/* * Copyright (c) 2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "Emulator.h" #include "MmapRegion.h" #include "SharedBufferRegion.h" #include "SimpleRegion.h" #include "SoftCPU.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__GNUC__) && !defined(__clang__) # pragma GCC optimize("O3") #endif // #define DEBUG_SPAM namespace UserspaceEmulator { static constexpr u32 stack_location = 0x10000000; static constexpr size_t stack_size = 64 * KiB; static Emulator* s_the; Emulator& Emulator::the() { ASSERT(s_the); return *s_the; } Emulator::Emulator(const String& executable_path, const Vector& arguments, const Vector& environment) : m_executable_path(executable_path) , m_arguments(arguments) , m_environment(environment) , m_mmu(*this) , m_cpu(*this) { m_malloc_tracer = make(*this); ASSERT(!s_the); s_the = this; // setup_stack(arguments, environment); register_signal_handlers(); setup_signal_trampoline(); } Vector Emulator::generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, String executable_path, int executable_fd) const { // FIXME: This is not fully compatible with the auxiliary vector the kernel generates, this is just the bare // minimum to get the loader going. Vector auxv; // PHDR/EXECFD // PH* auxv.append({ ELF::AuxiliaryValue::PageSize, PAGE_SIZE }); auxv.append({ ELF::AuxiliaryValue::BaseAddress, (void*)load_base }); auxv.append({ ELF::AuxiliaryValue::Entry, (void*)entry_eip }); // FIXME: Don't hard code this? We might support other platforms later.. (e.g. x86_64) auxv.append({ ELF::AuxiliaryValue::Platform, "i386" }); auxv.append({ ELF::AuxiliaryValue::ExecFilename, executable_path }); auxv.append({ ELF::AuxiliaryValue::ExecFileDescriptor, executable_fd }); auxv.append({ ELF::AuxiliaryValue::Null, 0L }); return auxv; } void Emulator::setup_stack(Vector aux_vector) { auto stack_region = make(stack_location, stack_size); stack_region->set_stack(true); m_mmu.add_region(move(stack_region)); m_cpu.set_esp(shadow_wrap_as_initialized(stack_location + stack_size)); Vector argv_entries; for (auto& argument : m_arguments) { m_cpu.push_string(argument.characters()); argv_entries.append(m_cpu.esp().value()); } Vector env_entries; for (auto& variable : m_environment) { m_cpu.push_string(variable.characters()); env_entries.append(m_cpu.esp().value()); } for (auto& auxv : aux_vector) { if (!auxv.optional_string.is_empty()) { m_cpu.push_string(auxv.optional_string.characters()); auxv.auxv.a_un.a_ptr = (void*)m_cpu.esp().value(); } } for (ssize_t i = aux_vector.size() - 1; i >= 0; --i) { auto& value = aux_vector[i].auxv; m_cpu.push_buffer((const u8*)&value, sizeof(value)); } m_cpu.push32(shadow_wrap_as_initialized(0)); // char** envp = { envv_entries..., nullptr } for (ssize_t i = env_entries.size() - 1; i >= 0; --i) m_cpu.push32(shadow_wrap_as_initialized(env_entries[i])); u32 envp = m_cpu.esp().value(); m_cpu.push32(shadow_wrap_as_initialized(0)); // char** argv = { argv_entries..., nullptr } for (ssize_t i = argv_entries.size() - 1; i >= 0; --i) m_cpu.push32(shadow_wrap_as_initialized(argv_entries[i])); u32 argv = m_cpu.esp().value(); m_cpu.push32(shadow_wrap_as_initialized(0)); // (alignment) u32 argc = argv_entries.size(); m_cpu.push32(shadow_wrap_as_initialized(envp)); m_cpu.push32(shadow_wrap_as_initialized(argv)); m_cpu.push32(shadow_wrap_as_initialized(argc)); m_cpu.push32(shadow_wrap_as_initialized(0)); // (alignment) } bool Emulator::load_elf() { MappedFile mapped_executable(m_executable_path); if (!mapped_executable.is_valid()) { reportln("Unable to map {}", m_executable_path); return false; } ELF::Image executable_elf((const u8*)mapped_executable.data(), mapped_executable.size()); if (!executable_elf.is_dynamic()) { // FIXME: Support static objects ASSERT_NOT_REACHED(); } String interpreter_path; if (!ELF::validate_program_headers(*(Elf32_Ehdr*)mapped_executable.data(), mapped_executable.size(), (u8*)mapped_executable.data(), mapped_executable.size(), &interpreter_path)) { reportln("failed to validate ELF file"); return false; } ASSERT(!interpreter_path.is_null()); dbgln("interpreter: {}", interpreter_path); auto interpreter_file = make(interpreter_path); ASSERT(interpreter_file->is_valid()); ELF::Image interpreter_image((const u8*)interpreter_file->data(), interpreter_file->size()); constexpr FlatPtr interpreter_load_offset = 0x08000000; interpreter_image.for_each_program_header([&](const ELF::Image::ProgramHeader& program_header) { // Loader is not allowed to have its own TLS regions ASSERT(program_header.type() != PT_TLS); if (program_header.type() == PT_LOAD) { auto region = make(program_header.vaddr().offset(interpreter_load_offset).get(), program_header.size_in_memory()); if (program_header.is_executable() && !program_header.is_writable()) region->set_text(true); memcpy(region->data(), program_header.raw_data(), program_header.size_in_image()); memset(region->shadow_data(), 0x01, program_header.size_in_memory()); if (program_header.is_executable()) { m_loader_text_base = region->base(); m_loader_text_size = region->size(); } mmu().add_region(move(region)); return IterationDecision::Continue; } return IterationDecision::Continue; }); auto entry_point = interpreter_image.entry().offset(interpreter_load_offset).get(); m_cpu.set_eip(entry_point); // executable_fd will be used by the loader int executable_fd = open(m_executable_path.characters(), O_RDONLY); if (executable_fd < 0) return false; auto aux_vector = generate_auxiliary_vector(interpreter_load_offset, entry_point, m_executable_path, executable_fd); setup_stack(move(aux_vector)); return true; } int Emulator::exec() { // X86::ELFSymbolProvider symbol_provider(*m_elf); X86::ELFSymbolProvider* symbol_provider = nullptr; bool trace = false; while (!m_shutdown) { m_cpu.save_base_eip(); auto insn = X86::Instruction::from_stream(m_cpu, true, true); if (trace) outln("{:p} \033[33;1m{}\033[0m", m_cpu.base_eip(), insn.to_string(m_cpu.base_eip(), symbol_provider)); (m_cpu.*insn.handler())(insn); if (trace) m_cpu.dump(); if (m_pending_signals) dispatch_one_pending_signal(); } if (auto* tracer = malloc_tracer()) tracer->dump_leak_report(); return m_exit_status; } Vector Emulator::raw_backtrace() { Vector backtrace; backtrace.append(m_cpu.base_eip()); // FIXME: Maybe do something if the backtrace has uninitialized data in the frame chain. u32 frame_ptr = m_cpu.ebp().value(); while (frame_ptr) { u32 ret_ptr = m_mmu.read32({ 0x20, frame_ptr + 4 }).value(); if (!ret_ptr) break; backtrace.append(ret_ptr); frame_ptr = m_mmu.read32({ 0x20, frame_ptr }).value(); } return backtrace; } const MmapRegion* Emulator::find_text_region(FlatPtr address) { const MmapRegion* matching_region = nullptr; mmu().for_each_region([&](auto& region) { if (!region.is_mmap()) return IterationDecision::Continue; const auto& mmap_region = static_cast(region); if (!(mmap_region.is_executable() && address >= mmap_region.base() && address < mmap_region.base() + mmap_region.size())) return IterationDecision::Continue; matching_region = &mmap_region; return IterationDecision::Break; }); return matching_region; } String Emulator::create_backtrace_line(FlatPtr address) { String minimal = String::format("=={%d}== %p", getpid(), address); const auto* region = find_text_region(address); if (!region) return minimal; auto separator_index = region->name().index_of(":"); if (!separator_index.has_value()) return minimal; String lib_name = region->name().substring(0, separator_index.value()); String lib_path = lib_name; if (region->name().contains(".so")) lib_path = String::formatted("/usr/lib/{}", lib_path); if (!m_dynamic_library_cache.contains(lib_path)) { MappedFile mapped_file { lib_path }; if (!mapped_file.is_valid()) return minimal; auto debug_info = make(make((const u8*)mapped_file.data(), mapped_file.size())); m_dynamic_library_cache.set(lib_path, CachedELF { move(mapped_file), move(debug_info) }); } auto it = m_dynamic_library_cache.find(lib_path); auto& elf = it->value.debug_info->elf(); String symbol = elf.symbolicate(address - region->base()); auto line_without_source_info = String::format("=={%d}== %p [%s]: %s", getpid(), address, lib_name.characters(), symbol.characters()); auto source_position = it->value.debug_info->get_source_position(address - region->base()); if (source_position.has_value()) return String::format("=={%d}== %p [%s]: %s (\033[34;1m%s\033[0m:%u)", getpid(), address, lib_name.characters(), symbol.characters(), LexicalPath(source_position.value().file_path).basename().characters(), source_position.value().line_number); return line_without_source_info; } void Emulator::dump_backtrace(const Vector& backtrace) { for (auto& address : backtrace) { reportln("{}", create_backtrace_line(address)); } } void Emulator::dump_backtrace() { dump_backtrace(raw_backtrace()); } u32 Emulator::virt_syscall(u32 function, u32 arg1, u32 arg2, u32 arg3) { #ifdef DEBUG_SPAM reportln("Syscall: {} ({:x})", Syscall::to_string((Syscall::Function)function), function); #endif switch (function) { case SC_chdir: return virt$chdir(arg1, arg2); case SC_dup2: return virt$dup2(arg1, arg2); case SC_get_stack_bounds: return virt$get_stack_bounds(arg1, arg2); case SC_access: return virt$access(arg1, arg2, arg3); case SC_waitid: return virt$waitid(arg1); case SC_getcwd: return virt$getcwd(arg1, arg2); case SC_ttyname: return virt$ttyname(arg1, arg2, arg3); case SC_getpgrp: return virt$getpgrp(); case SC_getpgid: return virt$getpgid(arg1); case SC_setpgid: return virt$setpgid(arg1, arg2); case SC_execve: return virt$execve(arg1); case SC_sigaction: return virt$sigaction(arg1, arg2, arg3); case SC_sigreturn: return virt$sigreturn(); case SC_stat: return virt$stat(arg1); case SC_realpath: return virt$realpath(arg1); case SC_gethostname: return virt$gethostname(arg1, arg2); case SC_ioctl: return virt$ioctl(arg1, arg2, arg3); case SC_get_dir_entries: return virt$get_dir_entries(arg1, arg2, arg3); case SC_shbuf_create: return virt$shbuf_create(arg1, arg2); case SC_shbuf_allow_pid: return virt$shbuf_allow_pid(arg1, arg2); case SC_shbuf_allow_all: return virt$shbuf_allow_all(arg1); case SC_shbuf_get: return virt$shbuf_get(arg1, arg2); case SC_shbuf_release: return virt$shbuf_release(arg1); case SC_shbuf_seal: return virt$shbuf_seal(arg1); case SC_shbuf_set_volatile: return virt$shbuf_set_volatile(arg1, arg2); case SC_profiling_enable: return virt$profiling_enable(arg1); case SC_profiling_disable: return virt$profiling_disable(arg1); case SC_disown: return virt$disown(arg1); case SC_purge: return virt$purge(arg1); case SC_mmap: return virt$mmap(arg1); case SC_mount: return virt$mount(arg1); case SC_munmap: return virt$munmap(arg1, arg2); case SC_gettid: return virt$gettid(); case SC_getpid: return virt$getpid(); case SC_getsid: return virt$getsid(arg1); case SC_pledge: return virt$pledge(arg1); case SC_unveil: return virt$unveil(arg1); case SC_getuid: return virt$getuid(); case SC_geteuid: return virt$geteuid(); case SC_getgid: return virt$getgid(); case SC_getegid: return virt$getegid(); case SC_setuid: return virt$setuid(arg1); case SC_setgid: return virt$setgid(arg2); case SC_close: return virt$close(arg1); case SC_fstat: return virt$fstat(arg1, arg2); case SC_mkdir: return virt$mkdir(arg1, arg2, arg3); case SC_unlink: return virt$unlink(arg1, arg2); case SC_write: return virt$write(arg1, arg2, arg3); case SC_read: return virt$read(arg1, arg2, arg3); case SC_mprotect: return virt$mprotect(arg1, arg2, arg3); case SC_madvise: return virt$madvise(arg1, arg2, arg3); case SC_open: return virt$open(arg1); case SC_pipe: return virt$pipe(arg1, arg2); case SC_fcntl: return virt$fcntl(arg1, arg2, arg3); case SC_getgroups: return virt$getgroups(arg1, arg2); case SC_setgroups: return virt$setgroups(arg1, arg2); case SC_lseek: return virt$lseek(arg1, arg2, arg3); case SC_socket: return virt$socket(arg1, arg2, arg3); case SC_getsockopt: return virt$getsockopt(arg1); case SC_get_process_name: return virt$get_process_name(arg1, arg2); case SC_dbgputstr: return virt$dbgputstr(arg1, arg2); case SC_dbgputch: return virt$dbgputch(arg1); case SC_chmod: return virt$chmod(arg1, arg2, arg3); case SC_fchmod: return virt$fchmod(arg1, arg2); case SC_fchown: return virt$fchown(arg1, arg2, arg3); case SC_accept: return virt$accept(arg1, arg2, arg3); case SC_setsockopt: return virt$setsockopt(arg1); case SC_bind: return virt$bind(arg1, arg2, arg3); case SC_connect: return virt$connect(arg1, arg2, arg3); case SC_listen: return virt$listen(arg1, arg2); case SC_select: return virt$select(arg1); case SC_recvmsg: return virt$recvmsg(arg1, arg2, arg3); case SC_sendmsg: return virt$sendmsg(arg1, arg2, arg3); case SC_kill: return virt$kill(arg1, arg2); case SC_set_mmap_name: return virt$set_mmap_name(arg1); case SC_set_process_icon: return virt$set_process_icon(arg1); case SC_exit: virt$exit((int)arg1); return 0; case SC_gettimeofday: return virt$gettimeofday(arg1); case SC_clock_gettime: return virt$clock_gettime(arg1, arg2); case SC_getrandom: return virt$getrandom(arg1, arg2, arg3); case SC_fork: return virt$fork(); case SC_sched_getparam: return virt$sched_getparam(arg1, arg2); case SC_sched_setparam: return virt$sched_setparam(arg1, arg2); case SC_set_thread_name: return virt$set_thread_name(arg1, arg2, arg3); case SC_setsid: return virt$setsid(); case SC_watch_file: return virt$watch_file(arg1, arg2); case SC_clock_nanosleep: return virt$clock_nanosleep(arg1); case SC_readlink: return virt$readlink(arg1); case SC_ptsname: return virt$ptsname(arg1, arg2, arg3); case SC_allocate_tls: return virt$allocate_tls(arg1); case SC_beep: return virt$beep(); default: reportln("\n=={}== \033[31;1mUnimplemented syscall: {}\033[0m, {:p}", getpid(), Syscall::to_string((Syscall::Function)function), function); dump_backtrace(); TODO(); } } int Emulator::virt$shbuf_create(int size, FlatPtr buffer) { u8* host_data = nullptr; int shbuf_id = syscall(SC_shbuf_create, size, &host_data); if (shbuf_id < 0) return shbuf_id; FlatPtr address = allocate_vm(size, PAGE_SIZE); auto region = SharedBufferRegion::create_with_shbuf_id(address, size, shbuf_id, host_data); m_mmu.add_region(move(region)); m_mmu.copy_to_vm(buffer, &address, sizeof(address)); return shbuf_id; } FlatPtr Emulator::virt$shbuf_get(int shbuf_id, FlatPtr size_ptr) { size_t host_size = 0; void* host_data = (void*)syscall(SC_shbuf_get, shbuf_id, &host_size); if (host_data == (void*)-1) return (FlatPtr)host_data; FlatPtr address = allocate_vm(host_size, PAGE_SIZE); auto region = SharedBufferRegion::create_with_shbuf_id(address, host_size, shbuf_id, (u8*)host_data); m_mmu.add_region(move(region)); m_mmu.copy_to_vm(size_ptr, &host_size, sizeof(host_size)); return address; } int Emulator::virt$shbuf_allow_pid(int shbuf_id, pid_t peer_pid) { auto* region = m_mmu.shbuf_region(shbuf_id); ASSERT(region); return region->allow_pid(peer_pid); } int Emulator::virt$shbuf_allow_all(int shbuf_id) { auto* region = m_mmu.shbuf_region(shbuf_id); ASSERT(region); return region->allow_all(); } int Emulator::virt$shbuf_release(int shbuf_id) { auto* region = m_mmu.shbuf_region(shbuf_id); ASSERT(region); auto rc = region->release(); m_mmu.remove_region(*region); return rc; } int Emulator::virt$shbuf_seal(int shbuf_id) { auto* region = m_mmu.shbuf_region(shbuf_id); ASSERT(region); return region->seal(); } int Emulator::virt$shbuf_set_volatile(int shbuf_id, bool is_volatile) { auto* region = m_mmu.shbuf_region(shbuf_id); ASSERT(region); return region->set_volatile(is_volatile); } int Emulator::virt$profiling_enable(pid_t pid) { return syscall(SC_profiling_enable, pid); } int Emulator::virt$profiling_disable(pid_t pid) { return syscall(SC_profiling_disable, pid); } int Emulator::virt$disown(pid_t pid) { return syscall(SC_disown, pid); } int Emulator::virt$purge(int mode) { return syscall(SC_purge, mode); } int Emulator::virt$fstat(int fd, FlatPtr statbuf) { struct stat local_statbuf; int rc = syscall(SC_fstat, fd, &local_statbuf); if (rc < 0) return rc; mmu().copy_to_vm(statbuf, &local_statbuf, sizeof(local_statbuf)); return rc; } int Emulator::virt$close(int fd) { return syscall(SC_close, fd); } int Emulator::virt$mkdir(FlatPtr path, size_t path_length, mode_t mode) { auto buffer = mmu().copy_buffer_from_vm(path, path_length); return syscall(SC_mkdir, buffer.data(), buffer.size(), mode); } int Emulator::virt$unlink(FlatPtr path, size_t path_length) { auto buffer = mmu().copy_buffer_from_vm(path, path_length); return syscall(SC_unlink, buffer.data(), buffer.size()); } int Emulator::virt$dbgputstr(FlatPtr characters, int length) { auto buffer = mmu().copy_buffer_from_vm(characters, length); dbgputstr((const char*)buffer.data(), buffer.size()); return 0; } int Emulator::virt$chmod(FlatPtr path_addr, size_t path_length, mode_t mode) { auto path = mmu().copy_buffer_from_vm(path_addr, path_length); return syscall(SC_chmod, path.data(), path.size(), mode); } int Emulator::virt$fchmod(int fd, mode_t mode) { return syscall(SC_fchmod, fd, mode); } int Emulator::virt$fchown(int fd, uid_t uid, gid_t gid) { return syscall(SC_fchown, fd, uid, gid); } int Emulator::virt$setsockopt(FlatPtr params_addr) { Syscall::SC_setsockopt_params params; mmu().copy_from_vm(¶ms, params_addr, sizeof(params)); if (params.option == SO_RCVTIMEO || params.option == SO_TIMESTAMP) { auto host_value_buffer = ByteBuffer::create_zeroed(params.value_size); mmu().copy_from_vm(host_value_buffer.data(), (FlatPtr)params.value, params.value_size); int rc = setsockopt(params.sockfd, params.level, params.option, host_value_buffer.data(), host_value_buffer.size()); if (rc < 0) return -errno; return rc; } if (params.option == SO_BINDTODEVICE) { auto ifname = mmu().copy_buffer_from_vm((FlatPtr)params.value, params.value_size); params.value = ifname.data(); params.value_size = ifname.size(); return syscall(SC_setsockopt, ¶ms); } TODO(); } int Emulator::virt$get_stack_bounds(FlatPtr base, FlatPtr size) { auto* region = mmu().find_region({ m_cpu.ss(), m_cpu.esp().value() }); FlatPtr b = region->base(); size_t s = region->size(); mmu().copy_to_vm(base, &b, sizeof(b)); mmu().copy_to_vm(size, &s, sizeof(s)); return 0; } int Emulator::virt$accept(int sockfd, FlatPtr address, FlatPtr address_length) { socklen_t host_address_length = 0; mmu().copy_from_vm(&host_address_length, address_length, sizeof(host_address_length)); auto host_buffer = ByteBuffer::create_zeroed(host_address_length); int rc = syscall(SC_accept, sockfd, host_buffer.data(), &host_address_length); if (rc < 0) return rc; mmu().copy_to_vm(address, host_buffer.data(), min((socklen_t)host_buffer.size(), host_address_length)); mmu().copy_to_vm(address_length, &host_address_length, sizeof(host_address_length)); return rc; } int Emulator::virt$bind(int sockfd, FlatPtr address, socklen_t address_length) { auto buffer = mmu().copy_buffer_from_vm(address, address_length); return syscall(SC_bind, sockfd, buffer.data(), buffer.size()); } int Emulator::virt$connect(int sockfd, FlatPtr address, socklen_t address_size) { auto buffer = mmu().copy_buffer_from_vm(address, address_size); return syscall(SC_connect, sockfd, buffer.data(), buffer.size()); } int Emulator::virt$dbgputch(char ch) { dbgputch(ch); return 0; } int Emulator::virt$listen(int fd, int backlog) { return syscall(SC_listen, fd, backlog); } int Emulator::virt$kill(pid_t pid, int signal) { return syscall(SC_kill, pid, signal); } int Emulator::virt$set_process_icon(int shbuf_id) { return syscall(SC_set_process_icon, shbuf_id); } int Emulator::virt$gettimeofday(FlatPtr timeval) { struct timeval host_timeval; int rc = syscall(SC_gettimeofday, &host_timeval); if (rc < 0) return rc; mmu().copy_to_vm(timeval, &host_timeval, sizeof(host_timeval)); return rc; } int Emulator::virt$clock_gettime(int clockid, FlatPtr timespec) { struct timespec host_timespec; int rc = syscall(SC_clock_gettime, clockid, &host_timespec); if (rc < 0) return rc; mmu().copy_to_vm(timespec, &host_timespec, sizeof(host_timespec)); return rc; } int Emulator::virt$set_mmap_name(FlatPtr) { // FIXME: Implement. return 0; } int Emulator::virt$get_process_name(FlatPtr buffer, int size) { if (size < 0) return -EINVAL; auto host_buffer = ByteBuffer::create_zeroed((size_t)size); int rc = syscall(SC_get_process_name, host_buffer.data(), host_buffer.size()); mmu().copy_to_vm(buffer, host_buffer.data(), host_buffer.size()); return rc; } int Emulator::virt$lseek(int fd, off_t offset, int whence) { return syscall(SC_lseek, fd, offset, whence); } int Emulator::virt$socket(int domain, int type, int protocol) { return syscall(SC_socket, domain, type, protocol); } int Emulator::virt$recvmsg(int sockfd, FlatPtr msg_addr, int flags) { msghdr mmu_msg; mmu().copy_from_vm(&mmu_msg, msg_addr, sizeof(mmu_msg)); Vector mmu_iovs; mmu_iovs.resize(mmu_msg.msg_iovlen); mmu().copy_from_vm(mmu_iovs.data(), (FlatPtr)mmu_msg.msg_iov, mmu_msg.msg_iovlen * sizeof(iovec)); Vector buffers; Vector iovs; for (const auto& iov : mmu_iovs) { buffers.append(ByteBuffer::create_uninitialized(iov.iov_len)); iovs.append({ buffers.last().data(), buffers.last().size() }); } ByteBuffer control_buffer; if (mmu_msg.msg_control) control_buffer = ByteBuffer::create_uninitialized(mmu_msg.msg_controllen); sockaddr_storage addr; msghdr msg = { &addr, sizeof(addr), iovs.data(), (int)iovs.size(), mmu_msg.msg_control ? control_buffer.data() : nullptr, mmu_msg.msg_controllen, mmu_msg.msg_flags }; int rc = recvmsg(sockfd, &msg, flags); if (rc < 0) return -errno; for (size_t i = 0; i < buffers.size(); ++i) mmu().copy_to_vm((FlatPtr)mmu_iovs[i].iov_base, buffers[i].data(), mmu_iovs[i].iov_len); if (mmu_msg.msg_name) mmu().copy_to_vm((FlatPtr)mmu_msg.msg_name, &addr, min(sizeof(addr), (size_t)mmu_msg.msg_namelen)); if (mmu_msg.msg_control) mmu().copy_to_vm((FlatPtr)mmu_msg.msg_control, control_buffer.data(), min(mmu_msg.msg_controllen, msg.msg_controllen)); mmu_msg.msg_namelen = msg.msg_namelen; mmu_msg.msg_controllen = msg.msg_controllen; mmu_msg.msg_flags = msg.msg_flags; mmu().copy_to_vm(msg_addr, &mmu_msg, sizeof(mmu_msg)); return rc; } int Emulator::virt$sendmsg(int sockfd, FlatPtr msg_addr, int flags) { msghdr mmu_msg; mmu().copy_from_vm(&mmu_msg, msg_addr, sizeof(mmu_msg)); Vector iovs; iovs.resize(mmu_msg.msg_iovlen); mmu().copy_from_vm(iovs.data(), (FlatPtr)mmu_msg.msg_iov, mmu_msg.msg_iovlen * sizeof(iovec)); Vector buffers; for (auto& iov : iovs) { buffers.append(mmu().copy_buffer_from_vm((FlatPtr)iov.iov_base, iov.iov_len)); iov = { buffers.last().data(), buffers.last().size() }; } ByteBuffer control_buffer; if (mmu_msg.msg_control) control_buffer = ByteBuffer::create_uninitialized(mmu_msg.msg_controllen); sockaddr_storage address; socklen_t address_length = 0; if (mmu_msg.msg_name) { address_length = min(sizeof(address), (size_t)mmu_msg.msg_namelen); mmu().copy_from_vm(&address, (FlatPtr)mmu_msg.msg_name, address_length); } msghdr msg = { mmu_msg.msg_name ? &address : nullptr, address_length, iovs.data(), (int)iovs.size(), mmu_msg.msg_control ? control_buffer.data() : nullptr, mmu_msg.msg_controllen, mmu_msg.msg_flags }; return sendmsg(sockfd, &msg, flags); } int Emulator::virt$select(FlatPtr params_addr) { Syscall::SC_select_params params; mmu().copy_from_vm(¶ms, params_addr, sizeof(params)); fd_set readfds {}; fd_set writefds {}; fd_set exceptfds {}; struct timespec timeout; u32 sigmask; if (params.readfds) mmu().copy_from_vm(&readfds, (FlatPtr)params.readfds, sizeof(readfds)); if (params.writefds) mmu().copy_from_vm(&writefds, (FlatPtr)params.writefds, sizeof(writefds)); if (params.exceptfds) mmu().copy_from_vm(&exceptfds, (FlatPtr)params.exceptfds, sizeof(exceptfds)); if (params.timeout) mmu().copy_from_vm(&timeout, (FlatPtr)params.timeout, sizeof(timeout)); if (params.sigmask) mmu().copy_from_vm(&sigmask, (FlatPtr)params.sigmask, sizeof(sigmask)); int rc = pselect(params.nfds, &readfds, &writefds, &exceptfds, params.timeout ? &timeout : nullptr, params.sigmask ? &sigmask : nullptr); if (rc < 0) return -errno; if (params.readfds) mmu().copy_to_vm((FlatPtr)params.readfds, &readfds, sizeof(readfds)); if (params.writefds) mmu().copy_to_vm((FlatPtr)params.writefds, &writefds, sizeof(writefds)); if (params.exceptfds) mmu().copy_to_vm((FlatPtr)params.exceptfds, &exceptfds, sizeof(exceptfds)); if (params.timeout) mmu().copy_to_vm((FlatPtr)params.timeout, &timeout, sizeof(timeout)); return rc; } int Emulator::virt$getsockopt(FlatPtr params_addr) { Syscall::SC_getsockopt_params params; mmu().copy_from_vm(¶ms, params_addr, sizeof(params)); if (params.option == SO_PEERCRED) { struct ucred creds = {}; socklen_t creds_size = sizeof(creds); int rc = getsockopt(params.sockfd, params.level, SO_PEERCRED, &creds, &creds_size); if (rc < 0) return -errno; // FIXME: Check params.value_size mmu().copy_to_vm((FlatPtr)params.value, &creds, sizeof(creds)); return rc; } TODO(); } int Emulator::virt$getgroups(ssize_t count, FlatPtr groups) { if (!count) return syscall(SC_getgroups, 0, nullptr); auto buffer = ByteBuffer::create_uninitialized(count * sizeof(gid_t)); int rc = syscall(SC_getgroups, count, buffer.data()); if (rc < 0) return rc; mmu().copy_to_vm(groups, buffer.data(), buffer.size()); return 0; } int Emulator::virt$setgroups(ssize_t count, FlatPtr groups) { if (!count) return syscall(SC_setgroups, 0, nullptr); auto buffer = mmu().copy_buffer_from_vm(groups, count * sizeof(gid_t)); return syscall(SC_setgroups, count, buffer.data()); } u32 Emulator::virt$fcntl(int fd, int cmd, u32 arg) { switch (cmd) { case F_DUPFD: case F_GETFD: case F_SETFD: case F_GETFL: case F_SETFL: case F_ISTTY: break; default: TODO(); } return syscall(SC_fcntl, fd, cmd, arg); } u32 Emulator::virt$open(u32 params_addr) { Syscall::SC_open_params params; mmu().copy_from_vm(¶ms, params_addr, sizeof(params)); auto path = mmu().copy_buffer_from_vm((FlatPtr)params.path.characters, params.path.length); int fd = openat_with_path_length(params.dirfd, (const char*)path.data(), path.size(), params.options, params.mode); if (fd < 0) return -errno; return fd; } int Emulator::virt$pipe(FlatPtr vm_pipefd, int flags) { int pipefd[2]; int rc = syscall(SC_pipe, pipefd, flags); if (rc < 0) return rc; mmu().copy_to_vm(vm_pipefd, pipefd, sizeof(pipefd)); return rc; } u32 Emulator::virt$munmap(FlatPtr address, u32 size) { auto* region = mmu().find_region({ 0x20, address }); ASSERT(region); if (region->size() != round_up_to_power_of_two(size, PAGE_SIZE)) TODO(); mmu().remove_region(*region); return 0; } FlatPtr Emulator::allocate_vm(size_t size, size_t alignment) { // FIXME: Write a proper VM allocator static FlatPtr next_address = 0x30000000; FlatPtr final_address; if (!alignment) alignment = PAGE_SIZE; // FIXME: What if alignment is not a power of 2? final_address = round_up_to_power_of_two(next_address, alignment); next_address = round_up_to_power_of_two(final_address + size, PAGE_SIZE); return final_address; } u32 Emulator::virt$mmap(u32 params_addr) { Syscall::SC_mmap_params params; mmu().copy_from_vm(¶ms, params_addr, sizeof(params)); u32 final_size = round_up_to_power_of_two(params.size, PAGE_SIZE); u32 final_address = allocate_vm(final_size, params.alignment); if (params.addr != 0) { // NOTE: We currently do not support allocating VM at a requeted address in the emulator. // The loader needs this functionality to load .data just after .text. // Luckily, since the loader calls mmap for .data right after it calls mmap for .text, // the emulator will allocate a chunk of memory that is just after what we allocated for .text // becuase of the way we currently allocate VM. ASSERT(params.addr == final_address); } if (params.flags & MAP_ANONYMOUS) mmu().add_region(MmapRegion::create_anonymous(final_address, final_size, params.prot)); else { String name_str; if (params.name.characters) { auto name = ByteBuffer::create_uninitialized(params.name.length); mmu().copy_from_vm(name.data(), (FlatPtr)params.name.characters, params.name.length); name_str = { name.data(), name.size() }; } auto region = MmapRegion::create_file_backed(final_address, final_size, params.prot, params.flags, params.fd, params.offset, name_str); if (region->name() == "libc.so: .text (Emulated)") { bool rc = find_malloc_symbols(*region); ASSERT(rc); } mmu().add_region(move(region)); } return final_address; } u32 Emulator::virt$mount(u32 params_addr) { Syscall::SC_mount_params params; mmu().copy_from_vm(¶ms, params_addr, sizeof(params)); auto target = mmu().copy_buffer_from_vm((FlatPtr)params.target.characters, params.target.length); auto fs_path = mmu().copy_buffer_from_vm((FlatPtr)params.fs_type.characters, params.fs_type.length); params.fs_type.characters = (char*)fs_path.data(); params.fs_type.length = fs_path.size(); params.target.characters = (char*)target.data(); params.target.length = target.size(); return syscall(SC_mount, ¶ms); } u32 Emulator::virt$gettid() { return gettid(); } u32 Emulator::virt$getpid() { return getpid(); } u32 Emulator::virt$pledge(u32) { return 0; } u32 Emulator::virt$unveil(u32) { return 0; } u32 Emulator::virt$mprotect(FlatPtr base, size_t size, int prot) { if (auto* region = mmu().find_region({ m_cpu.ds(), base })) { if (!region->is_mmap()) return -EINVAL; ASSERT(region->size() == size); auto& mmap_region = *(MmapRegion*)region; mmap_region.set_prot(prot); return 0; } return -EINVAL; } u32 Emulator::virt$madvise(FlatPtr, size_t, int) { return 0; } uid_t Emulator::virt$getuid() { return getuid(); } uid_t Emulator::virt$geteuid() { return geteuid(); } gid_t Emulator::virt$getgid() { return getgid(); } gid_t Emulator::virt$getegid() { return getegid(); } int Emulator::virt$setuid(uid_t uid) { return syscall(SC_setuid, uid); } int Emulator::virt$setgid(gid_t gid) { return syscall(SC_setgid, gid); } u32 Emulator::virt$write(int fd, FlatPtr data, ssize_t size) { if (size < 0) return -EINVAL; auto buffer = mmu().copy_buffer_from_vm(data, size); return syscall(SC_write, fd, buffer.data(), buffer.size()); } u32 Emulator::virt$read(int fd, FlatPtr buffer, ssize_t size) { if (size < 0) return -EINVAL; auto local_buffer = ByteBuffer::create_uninitialized(size); int nread = syscall(SC_read, fd, local_buffer.data(), local_buffer.size()); if (nread < 0) { if (nread == -EPERM) { dump_backtrace(); TODO(); } return nread; } mmu().copy_to_vm(buffer, local_buffer.data(), local_buffer.size()); return nread; } void Emulator::virt$exit(int status) { reportln("\n=={}== \033[33;1mSyscall: exit({})\033[0m, shutting down!", getpid(), status); m_exit_status = status; m_shutdown = true; } ssize_t Emulator::virt$getrandom(FlatPtr buffer, size_t buffer_size, unsigned int flags) { auto host_buffer = ByteBuffer::create_uninitialized(buffer_size); int rc = syscall(SC_getrandom, host_buffer.data(), host_buffer.size(), flags); if (rc < 0) return rc; mmu().copy_to_vm(buffer, host_buffer.data(), host_buffer.size()); return rc; } int Emulator::virt$get_dir_entries(int fd, FlatPtr buffer, ssize_t size) { auto host_buffer = ByteBuffer::create_uninitialized(size); int rc = syscall(SC_get_dir_entries, fd, host_buffer.data(), host_buffer.size()); if (rc < 0) return rc; mmu().copy_to_vm(buffer, host_buffer.data(), host_buffer.size()); return rc; } int Emulator::virt$ioctl([[maybe_unused]] int fd, unsigned request, [[maybe_unused]] FlatPtr arg) { if (request == TIOCGWINSZ) { struct winsize ws; int rc = syscall(SC_ioctl, fd, TIOCGWINSZ, &ws); if (rc < 0) return rc; mmu().copy_to_vm(arg, &ws, sizeof(winsize)); return 0; } if (request == TIOCSPGRP) { return syscall(SC_ioctl, fd, request, arg); } if (request == TCGETS) { struct termios termios; int rc = syscall(SC_ioctl, fd, request, &termios); if (rc < 0) return rc; mmu().copy_to_vm(arg, &termios, sizeof(termios)); return rc; } if (request == TCSETS) { struct termios termios; mmu().copy_from_vm(&termios, arg, sizeof(termios)); return syscall(SC_ioctl, fd, request, &termios); } if (request == TIOCNOTTY || request == TIOCSCTTY) { return syscall(SC_ioctl, fd, request, 0); } if (request == FB_IOCTL_GET_SIZE_IN_BYTES) { size_t size = 0; auto rc = syscall(SC_ioctl, fd, request, &size); mmu().copy_to_vm(arg, &size, sizeof(size)); return rc; } if (request == FB_IOCTL_SET_RESOLUTION) { FBResolution user_resolution; mmu().copy_from_vm(&user_resolution, arg, sizeof(user_resolution)); auto rc = syscall(SC_ioctl, fd, request, &user_resolution); mmu().copy_to_vm(arg, &user_resolution, sizeof(user_resolution)); return rc; } if (request == FB_IOCTL_SET_BUFFER) { return syscall(SC_ioctl, fd, request, arg); } reportln("Unsupported ioctl: {}", request); dump_backtrace(); TODO(); } int Emulator::virt$fork() { int rc = fork(); if (rc < 0) return -errno; return rc; } int Emulator::virt$execve(FlatPtr params_addr) { Syscall::SC_execve_params params; mmu().copy_from_vm(¶ms, params_addr, sizeof(params)); auto path = String::copy(mmu().copy_buffer_from_vm((FlatPtr)params.path.characters, params.path.length)); Vector arguments; Vector environment; auto copy_string_list = [this](auto& output_vector, auto& string_list) { for (size_t i = 0; i < string_list.length; ++i) { Syscall::StringArgument string; mmu().copy_from_vm(&string, (FlatPtr)&string_list.strings[i], sizeof(string)); output_vector.append(String::copy(mmu().copy_buffer_from_vm((FlatPtr)string.characters, string.length))); } }; copy_string_list(arguments, params.arguments); copy_string_list(environment, params.environment); reportln("\n=={}== \033[33;1mSyscall:\033[0m execve", getpid()); reportln("=={}== @ {}", getpid(), path); for (auto& argument : arguments) reportln("=={}== - {}", getpid(), argument); Vector argv; Vector envp; argv.append(const_cast("/bin/UserspaceEmulator")); argv.append(const_cast(path.characters())); if (g_report_to_debug) argv.append(const_cast("--report-to-debug")); argv.append(const_cast("--")); auto create_string_vector = [](auto& output_vector, auto& input_vector) { for (auto& string : input_vector) output_vector.append(const_cast(string.characters())); output_vector.append(nullptr); }; create_string_vector(argv, arguments); create_string_vector(envp, environment); // Yoink duplicated program name. argv.remove(3 + (g_report_to_debug ? 1 : 0)); return execve(argv[0], (char* const*)argv.data(), (char* const*)envp.data()); } int Emulator::virt$stat(FlatPtr params_addr) { Syscall::SC_stat_params params; mmu().copy_from_vm(¶ms, params_addr, sizeof(params)); auto path = String::copy(mmu().copy_buffer_from_vm((FlatPtr)params.path.characters, params.path.length)); struct stat host_statbuf; int rc; if (params.follow_symlinks) rc = stat(path.characters(), &host_statbuf); else rc = lstat(path.characters(), &host_statbuf); if (rc < 0) return -errno; mmu().copy_to_vm((FlatPtr)params.statbuf, &host_statbuf, sizeof(host_statbuf)); return rc; } int Emulator::virt$realpath(FlatPtr params_addr) { Syscall::SC_realpath_params params; mmu().copy_from_vm(¶ms, params_addr, sizeof(params)); if (params.path.length > PATH_MAX) { return -ENAMETOOLONG; } auto path = mmu().copy_buffer_from_vm((FlatPtr)params.path.characters, params.path.length); char host_buffer[PATH_MAX] = {}; size_t host_buffer_size = min(sizeof(host_buffer), params.buffer.size); Syscall::SC_realpath_params host_params; host_params.path = { (const char*)path.data(), path.size() }; host_params.buffer = { host_buffer, host_buffer_size }; int rc = syscall(SC_realpath, &host_params); if (rc < 0) return rc; mmu().copy_to_vm((FlatPtr)params.buffer.data, host_buffer, host_buffer_size); return rc; } int Emulator::virt$gethostname(FlatPtr buffer, ssize_t buffer_size) { if (buffer_size < 0) return -EINVAL; auto host_buffer = ByteBuffer::create_zeroed(buffer_size); int rc = syscall(SC_gethostname, host_buffer.data(), host_buffer.size()); if (rc < 0) return rc; mmu().copy_to_vm(buffer, host_buffer.data(), host_buffer.size()); return rc; } static void emulator_signal_handler(int signum) { Emulator::the().did_receive_signal(signum); } void Emulator::register_signal_handlers() { for (int signum = 0; signum < NSIG; ++signum) signal(signum, emulator_signal_handler); } int Emulator::virt$sigaction(int signum, FlatPtr act, FlatPtr oldact) { if (signum == SIGKILL) { reportln("Attempted to sigaction() with SIGKILL"); return -EINVAL; } if (signum <= 0 || signum >= NSIG) return -EINVAL; struct sigaction host_act; mmu().copy_from_vm(&host_act, act, sizeof(host_act)); auto& handler = m_signal_handler[signum]; handler.handler = (FlatPtr)host_act.sa_handler; handler.mask = host_act.sa_mask; handler.flags = host_act.sa_flags; if (oldact) { struct sigaction host_oldact; auto& old_handler = m_signal_handler[signum]; host_oldact.sa_handler = (void (*)(int))(old_handler.handler); host_oldact.sa_mask = old_handler.mask; host_oldact.sa_flags = old_handler.flags; mmu().copy_to_vm(oldact, &host_oldact, sizeof(host_oldact)); } return 0; } int Emulator::virt$sigreturn() { u32 stack_ptr = m_cpu.esp().value(); auto local_pop = [&]() -> ValueWithShadow { auto value = m_cpu.read_memory32({ m_cpu.ss(), stack_ptr }); stack_ptr += sizeof(u32); return value; }; auto smuggled_eax = local_pop(); stack_ptr += 4 * sizeof(u32); m_signal_mask = local_pop().value(); m_cpu.set_edi(local_pop()); m_cpu.set_esi(local_pop()); m_cpu.set_ebp(local_pop()); m_cpu.set_esp(local_pop()); m_cpu.set_ebx(local_pop()); m_cpu.set_edx(local_pop()); m_cpu.set_ecx(local_pop()); m_cpu.set_eax(local_pop()); m_cpu.set_eip(local_pop().value()); m_cpu.set_eflags(local_pop()); // FIXME: We're losing shadow bits here. return smuggled_eax.value(); } enum class DefaultSignalAction { Terminate, Ignore, DumpCore, Stop, Continue, }; static DefaultSignalAction default_signal_action(int signal) { ASSERT(signal && signal < NSIG); switch (signal) { case SIGHUP: case SIGINT: case SIGKILL: case SIGPIPE: case SIGALRM: case SIGUSR1: case SIGUSR2: case SIGVTALRM: case SIGSTKFLT: case SIGIO: case SIGPROF: case SIGTERM: return DefaultSignalAction::Terminate; case SIGCHLD: case SIGURG: case SIGWINCH: case SIGINFO: return DefaultSignalAction::Ignore; case SIGQUIT: case SIGILL: case SIGTRAP: case SIGABRT: case SIGBUS: case SIGFPE: case SIGSEGV: case SIGXCPU: case SIGXFSZ: case SIGSYS: return DefaultSignalAction::DumpCore; case SIGCONT: return DefaultSignalAction::Continue; case SIGSTOP: case SIGTSTP: case SIGTTIN: case SIGTTOU: return DefaultSignalAction::Stop; } ASSERT_NOT_REACHED(); } void Emulator::dispatch_one_pending_signal() { int signum = -1; for (signum = 1; signum < NSIG; ++signum) { int mask = 1 << signum; if (m_pending_signals & mask) break; } ASSERT(signum != -1); m_pending_signals &= ~(1 << signum); auto& handler = m_signal_handler[signum]; if (handler.handler == 0) { // SIG_DFL auto action = default_signal_action(signum); if (action == DefaultSignalAction::Ignore) return; reportln("\n=={}== Got signal {} ({}), no handler registered", getpid(), signum, strsignal(signum)); m_shutdown = true; return; } if (handler.handler == 1) { // SIG_IGN return; } reportln("\n=={}== Got signal {} ({}), handler at {:p}", getpid(), signum, strsignal(signum), handler.handler); auto old_esp = m_cpu.esp(); u32 stack_alignment = (m_cpu.esp().value() - 56) % 16; m_cpu.set_esp(shadow_wrap_as_initialized(m_cpu.esp().value() - stack_alignment)); m_cpu.push32(shadow_wrap_as_initialized(m_cpu.eflags())); m_cpu.push32(shadow_wrap_as_initialized(m_cpu.eip())); m_cpu.push32(m_cpu.eax()); m_cpu.push32(m_cpu.ecx()); m_cpu.push32(m_cpu.edx()); m_cpu.push32(m_cpu.ebx()); m_cpu.push32(old_esp); m_cpu.push32(m_cpu.ebp()); m_cpu.push32(m_cpu.esi()); m_cpu.push32(m_cpu.edi()); // FIXME: Push old signal mask here. m_cpu.push32(shadow_wrap_as_initialized(0u)); m_cpu.push32(shadow_wrap_as_initialized((u32)signum)); m_cpu.push32(shadow_wrap_as_initialized(handler.handler)); m_cpu.push32(shadow_wrap_as_initialized(0u)); ASSERT((m_cpu.esp().value() % 16) == 0); m_cpu.set_eip(m_signal_trampoline); } // Make sure the compiler doesn't "optimize away" this function: extern void signal_trampoline_dummy(); void signal_trampoline_dummy() { // The trampoline preserves the current eax, pushes the signal code and // then calls the signal handler. We do this because, when interrupting a // blocking syscall, that syscall may return some special error code in eax; // This error code would likely be overwritten by the signal handler, so it's // necessary to preserve it here. asm( ".intel_syntax noprefix\n" "asm_signal_trampoline:\n" "push ebp\n" "mov ebp, esp\n" "push eax\n" // we have to store eax 'cause it might be the return value from a syscall "sub esp, 4\n" // align the stack to 16 bytes "mov eax, [ebp+12]\n" // push the signal code "push eax\n" "call [ebp+8]\n" // call the signal handler "add esp, 8\n" "mov eax, %P0\n" "int 0x82\n" // sigreturn syscall "asm_signal_trampoline_end:\n" ".att_syntax" ::"i"(Syscall::SC_sigreturn)); } extern "C" void asm_signal_trampoline(); extern "C" void asm_signal_trampoline_end(); void Emulator::setup_signal_trampoline() { auto trampoline_region = make(0xb0000000, 4096); u8* trampoline = (u8*)asm_signal_trampoline; u8* trampoline_end = (u8*)asm_signal_trampoline_end; size_t trampoline_size = trampoline_end - trampoline; u8* code_ptr = trampoline_region->data(); memcpy(code_ptr, trampoline, trampoline_size); m_signal_trampoline = trampoline_region->base(); mmu().add_region(move(trampoline_region)); } int Emulator::virt$getpgrp() { return syscall(SC_getpgrp); } int Emulator::virt$getpgid(pid_t pid) { return syscall(SC_getpgid, pid); } int Emulator::virt$setpgid(pid_t pid, pid_t pgid) { return syscall(SC_setpgid, pid, pgid); } int Emulator::virt$ttyname(int fd, FlatPtr buffer, size_t buffer_size) { auto host_buffer = ByteBuffer::create_zeroed(buffer_size); int rc = syscall(SC_ttyname, fd, host_buffer.data(), host_buffer.size()); if (rc < 0) return rc; mmu().copy_to_vm(buffer, host_buffer.data(), host_buffer.size()); return rc; } int Emulator::virt$getcwd(FlatPtr buffer, size_t buffer_size) { auto host_buffer = ByteBuffer::create_zeroed(buffer_size); int rc = syscall(SC_getcwd, host_buffer.data(), host_buffer.size()); if (rc < 0) return rc; mmu().copy_to_vm(buffer, host_buffer.data(), host_buffer.size()); return rc; } int Emulator::virt$getsid(pid_t pid) { return syscall(SC_getsid, pid); } int Emulator::virt$access(FlatPtr path, size_t path_length, int type) { auto host_path = mmu().copy_buffer_from_vm(path, path_length); return syscall(SC_access, host_path.data(), host_path.size(), type); } int Emulator::virt$waitid(FlatPtr params_addr) { Syscall::SC_waitid_params params; mmu().copy_from_vm(¶ms, params_addr, sizeof(params)); Syscall::SC_waitid_params host_params = params; siginfo info; host_params.infop = &info; int rc = syscall(SC_waitid, &host_params); if (rc < 0) return rc; if (info.si_addr) { // FIXME: Translate this somehow. TODO(); } if (params.infop) mmu().copy_to_vm((FlatPtr)params.infop, &info, sizeof(info)); return rc; } int Emulator::virt$chdir(FlatPtr path, size_t path_length) { auto host_path = mmu().copy_buffer_from_vm(path, path_length); return syscall(SC_chdir, host_path.data(), host_path.size()); } int Emulator::virt$dup2(int old_fd, int new_fd) { return syscall(SC_dup2, old_fd, new_fd); } int Emulator::virt$sched_getparam(pid_t pid, FlatPtr user_addr) { sched_param user_param; mmu().copy_from_vm(&user_param, user_addr, sizeof(user_param)); auto rc = syscall(SC_sched_getparam, pid, &user_param); mmu().copy_to_vm(user_addr, &user_param, sizeof(user_param)); return rc; } int Emulator::virt$sched_setparam(int pid, FlatPtr user_addr) { sched_param user_param; mmu().copy_from_vm(&user_param, user_addr, sizeof(user_param)); return syscall(SC_sched_setparam, pid, &user_param); } int Emulator::virt$set_thread_name(pid_t pid, FlatPtr name_addr, size_t name_length) { auto user_name = mmu().copy_buffer_from_vm(name_addr, name_length); auto name = String::formatted("(UE) {}", StringView { user_name.data(), user_name.size() }); return syscall(SC_set_thread_name, pid, name.characters(), name.length()); } pid_t Emulator::virt$setsid() { return syscall(SC_setsid); } int Emulator::virt$watch_file(FlatPtr user_path_addr, size_t path_length) { auto user_path = mmu().copy_buffer_from_vm(user_path_addr, path_length); return syscall(SC_watch_file, user_path.data(), user_path.size()); } int Emulator::virt$clock_nanosleep(FlatPtr params_addr) { Syscall::SC_clock_nanosleep_params params; mmu().copy_from_vm(¶ms, params_addr, sizeof(params)); timespec requested_sleep; mmu().copy_from_vm(&requested_sleep, (FlatPtr)params.requested_sleep, sizeof(timespec)); params.requested_sleep = &requested_sleep; auto remaining_vm_addr = params.remaining_sleep; auto remaining = ByteBuffer::create_zeroed(sizeof(timespec)); params.remaining_sleep = (timespec*)remaining.data(); int rc = syscall(SC_clock_nanosleep, ¶ms); if (remaining_vm_addr) mmu().copy_to_vm((FlatPtr)remaining_vm_addr, remaining.data(), sizeof(timespec)); return rc; } int Emulator::virt$readlink(FlatPtr params_addr) { Syscall::SC_readlink_params params; mmu().copy_from_vm(¶ms, params_addr, sizeof(params)); if (params.path.length > PATH_MAX) { return -ENAMETOOLONG; } auto path = mmu().copy_buffer_from_vm((FlatPtr)params.path.characters, params.path.length); char host_buffer[PATH_MAX] = {}; size_t host_buffer_size = min(sizeof(host_buffer), params.buffer.size); Syscall::SC_readlink_params host_params; host_params.path = { (const char*)path.data(), path.size() }; host_params.buffer = { host_buffer, host_buffer_size }; int rc = syscall(SC_readlink, &host_params); if (rc < 0) return rc; mmu().copy_to_vm((FlatPtr)params.buffer.data, host_buffer, host_buffer_size); return rc; } u32 Emulator::virt$allocate_tls(size_t size) { // TODO: Why is this needed? without this, the loader overflows the bounds of the TLS region. constexpr size_t TLS_SIZE_HACK = 8; auto tcb_region = make(0x20000000, size + TLS_SIZE_HACK); bzero(tcb_region->data(), size); memset(tcb_region->shadow_data(), 0x01, size); auto tls_region = make(0, 4); tls_region->write32(0, shadow_wrap_as_initialized(tcb_region->base() + (u32)size)); memset(tls_region->shadow_data(), 0x01, 4); u32 tls_base = tcb_region->base(); mmu().add_region(move(tcb_region)); mmu().set_tls_region(move(tls_region)); return tls_base; } int Emulator::virt$ptsname(int fd, FlatPtr buffer, size_t buffer_size) { auto pts = mmu().copy_buffer_from_vm(buffer, buffer_size); return syscall(SC_ptsname, fd, pts.data(), pts.size()); } int Emulator::virt$beep() { return syscall(SC_beep); } bool Emulator::find_malloc_symbols(const MmapRegion& libc_text) { auto mapped_file = make("/usr/lib/libc.so"); if (!mapped_file->is_valid()) return {}; ELF::Image image((const u8*)mapped_file->data(), mapped_file->size()); auto malloc_symbol = image.find_demangled_function("malloc"); auto free_symbol = image.find_demangled_function("free"); auto realloc_symbol = image.find_demangled_function("realloc"); auto malloc_size_symbol = image.find_demangled_function("malloc_size"); if (!malloc_symbol.has_value() || !free_symbol.has_value() || !realloc_symbol.has_value() || !malloc_size_symbol.has_value()) return false; m_malloc_symbol_start = malloc_symbol.value().value() + libc_text.base(); m_malloc_symbol_end = m_malloc_symbol_start + malloc_symbol.value().size(); m_free_symbol_start = free_symbol.value().value() + libc_text.base(); m_free_symbol_end = m_free_symbol_start + free_symbol.value().size(); m_realloc_symbol_start = realloc_symbol.value().value() + libc_text.base(); m_realloc_symbol_end = m_realloc_symbol_start + realloc_symbol.value().size(); m_malloc_size_symbol_start = malloc_size_symbol.value().value() + libc_text.base(); m_malloc_size_symbol_end = m_malloc_size_symbol_start + malloc_size_symbol.value().size(); return true; } }