/* * Copyright (c) 2020, Liav A. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include //#define MULTIPROCESSOR_DEBUG namespace Kernel { static MultiProcessorParser* s_parser; bool MultiProcessorParser::is_initialized() { return s_parser != nullptr; } void MultiProcessorParser::initialize() { ASSERT(!is_initialized()); s_parser = new MultiProcessorParser; } MultiProcessorParser::MultiProcessorParser() : m_floating_pointer(search_floating_pointer()) , m_operable((m_floating_pointer != (FlatPtr) nullptr)) { if (m_floating_pointer != (FlatPtr) nullptr) { klog() << "MultiProcessor: Floating Pointer Structure @ " << PhysicalAddress(m_floating_pointer); parse_floating_pointer_data(); parse_configuration_table(); } else { klog() << "MultiProcessor: Can't Locate Floating Pointer Structure, disabled."; } } void MultiProcessorParser::parse_floating_pointer_data() { auto floating_pointer_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)m_floating_pointer)), PAGE_SIZE * 2, "MultiProcessor Parser Parsing Floating Pointer Structure", Region::Access::Read, false, true); auto* floating_pointer = (MultiProcessor::FloatingPointer*)floating_pointer_region->vaddr().offset(offset_in_page((u32)m_floating_pointer)).as_ptr(); m_configuration_table = floating_pointer->physical_address_ptr; m_specification_revision = floating_pointer->specification_revision; dbg() << "Features " << floating_pointer->feature_info[0] << ", IMCR? " << (floating_pointer->feature_info[0] & (1 << 7)); } size_t MultiProcessorParser::get_configuration_table_length() { auto config_table_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)m_configuration_table)), PAGE_SIZE * 2, "MultiProcessor Parser Getting Configuration Table length", Region::Access::Read, false, true); auto* config_table = (MultiProcessor::ConfigurationTableHeader*)config_table_region->vaddr().offset(offset_in_page((u32)m_configuration_table)).as_ptr(); return config_table->length; } void MultiProcessorParser::parse_configuration_table() { m_configuration_table_length = get_configuration_table_length(); auto config_table_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)m_configuration_table)), PAGE_ROUND_UP(m_configuration_table_length), "MultiProcessor Parser Parsing Configuration Table", Region::Access::Read, false, true); auto* config_table = (MultiProcessor::ConfigurationTableHeader*)config_table_region->vaddr().offset(offset_in_page((u32)m_configuration_table)).as_ptr(); size_t entry_count = config_table->entry_count; auto* entry = config_table->entries; auto* p_entry = reinterpret_cast(m_configuration_table)->entries; while (entry_count > 0) { #ifdef MULTIPROCESSOR_DEBUG dbg() << "MultiProcessor: Entry Type " << entry->entry_type << " detected."; #endif switch (entry->entry_type) { case ((u8)MultiProcessor::ConfigurationTableEntryType::Processor): entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Processor; p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Processor; break; case ((u8)MultiProcessor::ConfigurationTableEntryType::Bus): m_bus_entries.append((FlatPtr)p_entry); entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Bus; p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Bus; break; case ((u8)MultiProcessor::ConfigurationTableEntryType::IOAPIC): entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::IOAPIC; p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::IOAPIC; break; case ((u8)MultiProcessor::ConfigurationTableEntryType::IO_Interrupt_Assignment): m_io_interrupt_redirection_entries.append((FlatPtr)p_entry); entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::IO_Interrupt_Assignment; p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::IO_Interrupt_Assignment; break; case ((u8)MultiProcessor::ConfigurationTableEntryType::Local_Interrupt_Assignment): entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Local_Interrupt_Assignment; p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Local_Interrupt_Assignment; break; case ((u8)MultiProcessor::ConfigurationTableEntryType::SystemAddressSpaceMapping): entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::SystemAddressSpaceMapping; p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::SystemAddressSpaceMapping; break; case ((u8)MultiProcessor::ConfigurationTableEntryType::BusHierarchyDescriptor): entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::BusHierarchyDescriptor; p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::BusHierarchyDescriptor; break; case ((u8)MultiProcessor::ConfigurationTableEntryType::CompatibilityBusAddressSpaceModifier): entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::CompatibilityBusAddressSpaceModifier; p_entry = (MultiProcessor::EntryHeader*)(u32)p_entry + (u8)MultiProcessor::ConfigurationTableEntryLength::CompatibilityBusAddressSpaceModifier; break; ASSERT_NOT_REACHED(); } entry_count--; } } FlatPtr MultiProcessorParser::search_floating_pointer() { FlatPtr mp_floating_pointer = (FlatPtr) nullptr; auto region = MM.allocate_kernel_region(PhysicalAddress(0), PAGE_SIZE, "MultiProcessor Parser Floating Pointer Structure Finding", Region::Access::Read); u16 ebda_seg = (u16) * ((uint16_t*)((region->vaddr().get() & PAGE_MASK) + 0x40e)); klog() << "MultiProcessor: Probing EBDA, Segment 0x" << String::format("%x", ebda_seg); mp_floating_pointer = search_floating_pointer_in_ebda(ebda_seg); if (mp_floating_pointer != (FlatPtr) nullptr) return mp_floating_pointer; return search_floating_pointer_in_bios_area(); } FlatPtr MultiProcessorParser::search_floating_pointer_in_ebda(u16 ebda_segment) { auto floating_pointer_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)(ebda_segment << 4))), PAGE_ROUND_UP(1024), "MultiProcessor Parser floating_pointer Finding #1", Region::Access::Read, false, true); char* p_floating_pointer_str = (char*)(PhysicalAddress(ebda_segment << 4).as_ptr()); for (char* floating_pointer_str = (char*)floating_pointer_region->vaddr().offset(offset_in_page((u32)(ebda_segment << 4))).as_ptr(); floating_pointer_str < (char*)(floating_pointer_region->vaddr().offset(offset_in_page((u32)(ebda_segment << 4))).get() + 1024); floating_pointer_str += 16) { #ifdef MULTIPROCESSOR_DEBUG dbg() << "MultiProcessor: Looking for floating pointer structure in EBDA @ V0x " << String::format("%x", floating_pointer_str) << ", P0x" << String::format("%x", p_floating_pointer_str); #endif if (!strncmp("_MP_", floating_pointer_str, strlen("_MP_"))) return (FlatPtr)p_floating_pointer_str; p_floating_pointer_str += 16; } return (FlatPtr) nullptr; } FlatPtr MultiProcessorParser::search_floating_pointer_in_bios_area() { auto floating_pointer_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)0xE0000)), PAGE_ROUND_UP(0xFFFFF - 0xE0000), "MultiProcessor Parser floating_pointer Finding #2", Region::Access::Read, false, true); char* p_floating_pointer_str = (char*)(PhysicalAddress(0xE0000).as_ptr()); for (char* floating_pointer_str = (char*)floating_pointer_region->vaddr().offset(offset_in_page((u32)(0xE0000))).as_ptr(); floating_pointer_str < (char*)(floating_pointer_region->vaddr().offset(offset_in_page((u32)(0xE0000))).get() + (0xFFFFF - 0xE0000)); floating_pointer_str += 16) { #ifdef MULTIPROCESSOR_DEBUG dbg() << "MultiProcessor: Looking for floating pointer structure in BIOS area @ V0x " << String::format("%x", floating_pointer_str) << ", P0x" << String::format("%x", p_floating_pointer_str); #endif if (!strncmp("_MP_", floating_pointer_str, strlen("_MP_"))) return (FlatPtr)p_floating_pointer_str; p_floating_pointer_str += 16; } return (FlatPtr) nullptr; } Vector MultiProcessorParser::get_pci_bus_ids() { Vector pci_bus_ids; for (auto entry : m_bus_entries) { auto entry_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)entry)), PAGE_ROUND_UP(m_configuration_table_length), "MultiProcessor Parser Parsing Bus Entry", Region::Access::Read, false, true); auto* v_entry_ptr = (MultiProcessor::BusEntry*)entry_region->vaddr().offset(offset_in_page((u32)entry)).as_ptr(); if (!strncmp("PCI ", v_entry_ptr->bus_type, strlen("PCI "))) pci_bus_ids.append(v_entry_ptr->bus_id); } return pci_bus_ids; } MultiProcessorParser& MultiProcessorParser::the() { ASSERT(is_initialized()); return *s_parser; } Vector MultiProcessorParser::get_pci_interrupt_redirections() { dbg() << "MultiProcessor: Get PCI IOAPIC redirections"; Vector overrides; Vector pci_bus_ids = get_pci_bus_ids(); for (auto entry : m_io_interrupt_redirection_entries) { auto entry_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)entry)), PAGE_ROUND_UP(m_configuration_table_length), "MultiProcessor Parser Parsing Bus Entry", Region::Access::Read, false, true); auto* v_entry_ptr = (MultiProcessor::IOInterruptAssignmentEntry*)entry_region->vaddr().offset(offset_in_page((u32)entry)).as_ptr(); #ifdef MULTIPROCESSOR_DEBUG dbg() << "MultiProcessor: Parsing Entry P 0x" << String::format("%x", entry) << ", V " << v_entry_ptr; #endif for (auto id : pci_bus_ids) { if (id == v_entry_ptr->source_bus_id) { klog() << "Interrupts: Bus " << v_entry_ptr->source_bus_id << ", Polarity " << v_entry_ptr->polarity << ", Trigger Mode " << v_entry_ptr->trigger_mode << ", INT " << v_entry_ptr->source_bus_irq << ", IOAPIC " << v_entry_ptr->destination_ioapic_id << ", IOAPIC INTIN " << v_entry_ptr->destination_ioapic_intin_pin; overrides.empend( v_entry_ptr->source_bus_id, v_entry_ptr->polarity, v_entry_ptr->trigger_mode, v_entry_ptr->source_bus_irq, v_entry_ptr->destination_ioapic_id, v_entry_ptr->destination_ioapic_intin_pin); } } } for (auto& override_metadata : overrides) { klog() << "Interrupts: Bus " << override_metadata.bus() << ", Polarity " << override_metadata.polarity() << ", PCI Device " << override_metadata.pci_device_number() << ", Trigger Mode " << override_metadata.trigger_mode() << ", INT " << override_metadata.pci_interrupt_pin() << ", IOAPIC " << override_metadata.ioapic_id() << ", IOAPIC INTIN " << override_metadata.ioapic_interrupt_pin(); } return overrides; } PCIInterruptOverrideMetadata::PCIInterruptOverrideMetadata(u8 bus_id, u8 polarity, u8 trigger_mode, u8 source_irq, u32 ioapic_id, u16 ioapic_int_pin) : m_bus_id(bus_id) , m_polarity(polarity) , m_trigger_mode(trigger_mode) , m_pci_interrupt_pin(source_irq & 0b11) , m_pci_device_number((source_irq >> 2) & 0b11111) , m_ioapic_id(ioapic_id) , m_ioapic_interrupt_pin(ioapic_int_pin) { } }