#include #include #include #include #include #include #define IRQ_APIC_SPURIOUS 0x1f #define APIC_BASE_MSR 0x1b #define APIC_REG_LD 0xd0 #define APIC_REG_DF 0xe0 #define APIC_REG_SIV 0xf0 #define APIC_REG_ICR_LOW 0x300 #define APIC_REG_ICR_HIGH 0x310 #define APIC_REG_LVT_TIMER 0x320 #define APIC_REG_LVT_THERMAL 0x330 #define APIC_REG_LVT_PERFORMANCE_COUNTER 0x340 #define APIC_REG_LVT_LINT0 0x350 #define APIC_REG_LVT_LINT1 0x360 #define APIC_REG_LVT_ERR 0x370 extern "C" void apic_spurious_interrupt_entry(); asm( ".globl apic_spurious_interrupt_entry \n" "apic_spurious_interrupt_entry: \n" " iret\n"); namespace APIC { class ICRReg { u32 m_reg{0}; public: enum DeliveryMode { Fixed = 0x0, LowPriority = 0x1, SMI = 0x2, NMI = 0x4, INIT = 0x5, StartUp = 0x6, }; enum DestinationMode { Physical = 0x0, Logical = 0x0, }; enum Level { DeAssert = 0x0, Assert = 0x1 }; enum class TriggerMode { Edge = 0x0, Level = 0x1, }; enum DestinationShorthand { NoShorthand = 0x0, Self = 0x1, AllIncludingSelf = 0x2, AllExcludingSelf = 0x3, }; ICRReg(u8 vector, DeliveryMode delivery_mode, DestinationMode destination_mode, Level level, TriggerMode trigger_mode, DestinationShorthand destination): m_reg(vector | (delivery_mode << 8) | (destination_mode << 11) | (level << 14) | (static_cast(trigger_mode) << 15) | (destination << 18)) { } u32 low() const { return m_reg; } u32 high() const { return 0; } }; static volatile u8* g_apic_base = nullptr; static PhysicalAddress get_base() { u32 lo, hi; MSR msr(APIC_BASE_MSR); msr.get(lo, hi); return PhysicalAddress(lo & 0xfffff000); } static void set_base(const PhysicalAddress& base) { u32 hi = 0; u32 lo = base.get() | 0x800; MSR msr(APIC_BASE_MSR); msr.set(lo, hi); } static u32 apic_read(u32 off) { return *(volatile u32*)(&g_apic_base[off]); } static void apic_write(u32 off, u32 val) { *reinterpret_cast(&g_apic_base[off]) = val; } static void apic_write_icr(const ICRReg& icr) { apic_write(APIC_REG_ICR_HIGH, icr.high()); apic_write(APIC_REG_ICR_LOW, icr.low()); } #define APIC_LVT_MASKED (1 << 15) #define APIC_LVT_TRIGGER_LEVEL (1 << 14) #define APIC_LVT(iv, dm) ((iv & 0xff) | ((dm & 0x7) << 8)) asm( ".globl apic_ap_start \n" ".type apic_ap_start, @function \n" "apic_ap_start: \n" ".set begin_apic_ap_start, . \n" " jmp apic_ap_start\n" // TODO: implement ".set end_apic_ap_start, . \n" "\n" ".globl apic_ap_start_size \n" "apic_ap_start_size: \n" ".word end_apic_ap_start - begin_apic_ap_start \n"); extern "C" void apic_ap_start(void); extern "C" u16 apic_ap_start_size; bool init() { if (!MSR::have()) return false; // check if we support local apic CPUID id(1); if ((id.edx() & (1 << 9)) == 0) return false; PhysicalAddress apic_base = get_base(); kprintf("Initializing APIC, base: P%x\n", apic_base); set_base(apic_base); MM.map_for_kernel(VirtualAddress(apic_base.get()), apic_base, true); // Map memory, disable cache! g_apic_base = apic_base.as_ptr(); // copy ap init code to P8000 MM.map_for_kernel(VirtualAddress(0x8000), PhysicalAddress(0x8000)); memcpy(reinterpret_cast(0x8000), reinterpret_cast(apic_ap_start), apic_ap_start_size); return true; } void enable(u32 cpu) { kprintf("Enabling local APIC for cpu #%u\n", cpu); // set spurious interrupt vector apic_write(APIC_REG_SIV, apic_read(APIC_REG_SIV) | 0x100); // local destination mode (flat mode) apic_write(APIC_REG_DF, 0xf000000); // set destination id (note that this limits it to 8 cpus) apic_write(APIC_REG_LD, (1 << cpu) << 24); register_interrupt_handler(IRQ_APIC_SPURIOUS, apic_spurious_interrupt_entry); apic_write(APIC_REG_LVT_TIMER, APIC_LVT(0xff, 0) | APIC_LVT_MASKED); apic_write(APIC_REG_LVT_THERMAL, APIC_LVT(0xff, 0) | APIC_LVT_MASKED); apic_write(APIC_REG_LVT_PERFORMANCE_COUNTER, APIC_LVT(0xff, 0) | APIC_LVT_MASKED); apic_write(APIC_REG_LVT_LINT0, APIC_LVT(0x1f, 7) | APIC_LVT_MASKED); apic_write(APIC_REG_LVT_LINT1, APIC_LVT(0xff, 4) | APIC_LVT_TRIGGER_LEVEL); // nmi apic_write(APIC_REG_LVT_ERR, APIC_LVT(0xe3, 0) | APIC_LVT_MASKED); if (cpu == 0) { static volatile u32 foo = 0; // INIT apic_write_icr(ICRReg(0, ICRReg::INIT, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf)); for (foo = 0; foo < 0x800000; foo++); // TODO: 10 millisecond delay for (int i = 0; i < 2; i++) { // SIPI apic_write_icr(ICRReg(0x08, ICRReg::StartUp, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf)); // start execution at P8000 for (foo = 0; foo < 0x80000; foo++); // TODO: 200 microsecond delay } } } }