if (max_frames != 0 && count > max_frames) break; if (is_user_range(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2)) { if (!copy_from_user(&retaddr, &((FlatPtr*)stack_ptr)[1]) || !retaddr) break; stack_trace.append(retaddr); if (!copy_from_user(&stack_ptr, (FlatPtr*)stack_ptr)) break; } else { void* fault_at; if (!safe_memcpy(&retaddr, &((FlatPtr*)stack_ptr)[1], sizeof(FlatPtr), fault_at) || !retaddr) break; stack_trace.append(retaddr); if (!safe_memcpy(&stack_ptr, (FlatPtr*)stack_ptr, sizeof(FlatPtr), fault_at)) break; } } }; auto capture_current_thread = [&]() { frame_ptr = (FlatPtr)__builtin_frame_address(0); eip = (FlatPtr)__builtin_return_address(0); walk_stack(frame_ptr); }; // Since the thread may be running on another processor, there // is a chance a context switch may happen while we're trying // to get it. It also won't be entirely accurate and merely // reflect the status at the last context switch. ScopedSpinLock lock(g_scheduler_lock); if (&thread == Processor::current_thread()) { VERIFY(thread.state() == Thread::Running); // Leave the scheduler lock. If we trigger page faults we may // need to be preempted. Since this is our own thread it won't // cause any problems as the stack won't change below this frame. lock.unlock(); capture_current_thread(); } else if (thread.is_active()) { VERIFY(thread.cpu() != Processor::id()); // If this is the case, the thread is currently running // on another processor. We can't trust the kernel stack as // it may be changing at any time. We need to probably send // an IPI to that processor, have it walk the stack and wait // until it returns the data back to us auto& proc = Processor::current(); smp_unicast( thread.cpu(), [&]() { dbgln("CPU[{}] getting stack for cpu #{}", Processor::id(), proc.get_id()); ProcessPagingScope paging_scope(thread.process()); VERIFY(&Processor::current() != &proc); VERIFY(&thread == Processor::current_thread()); // NOTE: Because the other processor is still holding the // scheduler lock while waiting for this callback to finish, // the current thread on the target processor cannot change // TODO: What to do about page faults here? We might deadlock // because the other processor is still holding the // scheduler lock... capture_current_thread(); }, false); } else { switch (thread.state()) { case Thread::Running: VERIFY_NOT_REACHED(); // should have been handled above case Thread::Runnable: case Thread::Stopped: case Thread::Blocked: case Thread::Dying: case Thread::Dead: { // We need to retrieve ebp from what was last pushed to the kernel // stack. Before switching out of that thread, it switch_context // pushed the callee-saved registers, and the last of them happens // to be ebp. ProcessPagingScope paging_scope(thread.process()); auto& tss = thread.tss(); u32* stack_top = reinterpret_cast(tss.esp); if (is_user_range(VirtualAddress(stack_top), sizeof(FlatPtr))) { if (!copy_from_user(&frame_ptr, &((FlatPtr*)stack_top)[0])) frame_ptr = 0; } else { void* fault_at; if (!safe_memcpy(&frame_ptr, &((FlatPtr*)stack_top)[0], sizeof(FlatPtr), fault_at)) frame_ptr = 0; } eip = tss.eip; // TODO: We need to leave the scheduler lock here, but we also // need to prevent the target thread from being run while // we walk the stack lock.unlock(); walk_stack(frame_ptr); break; } default: dbgln("Cannot capture stack trace for thread {} in state {}", thread, thread.state_string()); break; } } return stack_trace; } extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread) { VERIFY(from_thread == to_thread || from_thread->state() != Thread::Running); VERIFY(to_thread->state() == Thread::Running); Processor::set_current_thread(*to_thread); auto& from_tss = from_thread->tss(); auto& to_tss = to_thread->tss(); asm volatile("fxsave %0" : "=m"(from_thread->fpu_state())); from_tss.fs = get_fs(); from_tss.gs = get_gs(); set_fs(to_tss.fs); set_gs(to_tss.gs); if (from_thread->process().is_traced()) read_debug_registers_into(from_thread->debug_register_state()); if (to_thread->process().is_traced()) { write_debug_registers_from(to_thread->debug_register_state()); } else { clear_debug_registers(); } auto& processor = Processor::current(); auto& tls_descriptor = processor.get_gdt_entry(GDT_SELECTOR_TLS); tls_descriptor.set_base(to_thread->thread_specific_data()); tls_descriptor.set_limit(to_thread->thread_specific_region_size()); if (from_tss.cr3 != to_tss.cr3) write_cr3(to_tss.cr3); to_thread->set_cpu(processor.get_id()); processor.restore_in_critical(to_thread->saved_critical()); asm volatile("fxrstor %0" ::"m"(to_thread->fpu_state())); // TODO: ioperm? } #define ENTER_THREAD_CONTEXT_ARGS_SIZE (2 * 4) // to_thread, from_thread void Processor::switch_context(Thread*& from_thread, Thread*& to_thread) { VERIFY(!in_irq()); VERIFY(m_in_critical == 1); VERIFY(is_kernel_mode()); dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context --> switching out of: {} {}", VirtualAddress(from_thread), *from_thread); from_thread->save_critical(m_in_critical); #if ARCH(I386) // clang-format off // Switch to new thread context, passing from_thread and to_thread // through to the new context using registers edx and eax asm volatile( // NOTE: changing how much we push to the stack affects // SWITCH_CONTEXT_TO_STACK_SIZE and thread_context_first_enter()! "pushfl \n" "pushl %%ebx \n" "pushl %%esi \n" "pushl %%edi \n" "pushl %%ebp \n" "movl %%esp, %[from_esp] \n" "movl $1f, %[from_eip] \n" "movl %[to_esp0], %%ebx \n" "movl %%ebx, %[tss_esp0] \n" "movl %[to_esp], %%esp \n" "pushl %[to_thread] \n" "pushl %[from_thread] \n" "pushl %[to_eip] \n" "cld \n" "jmp enter_thread_context \n" "1: \n" "popl %%edx \n" "popl %%eax \n" "popl %%ebp \n" "popl %%edi \n" "popl %%esi \n" "popl %%ebx \n" "popfl \n" : [from_esp] "=m" (from_thread->tss().esp), [from_eip] "=m" (from_thread->tss().eip), [tss_esp0] "=m" (m_tss.esp0), "=d" (from_thread), // needed so that from_thread retains the correct value "=a" (to_thread) // needed so that to_thread retains the correct value : [to_esp] "g" (to_thread->tss().esp), [to_esp0] "g" (to_thread->tss().esp0), [to_eip] "c" (to_thread->tss().eip), [from_thread] "d" (from_thread), [to_thread] "a" (to_thread) : "memory" ); // clang-format on #else PANIC("Context switching not implemented."); #endif dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context <-- from {} {} to {} {}", VirtualAddress(from_thread), *from_thread, VirtualAddress(to_thread), *to_thread); Processor::current().restore_in_critical(to_thread->saved_critical()); } extern "C" void context_first_init([[maybe_unused]] Thread* from_thread, [[maybe_unused]] Thread* to_thread, [[maybe_unused]] TrapFrame* trap) { VERIFY(!are_interrupts_enabled()); VERIFY(is_kernel_mode()); dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context <-- from {} {} to {} {} (context_first_init)", VirtualAddress(from_thread), *from_thread, VirtualAddress(to_thread), *to_thread); VERIFY(to_thread == Thread::current()); Scheduler::enter_current(*from_thread, true); // Since we got here and don't have Scheduler::context_switch in the // call stack (because this is the first time we switched into this // context), we need to notify the scheduler so that it can release // the scheduler lock. We don't want to enable interrupts at this point // as we're still in the middle of a context switch. Doing so could // trigger a context switch within a context switch, leading to a crash. Scheduler::leave_on_first_switch(trap->regs->eflags & ~0x200); } extern "C" void thread_context_first_enter(void); // clang-format off asm( // enter_thread_context returns to here first time a thread is executing ".globl thread_context_first_enter \n" "thread_context_first_enter: \n" // switch_context will have pushed from_thread and to_thread to our new // stack prior to thread_context_first_enter() being called, and the // pointer to TrapFrame was the top of the stack before that " movl 8(%esp), %ebx \n" // save pointer to TrapFrame " cld \n" " call context_first_init \n" " addl $" __STRINGIFY(ENTER_THREAD_CONTEXT_ARGS_SIZE) ", %esp \n" " movl %ebx, 0(%esp) \n" // push pointer to TrapFrame " jmp common_trap_exit \n" ); // clang-format on void exit_kernel_thread(void) { Thread::current()->exit(); } u32 Processor::init_context(Thread& thread, bool leave_crit) { VERIFY(is_kernel_mode()); VERIFY(g_scheduler_lock.is_locked()); if (leave_crit) { // Leave the critical section we set up in in Process::exec, // but because we still have the scheduler lock we should end up with 1 m_in_critical--; // leave it without triggering anything or restoring flags VERIFY(in_critical() == 1); } u32 kernel_stack_top = thread.kernel_stack_top(); // Add a random offset between 0-256 (16-byte aligned) kernel_stack_top -= round_up_to_power_of_two(get_fast_random(), 16); u32 stack_top = kernel_stack_top; // TODO: handle NT? VERIFY((cpu_flags() & 0x24000) == 0); // Assume !(NT | VM) auto& tss = thread.tss(); bool return_to_user = (tss.cs & 3) != 0; // make room for an interrupt frame if (!return_to_user) { // userspace_esp and userspace_ss are not popped off by iret // unless we're switching back to user mode stack_top -= sizeof(RegisterState) - 2 * sizeof(u32); // For kernel threads we'll push the thread function argument // which should be in tss.esp and exit_kernel_thread as return // address. stack_top -= 2 * sizeof(u32); *reinterpret_cast(kernel_stack_top - 2 * sizeof(u32)) = tss.esp; *reinterpret_cast(kernel_stack_top - 3 * sizeof(u32)) = FlatPtr(&exit_kernel_thread); } else { stack_top -= sizeof(RegisterState); } // we want to end up 16-byte aligned, %esp + 4 should be aligned stack_top -= sizeof(u32); *reinterpret_cast(kernel_stack_top - sizeof(u32)) = 0; // set up the stack so that after returning from thread_context_first_enter() // we will end up either in kernel mode or user mode, depending on how the thread is set up // However, the first step is to always start in kernel mode with thread_context_first_enter RegisterState& iretframe = *reinterpret_cast(stack_top); iretframe.ss = tss.ss; iretframe.gs = tss.gs; iretframe.fs = tss.fs; iretframe.es = tss.es; iretframe.ds = tss.ds; iretframe.edi = tss.edi; iretframe.esi = tss.esi; iretframe.ebp = tss.ebp; iretframe.esp = 0; iretframe.ebx = tss.ebx; iretframe.edx = tss.edx; iretframe.ecx = tss.ecx; iretframe.eax = tss.eax; iretframe.eflags = tss.eflags; iretframe.eip = tss.eip; iretframe.cs = tss.cs; if (return_to_user) { iretframe.userspace_esp = tss.esp; iretframe.userspace_ss = tss.ss; } // make space for a trap frame stack_top -= sizeof(TrapFrame); TrapFrame& trap = *reinterpret_cast(stack_top); trap.regs = &iretframe; trap.prev_irq_level = 0; trap.next_trap = nullptr; stack_top -= sizeof(u32); // pointer to TrapFrame *reinterpret_cast(stack_top) = stack_top + 4; if constexpr (CONTEXT_SWITCH_DEBUG) { if (return_to_user) { dbgln("init_context {} ({}) set up to execute at eip={}:{}, esp={}, stack_top={}, user_top={}:{}", thread, VirtualAddress(&thread), iretframe.cs, tss.eip, VirtualAddress(tss.esp), VirtualAddress(stack_top), iretframe.userspace_ss, iretframe.userspace_esp); } else { dbgln("init_context {} ({}) set up to execute at eip={}:{}, esp={}, stack_top={}", thread, VirtualAddress(&thread), iretframe.cs, tss.eip, VirtualAddress(tss.esp), VirtualAddress(stack_top)); } } // make switch_context() always first return to thread_context_first_enter() // in kernel mode, so set up these values so that we end up popping iretframe // off the stack right after the context switch completed, at which point // control is transferred to what iretframe is pointing to. tss.eip = FlatPtr(&thread_context_first_enter); tss.esp0 = kernel_stack_top; tss.esp = stack_top; tss.cs = GDT_SELECTOR_CODE0; tss.ds = GDT_SELECTOR_DATA0; tss.es = GDT_SELECTOR_DATA0; tss.gs = GDT_SELECTOR_DATA0; tss.ss = GDT_SELECTOR_DATA0; tss.fs = GDT_SELECTOR_PROC; return stack_top; } extern "C" u32 do_init_context(Thread* thread, u32 flags) { VERIFY_INTERRUPTS_DISABLED(); thread->tss().eflags = flags; return Processor::current().init_context(*thread, true); } extern "C" void do_assume_context(Thread* thread, u32 flags); #if ARCH(I386) // clang-format off asm( ".global do_assume_context \n" "do_assume_context: \n" " movl 4(%esp), %ebx \n" " movl 8(%esp), %esi \n" // We're going to call Processor::init_context, so just make sure // we have enough stack space so we don't stomp over it " subl $(" __STRINGIFY(4 + REGISTER_STATE_SIZE + TRAP_FRAME_SIZE + 4) "), %esp \n" " pushl %esi \n" " pushl %ebx \n" " cld \n" " call do_init_context \n" " addl $8, %esp \n" " movl %eax, %esp \n" // move stack pointer to what Processor::init_context set up for us " pushl %ebx \n" // push to_thread " pushl %ebx \n" // push from_thread " pushl $thread_context_first_enter \n" // should be same as tss.eip " jmp enter_thread_context \n" ); // clang-format on #endif void Processor::assume_context(Thread& thread, FlatPtr flags) { dbgln_if(CONTEXT_SWITCH_DEBUG, "Assume context for thread {} {}", VirtualAddress(&thread), thread); VERIFY_INTERRUPTS_DISABLED(); Scheduler::prepare_after_exec(); // in_critical() should be 2 here. The critical section in Process::exec // and then the scheduler lock VERIFY(Processor::current().in_critical() == 2); #if ARCH(I386) do_assume_context(&thread, flags); #elif ARCH(X86_64) (void)flags; TODO(); #endif VERIFY_NOT_REACHED(); } extern "C" UNMAP_AFTER_INIT void pre_init_finished(void) { VERIFY(g_scheduler_lock.own_lock()); // Because init_finished() will wait on the other APs, we need // to release the scheduler lock so that the other APs can also get // to this point // The target flags will get restored upon leaving the trap u32 prev_flags = cpu_flags(); Scheduler::leave_on_first_switch(prev_flags); } extern "C" UNMAP_AFTER_INIT void post_init_finished(void) { // We need to re-acquire the scheduler lock before a context switch // transfers control into the idle loop, which needs the lock held Scheduler::prepare_for_idle_loop(); } UNMAP_AFTER_INIT void Processor::initialize_context_switching(Thread& initial_thread) { VERIFY(initial_thread.process().is_kernel_process()); auto& tss = initial_thread.tss(); m_tss = tss; m_tss.esp0 = tss.esp0; m_tss.ss0 = GDT_SELECTOR_DATA0; // user mode needs to be able to switch to kernel mode: m_tss.cs = m_tss.ds = m_tss.es = m_tss.gs = m_tss.ss = GDT_SELECTOR_CODE0 | 3; m_tss.fs = GDT_SELECTOR_PROC | 3; m_scheduler_initialized = true; #if ARCH(I386) // clang-format off asm volatile( "movl %[new_esp], %%esp \n" // switch to new stack "pushl %[from_to_thread] \n" // to_thread "pushl %[from_to_thread] \n" // from_thread "pushl $" __STRINGIFY(GDT_SELECTOR_CODE0) " \n" "pushl %[new_eip] \n" // save the entry eip to the stack "movl %%esp, %%ebx \n" "addl $20, %%ebx \n" // calculate pointer to TrapFrame "pushl %%ebx \n" "cld \n" "pushl %[cpu] \n" // push argument for init_finished before register is clobbered "call pre_init_finished \n" "call init_finished \n" "addl $4, %%esp \n" "call post_init_finished \n" "call enter_trap_no_irq \n" "addl $4, %%esp \n" "lret \n" :: [new_esp] "g" (tss.esp), [new_eip] "a" (tss.eip), [from_to_thread] "b" (&initial_thread), [cpu] "c" (id()) ); // clang-format on #endif VERIFY_NOT_REACHED(); } void Processor::enter_trap(TrapFrame& trap, bool raise_irq) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(&Processor::current() == this); trap.prev_irq_level = m_in_irq; if (raise_irq) m_in_irq++; auto* current_thread = Processor::current_thread(); if (current_thread) { auto& current_trap = current_thread->current_trap(); trap.next_trap = current_trap; current_trap = &trap; // The cs register of this trap tells us where we will return back to current_thread->set_previous_mode(((trap.regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode); } else { trap.next_trap = nullptr; } } void Processor::exit_trap(TrapFrame& trap) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(&Processor::current() == this); VERIFY(m_in_irq >= trap.prev_irq_level); m_in_irq = trap.prev_irq_level; smp_process_pending_messages(); if (!m_in_irq && !m_in_critical) check_invoke_scheduler(); auto* current_thread = Processor::current_thread(); if (current_thread) { auto& current_trap = current_thread->current_trap(); current_trap = trap.next_trap; if (current_trap) { VERIFY(current_trap->regs); // If we have another higher level trap then we probably returned // from an interrupt or irq handler. The cs register of the // new/higher level trap tells us what the mode prior to it was current_thread->set_previous_mode(((current_trap->regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode); } else { // If we don't have a higher level trap then we're back in user mode. // Unless we're a kernel process, in which case we're always in kernel mode current_thread->set_previous_mode(current_thread->process().is_kernel_process() ? Thread::PreviousMode::KernelMode : Thread::PreviousMode::UserMode); } } } void Processor::check_invoke_scheduler() { VERIFY(!m_in_irq); VERIFY(!m_in_critical); if (m_invoke_scheduler_async && m_scheduler_initialized) { m_invoke_scheduler_async = false; Scheduler::invoke_async(); } } void Processor::flush_tlb_local(VirtualAddress vaddr, size_t page_count) { auto ptr = vaddr.as_ptr(); while (page_count > 0) { // clang-format off asm volatile("invlpg %0" : : "m"(*ptr) : "memory"); // clang-format on ptr += PAGE_SIZE; page_count--; } } void Processor::flush_tlb(const PageDirectory* page_directory, VirtualAddress vaddr, size_t page_count) { if (s_smp_enabled && (!is_user_address(vaddr) || Process::current()->thread_count() > 1)) smp_broadcast_flush_tlb(page_directory, vaddr, page_count); else flush_tlb_local(vaddr, page_count); } static volatile ProcessorMessage* s_message_pool; void Processor::smp_return_to_pool(ProcessorMessage& msg) { ProcessorMessage* next = nullptr; do { msg.next = next; } while (!atomic_compare_exchange_strong(&s_message_pool, next, &msg, AK::MemoryOrder::memory_order_acq_rel)); } ProcessorMessage& Processor::smp_get_from_pool() { ProcessorMessage* msg; // The assumption is that messages are never removed from the pool! for (;;) { msg = atomic_load(&s_message_pool, AK::MemoryOrder::memory_order_consume); if (!msg) { if (!Processor::current().smp_process_pending_messages()) { // TODO: pause for a bit? } continue; } // If another processor were to use this message in the meanwhile, // "msg" is still valid (because it never gets freed). We'd detect // this because the expected value "msg" and pool would // no longer match, and the compare_exchange will fail. But accessing // "msg->next" is always safe here. if (atomic_compare_exchange_strong(&s_message_pool, msg, msg->next, AK::MemoryOrder::memory_order_acq_rel)) { // We successfully "popped" this available message break; } } VERIFY(msg != nullptr); return *msg; } Atomic Processor::s_idle_cpu_mask { 0 }; u32 Processor::smp_wake_n_idle_processors(u32 wake_count) { VERIFY(Processor::current().in_critical()); VERIFY(wake_count > 0); if (!s_smp_enabled) return 0; // Wake at most N - 1 processors if (wake_count >= Processor::count()) { wake_count = Processor::count() - 1; VERIFY(wake_count > 0); } u32 current_id = Processor::current().id(); u32 did_wake_count = 0; auto& apic = APIC::the(); while (did_wake_count < wake_count) { // Try to get a set of idle CPUs and flip them to busy u32 idle_mask = s_idle_cpu_mask.load(AK::MemoryOrder::memory_order_relaxed) & ~(1u << current_id); u32 idle_count = __builtin_popcountl(idle_mask); if (idle_count == 0) break; // No (more) idle processor available u32 found_mask = 0; for (u32 i = 0; i < idle_count; i++) { u32 cpu = __builtin_ffsl(idle_mask) - 1; idle_mask &= ~(1u << cpu); found_mask |= 1u << cpu; } idle_mask = s_idle_cpu_mask.fetch_and(~found_mask, AK::MemoryOrder::memory_order_acq_rel) & found_mask; if (idle_mask == 0) continue; // All of them were flipped to busy, try again idle_count = __builtin_popcountl(idle_mask); for (u32 i = 0; i < idle_count; i++) { u32 cpu = __builtin_ffsl(idle_mask) - 1; idle_mask &= ~(1u << cpu); // Send an IPI to that CPU to wake it up. There is a possibility // someone else woke it up as well, or that it woke up due to // a timer interrupt. But we tried hard to avoid this... apic.send_ipi(cpu); did_wake_count++; } } return did_wake_count; } UNMAP_AFTER_INIT void Processor::smp_enable() { size_t msg_pool_size = Processor::count() * 100u; size_t msg_entries_cnt = Processor::count(); auto msgs = new ProcessorMessage[msg_pool_size]; auto msg_entries = new ProcessorMessageEntry[msg_pool_size * msg_entries_cnt]; size_t msg_entry_i = 0; for (size_t i = 0; i < msg_pool_size; i++, msg_entry_i += msg_entries_cnt) { auto& msg = msgs[i]; msg.next = i < msg_pool_size - 1 ? &msgs[i + 1] : nullptr; msg.per_proc_entries = &msg_entries[msg_entry_i]; for (size_t k = 0; k < msg_entries_cnt; k++) msg_entries[msg_entry_i + k].msg = &msg; } atomic_store(&s_message_pool, &msgs[0], AK::MemoryOrder::memory_order_release); // Start sending IPI messages s_smp_enabled = true; } void Processor::smp_cleanup_message(ProcessorMessage& msg) { switch (msg.type) { case ProcessorMessage::CallbackWithData: if (msg.callback_with_data.free) msg.callback_with_data.free(msg.callback_with_data.data); break; default: break; } } bool Processor::smp_process_pending_messages() { bool did_process = false; u32 prev_flags; enter_critical(prev_flags); if (auto pending_msgs = atomic_exchange(&m_message_queue, nullptr, AK::MemoryOrder::memory_order_acq_rel)) { // We pulled the stack of pending messages in LIFO order, so we need to reverse the list first auto reverse_list = [](ProcessorMessageEntry* list) -> ProcessorMessageEntry* { ProcessorMessageEntry* rev_list = nullptr; while (list) { auto next = list->next; list->next = rev_list; rev_list = list; list = next; } return rev_list; }; pending_msgs = reverse_list(pending_msgs); // now process in the right order ProcessorMessageEntry* next_msg; for (auto cur_msg = pending_msgs; cur_msg; cur_msg = next_msg) { next_msg = cur_msg->next; auto msg = cur_msg->msg; dbgln_if(SMP_DEBUG, "SMP[{}]: Processing message {}", id(), VirtualAddress(msg)); switch (msg->type) { case ProcessorMessage::Callback: msg->callback.handler(); break; case ProcessorMessage::CallbackWithData: msg->callback_with_data.handler(msg->callback_with_data.data); break; case ProcessorMessage::FlushTlb: if (is_user_address(VirtualAddress(msg->flush_tlb.ptr))) { // We assume that we don't cross into kernel land! VERIFY(is_user_range(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count * PAGE_SIZE)); if (read_cr3() != msg->flush_tlb.page_directory->cr3()) { // This processor isn't using this page directory right now, we can ignore this request dbgln_if(SMP_DEBUG, "SMP[{}]: No need to flush {} pages at {}", id(), msg->flush_tlb.page_count, VirtualAddress(msg->flush_tlb.ptr)); break; } } flush_tlb_local(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count); break; } bool is_async = msg->async; // Need to cache this value *before* dropping the ref count! auto prev_refs = atomic_fetch_sub(&msg->refs, 1u, AK::MemoryOrder::memory_order_acq_rel); VERIFY(prev_refs != 0); if (prev_refs == 1) { // All processors handled this. If this is an async message, // we need to clean it up and return it to the pool if (is_async) { smp_cleanup_message(*msg); smp_return_to_pool(*msg); } } if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed)) halt_this(); } did_process = true; } else if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed)) { halt_this(); } leave_critical(prev_flags); return did_process; } bool Processor::smp_queue_message(ProcessorMessage& msg) { // Note that it's quite possible that the other processor may pop // the queue at any given time. We rely on the fact that the messages // are pooled and never get freed! auto& msg_entry = msg.per_proc_entries[id()]; VERIFY(msg_entry.msg == &msg); ProcessorMessageEntry* next = nullptr; do { msg_entry.next = next; } while (!atomic_compare_exchange_strong(&m_message_queue, next, &msg_entry, AK::MemoryOrder::memory_order_acq_rel)); return next == nullptr; } void Processor::smp_broadcast_message(ProcessorMessage& msg) { auto& cur_proc = Processor::current(); dbgln_if(SMP_DEBUG, "SMP[{}]: Broadcast message {} to cpus: {} proc: {}", cur_proc.get_id(), VirtualAddress(&msg), count(), VirtualAddress(&cur_proc)); atomic_store(&msg.refs, count() - 1, AK::MemoryOrder::memory_order_release); VERIFY(msg.refs > 0); bool need_broadcast = false; for_each( [&](Processor& proc) -> IterationDecision { if (&proc != &cur_proc) { if (proc.smp_queue_message(msg)) need_broadcast = true; } return IterationDecision::Continue; }); // Now trigger an IPI on all other APs (unless all targets already had messages queued) if (need_broadcast) APIC::the().broadcast_ipi(); } void Processor::smp_broadcast_wait_sync(ProcessorMessage& msg) { auto& cur_proc = Processor::current(); VERIFY(!msg.async); // If synchronous then we must cleanup and return the message back // to the pool. Otherwise, the last processor to complete it will return it while (atomic_load(&msg.refs, AK::MemoryOrder::memory_order_consume) != 0) { // TODO: pause for a bit? // We need to process any messages that may have been sent to // us while we're waiting. This also checks if another processor // may have requested us to halt. cur_proc.smp_process_pending_messages(); } smp_cleanup_message(msg); smp_return_to_pool(msg); } void Processor::smp_broadcast(void (*callback)(void*), void* data, void (*free_data)(void*), bool async) { auto& msg = smp_get_from_pool(); msg.async = async; msg.type = ProcessorMessage::CallbackWithData; msg.callback_with_data.handler = callback; msg.callback_with_data.data = data; msg.callback_with_data.free = free_data; smp_broadcast_message(msg); if (!async) smp_broadcast_wait_sync(msg); } void Processor::smp_broadcast(void (*callback)(), bool async) { auto& msg = smp_get_from_pool(); msg.async = async; msg.type = ProcessorMessage::CallbackWithData; msg.callback.handler = callback; smp_broadcast_message(msg); if (!async) smp_broadcast_wait_sync(msg); } void Processor::smp_unicast_message(u32 cpu, ProcessorMessage& msg, bool async) { auto& cur_proc = Processor::current(); VERIFY(cpu != cur_proc.get_id()); auto& target_proc = processors()[cpu]; msg.async = async; dbgln_if(SMP_DEBUG, "SMP[{}]: Send message {} to cpu #{} proc: {}", cur_proc.get_id(), VirtualAddress(&msg), cpu, VirtualAddress(&target_proc)); atomic_store(&msg.refs, 1u, AK::MemoryOrder::memory_order_release); if (target_proc->smp_queue_message(msg)) { APIC::the().send_ipi(cpu); } if (!async) { // If synchronous then we must cleanup and return the message back // to the pool. Otherwise, the last processor to complete it will return it while (atomic_load(&msg.refs, AK::MemoryOrder::memory_order_consume) != 0) { // TODO: pause for a bit? // We need to process any messages that may have been sent to // us while we're waiting. This also checks if another processor // may have requested us to halt. cur_proc.smp_process_pending_messages(); } smp_cleanup_message(msg); smp_return_to_pool(msg); } } void Processor::smp_unicast(u32 cpu, void (*callback)(void*), void* data, void (*free_data)(void*), bool async) { auto& msg = smp_get_from_pool(); msg.type = ProcessorMessage::CallbackWithData; msg.callback_with_data.handler = callback; msg.callback_with_data.data = data; msg.callback_with_data.free = free_data; smp_unicast_message(cpu, msg, async); } void Processor::smp_unicast(u32 cpu, void (*callback)(), bool async) { auto& msg = smp_get_from_pool(); msg.type = ProcessorMessage::CallbackWithData; msg.callback.handler = callback; smp_unicast_message(cpu, msg, async); } void Processor::smp_broadcast_flush_tlb(const PageDirectory* page_directory, VirtualAddress vaddr, size_t page_count) { auto& msg = smp_get_from_pool(); msg.async = false; msg.type = ProcessorMessage::FlushTlb; msg.flush_tlb.page_directory = page_directory; msg.flush_tlb.ptr = vaddr.as_ptr(); msg.flush_tlb.page_count = page_count; smp_broadcast_message(msg); // While the other processors handle this request, we'll flush ours flush_tlb_local(vaddr, page_count); // Now wait until everybody is done as well smp_broadcast_wait_sync(msg); } void Processor::smp_broadcast_halt() { // We don't want to use a message, because this could have been triggered // by being out of memory and we might not be able to get a message for_each( [&](Processor& proc) -> IterationDecision { proc.m_halt_requested.store(true, AK::MemoryOrder::memory_order_release); return IterationDecision::Continue; }); // Now trigger an IPI on all other APs APIC::the().broadcast_ipi(); } void Processor::Processor::halt() { if (s_smp_enabled) smp_broadcast_halt(); halt_this(); } UNMAP_AFTER_INIT void Processor::deferred_call_pool_init() { size_t pool_count = sizeof(m_deferred_call_pool) / sizeof(m_deferred_call_pool[0]); for (size_t i = 0; i < pool_count; i++) { auto& entry = m_deferred_call_pool[i]; entry.next = i < pool_count - 1 ? &m_deferred_call_pool[i + 1] : nullptr; entry.was_allocated = false; } m_pending_deferred_calls = nullptr; m_free_deferred_call_pool_entry = &m_deferred_call_pool[0]; } void Processor::deferred_call_return_to_pool(DeferredCallEntry* entry) { VERIFY(m_in_critical); VERIFY(!entry->was_allocated); entry->next = m_free_deferred_call_pool_entry; m_free_deferred_call_pool_entry = entry; } DeferredCallEntry* Processor::deferred_call_get_free() { VERIFY(m_in_critical); if (m_free_deferred_call_pool_entry) { // Fast path, we have an entry in our pool auto* entry = m_free_deferred_call_pool_entry; m_free_deferred_call_pool_entry = entry->next; VERIFY(!entry->was_allocated); return entry; } auto* entry = new DeferredCallEntry; entry->was_allocated = true; return entry; } void Processor::deferred_call_execute_pending() { VERIFY(m_in_critical); if (!m_pending_deferred_calls) return; auto* pending_list = m_pending_deferred_calls; m_pending_deferred_calls = nullptr; // We pulled the stack of pending deferred calls in LIFO order, so we need to reverse the list first auto reverse_list = [](DeferredCallEntry* list) -> DeferredCallEntry* { DeferredCallEntry* rev_list = nullptr; while (list) { auto next = list->next; list->next = rev_list; rev_list = list; list = next; } return rev_list; }; pending_list = reverse_list(pending_list); do { // Call the appropriate callback handler if (pending_list->have_data) { pending_list->callback_with_data.handler(pending_list->callback_with_data.data); if (pending_list->callback_with_data.free) pending_list->callback_with_data.free(pending_list->callback_with_data.data); } else { pending_list->callback.handler(); } // Return the entry back to the pool, or free it auto* next = pending_list->next; if (pending_list->was_allocated) delete pending_list; else deferred_call_return_to_pool(pending_list); pending_list = next; } while (pending_list); } void Processor::deferred_call_queue_entry(DeferredCallEntry* entry) { VERIFY(m_in_critical); entry->next = m_pending_deferred_calls; m_pending_deferred_calls = entry; } void Processor::deferred_call_queue(void (*callback)()) { // NOTE: If we are called outside of a critical section and outside // of an irq handler, the function will be executed before we return! ScopedCritical critical; auto& cur_proc = Processor::current(); auto* entry = cur_proc.deferred_call_get_free(); entry->have_data = false; entry->callback.handler = callback; cur_proc.deferred_call_queue_entry(entry); } void Processor::deferred_call_queue(void (*callback)(void*), void* data, void (*free_data)(void*)) { // NOTE: If we are called outside of a critical section and outside // of an irq handler, the function will be executed before we return! ScopedCritical critical; auto& cur_proc = Processor::current(); auto* entry = cur_proc.deferred_call_get_free(); entry->have_data = true; entry->callback_with_data.handler = callback; entry->callback_with_data.data = data; entry->callback_with_data.free = free_data; cur_proc.deferred_call_queue_entry(entry); } UNMAP_AFTER_INIT void Processor::gdt_init() { m_gdt_length = 0; m_gdtr.address = nullptr; m_gdtr.limit = 0; write_raw_gdt_entry(0x0000, 0x00000000, 0x00000000); write_raw_gdt_entry(GDT_SELECTOR_CODE0, 0x0000ffff, 0x00cf9a00); // code0 write_raw_gdt_entry(GDT_SELECTOR_DATA0, 0x0000ffff, 0x00cf9200); // data0 write_raw_gdt_entry(GDT_SELECTOR_CODE3, 0x0000ffff, 0x00cffa00); // code3 write_raw_gdt_entry(GDT_SELECTOR_DATA3, 0x0000ffff, 0x00cff200); // data3 Descriptor tls_descriptor {}; tls_descriptor.low = tls_descriptor.high = 0; tls_descriptor.dpl = 3; tls_descriptor.segment_present = 1; tls_descriptor.granularity = 0; tls_descriptor.operation_size64 = 0; tls_descriptor.operation_size32 = 1; tls_descriptor.descriptor_type = 1; tls_descriptor.type = 2; write_gdt_entry(GDT_SELECTOR_TLS, tls_descriptor); // tls3 Descriptor fs_descriptor {}; fs_descriptor.set_base(VirtualAddress { this }); fs_descriptor.set_limit(sizeof(Processor)); fs_descriptor.dpl = 0; fs_descriptor.segment_present = 1; fs_descriptor.granularity = 0; fs_descriptor.operation_size64 = 0; fs_descriptor.operation_size32 = 1; fs_descriptor.descriptor_type = 1; fs_descriptor.type = 2; write_gdt_entry(GDT_SELECTOR_PROC, fs_descriptor); // fs0 Descriptor tss_descriptor {}; tss_descriptor.set_base(VirtualAddress { &m_tss }); tss_descriptor.set_limit(sizeof(TSS32)); tss_descriptor.dpl = 0; tss_descriptor.segment_present = 1; tss_descriptor.granularity = 0; tss_descriptor.operation_size64 = 0; tss_descriptor.operation_size32 = 1; tss_descriptor.descriptor_type = 0; tss_descriptor.type = 9; write_gdt_entry(GDT_SELECTOR_TSS, tss_descriptor); // tss flush_gdt(); load_task_register(GDT_SELECTOR_TSS); asm volatile( "mov %%ax, %%ds\n" "mov %%ax, %%es\n" "mov %%ax, %%gs\n" "mov %%ax, %%ss\n" ::"a"(GDT_SELECTOR_DATA0) : "memory"); set_fs(GDT_SELECTOR_PROC); #if ARCH(I386) // Make sure CS points to the kernel code descriptor. // clang-format off asm volatile( "ljmpl $" __STRINGIFY(GDT_SELECTOR_CODE0) ", $sanity\n" "sanity:\n"); // clang-format on #endif } void copy_kernel_registers_into_ptrace_registers(PtraceRegisters& ptrace_regs, const RegisterState& kernel_regs) { ptrace_regs.eax = kernel_regs.eax, ptrace_regs.ecx = kernel_regs.ecx, ptrace_regs.edx = kernel_regs.edx, ptrace_regs.ebx = kernel_regs.ebx, ptrace_regs.esp = kernel_regs.userspace_esp, ptrace_regs.ebp = kernel_regs.ebp, ptrace_regs.esi = kernel_regs.esi, ptrace_regs.edi = kernel_regs.edi, ptrace_regs.eip = kernel_regs.eip, ptrace_regs.eflags = kernel_regs.eflags, ptrace_regs.cs = 0; ptrace_regs.ss = 0; ptrace_regs.ds = 0; ptrace_regs.es = 0; ptrace_regs.fs = 0; ptrace_regs.gs = 0; } void copy_ptrace_registers_into_kernel_registers(RegisterState& kernel_regs, const PtraceRegisters& ptrace_regs) { kernel_regs.eax = ptrace_regs.eax; kernel_regs.ecx = ptrace_regs.ecx; kernel_regs.edx = ptrace_regs.edx; kernel_regs.ebx = ptrace_regs.ebx; kernel_regs.esp = ptrace_regs.esp; kernel_regs.ebp = ptrace_regs.ebp; kernel_regs.esi = ptrace_regs.esi; kernel_regs.edi = ptrace_regs.edi; kernel_regs.eip = ptrace_regs.eip; kernel_regs.eflags = (kernel_regs.eflags & ~safe_eflags_mask) | (ptrace_regs.eflags & safe_eflags_mask); } } #ifdef DEBUG void __assertion_failed(const char* msg, const char* file, unsigned line, const char* func) { asm volatile("cli"); dmesgln("ASSERTION FAILED: {}", msg); dmesgln("{}:{} in {}", file, line, func); abort(); } #endif [[noreturn]] void abort() { #ifdef DEBUG // Switch back to the current process's page tables if there are any. // Otherwise stack walking will be a disaster. auto process = Process::current(); if (process) MM.enter_process_paging_scope(*process); Kernel::dump_backtrace(); Processor::halt(); #endif abort(); } [[noreturn]] void _abort() { asm volatile("ud2"); __builtin_unreachable(); } NonMaskableInterruptDisabler::NonMaskableInterruptDisabler() { IO::out8(0x70, IO::in8(0x70) | 0x80); } NonMaskableInterruptDisabler::~NonMaskableInterruptDisabler() { IO::out8(0x70, IO::in8(0x70) & 0x7F); }