#pragma once #include "Assertions.h" #include "OwnPtr.h" #include "kmalloc.h" namespace AK { template class Vector; struct KmallocAllocator { static void* allocate(ssize_t size) { return kmalloc(size); } static void deallocate(void* ptr) { kfree(ptr); } }; struct KmallocEternalAllocator { static void* allocate(ssize_t size) { return kmalloc_eternal(size); } static void deallocate(void*) { } }; template class VectorImpl { public: ~VectorImpl() { } static VectorImpl* create(ssize_t capacity) { ssize_t size = sizeof(VectorImpl) + sizeof(T) * capacity; void* slot = Allocator::allocate(size); new (slot) VectorImpl(capacity); return (VectorImpl*)slot; } ssize_t size() const { return m_size; } ssize_t capacity() const { return m_capacity; } T& at(ssize_t i) { ASSERT(i < m_size); return *slot(i); } const T& at(ssize_t i) const { ASSERT(i < m_size); return *slot(i); } void remove(ssize_t index) { ASSERT(index < m_size); at(index).~T(); for (ssize_t i = index + 1; i < m_size; ++i) { new (slot(i - 1)) T(move(at(i))); at(i).~T(); } --m_size; } //private: friend class Vector; VectorImpl(ssize_t capacity) : m_capacity(capacity) { } T* tail() { return reinterpret_cast(this + 1); } T* slot(ssize_t i) { return &tail()[i]; } const T* tail() const { return reinterpret_cast(this + 1); } const T* slot(ssize_t i) const { return &tail()[i]; } ssize_t m_size { 0 }; ssize_t m_capacity; }; template class Vector { public: Vector() { } ~Vector() { clear(); } Vector(Vector&& other) : m_impl(other.m_impl) { other.m_impl = nullptr; } Vector(const Vector& other) { ensure_capacity(other.size()); for (ssize_t i = 0; i < other.size(); ++i) unchecked_append(other[i]); } Vector& operator=(Vector&& other) { if (this != &other) { m_impl = other.m_impl; other.m_impl = nullptr; } return *this; } void clear() { for (ssize_t i = 0; i < size(); ++i) { at(i).~T(); } Allocator::deallocate(m_impl); m_impl = nullptr; } void clear_with_capacity() { if (!m_impl) return; for (ssize_t i = 0; i < size(); ++i) at(i).~T(); m_impl->m_size = 0; } bool contains_slow(const T& value) const { for (ssize_t i = 0; i < size(); ++i) { if (at(i) == value) return true; } return false; } bool is_empty() const { return size() == 0; } ssize_t size() const { return m_impl ? m_impl->size() : 0; } ssize_t capacity() const { return m_impl ? m_impl->capacity() : 0; } T* data() { return m_impl ? m_impl->slot(0) : nullptr; } const T* data() const { return m_impl ? m_impl->slot(0) : nullptr; } const T& at(ssize_t i) const { return m_impl->at(i); } T& at(ssize_t i) { return m_impl->at(i); } const T& operator[](ssize_t i) const { return at(i); } T& operator[](ssize_t i) { return at(i); } const T& first() const { return at(0); } T& first() { return at(0); } const T& last() const { return at(size() - 1); } T& last() { return at(size() - 1); } T take_last() { ASSERT(!is_empty()); T value = move(last()); last().~T(); --m_impl->m_size; return value; } T take_first() { ASSERT(!is_empty()); T value = move(first()); remove(0); return value; } void remove(ssize_t index) { m_impl->remove(index); } void insert(int index, T&& value) { ASSERT(index <= size()); if (index == size()) return append(move(value)); ensure_capacity(size() + 1); ++m_impl->m_size; for (int i = size() - 1; i > index; --i) { new (m_impl->slot(i)) T(move(m_impl->at(i - 1))); m_impl->at(i - 1).~T(); } new (m_impl->slot(index)) T(move(value)); } Vector& operator=(const Vector& other) { if (this != &other) { clear(); ensure_capacity(other.size()); for (const auto& v : other) unchecked_append(v); } return *this; } void append(Vector&& other) { if (!m_impl) { m_impl = other.m_impl; other.m_impl = nullptr; return; } Vector tmp = move(other); ensure_capacity(size() + tmp.size()); for (auto&& v : tmp) { unchecked_append(move(v)); } } void unchecked_append(T&& value) { ASSERT((size() + 1) <= capacity()); new (m_impl->slot(m_impl->m_size)) T(move(value)); ++m_impl->m_size; } void unchecked_append(const T& value) { new (m_impl->slot(m_impl->m_size)) T(value); ++m_impl->m_size; } void append(T&& value) { ensure_capacity(size() + 1); new (m_impl->slot(m_impl->m_size)) T(move(value)); ++m_impl->m_size; } void append(const T& value) { ensure_capacity(size() + 1); new (m_impl->slot(m_impl->m_size)) T(value); ++m_impl->m_size; } void append(const T* values, ssize_t count) { ensure_capacity(size() + count); for (ssize_t i = 0; i < count; ++i) new (m_impl->slot(m_impl->m_size + i)) T(values[i]); m_impl->m_size += count; } void ensure_capacity(ssize_t neededCapacity) { if (capacity() >= neededCapacity) return; ssize_t new_capacity = padded_capacity(neededCapacity); auto new_impl = VectorImpl::create(new_capacity); if (m_impl) { new_impl->m_size = m_impl->m_size; for (ssize_t i = 0; i < size(); ++i) { new (new_impl->slot(i)) T(move(m_impl->at(i))); m_impl->at(i).~T(); } Allocator::deallocate(m_impl); } m_impl = new_impl; } void resize(ssize_t new_size) { if (new_size == size()) return; if (!new_size) { clear(); return; } if (new_size > size()) { ensure_capacity(new_size); for (ssize_t i = size(); i < new_size; ++i) new (m_impl->slot(i)) T; } else { for (int i = new_size; i < size(); ++i) m_impl->at(i).~T(); } m_impl->m_size = new_size; } class Iterator { public: bool operator!=(const Iterator& other) { return m_index != other.m_index; } Iterator& operator++() { ++m_index; return *this; } T& operator*() { return m_vector[m_index]; } private: friend class Vector; Iterator(Vector& vector, ssize_t index) : m_vector(vector), m_index(index) { } Vector& m_vector; ssize_t m_index { 0 }; }; Iterator begin() { return Iterator(*this, 0); } Iterator end() { return Iterator(*this, size()); } class ConstIterator { public: bool operator!=(const ConstIterator& other) { return m_index != other.m_index; } ConstIterator& operator++() { ++m_index; return *this; } const T& operator*() const { return m_vector[m_index]; } private: friend class Vector; ConstIterator(const Vector& vector, const ssize_t index) : m_vector(vector), m_index(index) { } const Vector& m_vector; ssize_t m_index { 0 }; }; ConstIterator begin() const { return ConstIterator(*this, 0); } ConstIterator end() const { return ConstIterator(*this, size()); } //private: static ssize_t padded_capacity(ssize_t capacity) { return max(ssize_t(4), capacity + (capacity / 4) + 4); } VectorImpl* m_impl { nullptr }; }; } using AK::Vector; using AK::KmallocEternalAllocator; using AK::KmallocAllocator;