#pragma once #include "Assertions.h" #include "OwnPtr.h" #include "kmalloc.h" namespace AK { template class Vector; struct KmallocAllocator { static void* allocate(size_t size) { return kmalloc(size); } static void deallocate(void* ptr) { kfree(ptr); } }; struct KmallocEternalAllocator { static void* allocate(size_t size) { return kmalloc_eternal(size); } static void deallocate(void*) { } }; template class VectorImpl { public: ~VectorImpl() { } static VectorImpl* create(size_t capacity) { size_t size = sizeof(VectorImpl) + sizeof(T) * capacity; void* slot = Allocator::allocate(size); new (slot) VectorImpl(capacity); return (VectorImpl*)slot; } size_t size() const { return m_size; } size_t capacity() const { return m_capacity; } T& at(size_t i) { return *slot(i); } const T& at(size_t i) const { return *slot(i); } void remove(size_t index) { ASSERT(index < m_size); at(index).~T(); for (size_t i = index + 1; i < m_size; ++i) { new (slot(i - 1)) T(move(at(i))); at(i).~T(); } --m_size; } //private: friend class Vector; VectorImpl(size_t capacity) : m_capacity(capacity) { } T* tail() { return reinterpret_cast(this + 1); } T* slot(size_t i) { return &tail()[i]; } const T* tail() const { return reinterpret_cast(this + 1); } const T* slot(size_t i) const { return &tail()[i]; } size_t m_size { 0 }; size_t m_capacity; }; template class Vector { public: Vector() { } ~Vector() { clear(); } Vector(Vector&& other) : m_impl(other.m_impl) { other.m_impl = nullptr; } Vector(const Vector& other) { ensureCapacity(other.size()); for (size_t i = 0; i < other.size(); ++i) unchecked_append(other[i]); } Vector& operator=(Vector&& other) { if (this != &other) { m_impl = other.m_impl; other.m_impl = nullptr; } return *this; } void clear() { for (size_t i = 0; i < size(); ++i) { at(i).~T(); } Allocator::deallocate(m_impl); m_impl = nullptr; } bool contains_slow(const T& value) const { for (size_t i = 0; i < size(); ++i) { if (at(i) == value) return true; } return false; } bool isEmpty() const { return size() == 0; } size_t size() const { return m_impl ? m_impl->size() : 0; } size_t capacity() const { return m_impl ? m_impl->capacity() : 0; } T* data() { return m_impl ? &at(0) : nullptr; } const T* data() const { return m_impl ? &at(0) : nullptr; } const T& at(size_t i) const { return m_impl->at(i); } T& at(size_t i) { return m_impl->at(i); } const T& operator[](size_t i) const { return at(i); } T& operator[](size_t i) { return at(i); } const T& first() const { return at(0); } T& first() { return at(0); } const T& last() const { return at(size() - 1); } T& last() { return at(size() - 1); } T takeLast() { ASSERT(!isEmpty()); T value = move(last()); last().~T(); --m_impl->m_size; return value; } void remove(size_t index) { m_impl->remove(index); } Vector& operator=(const Vector& other) { if (this != &other) { clear(); ensureCapacity(other.size()); for (const auto& v : other) unchecked_append(v); } return *this; } void append(Vector&& other) { Vector tmp = move(other); ensureCapacity(size() + tmp.size()); for (auto&& v : tmp) { unchecked_append(move(v)); } } void unchecked_append(T&& value) { new (m_impl->slot(m_impl->m_size)) T(move(value)); ++m_impl->m_size; } void unchecked_append(const T& value) { new (m_impl->slot(m_impl->m_size)) T(value); ++m_impl->m_size; } void append(T&& value) { ensureCapacity(size() + 1); new (m_impl->slot(m_impl->m_size)) T(move(value)); ++m_impl->m_size; } void append(const T& value) { ensureCapacity(size() + 1); new (m_impl->slot(m_impl->m_size)) T(value); ++m_impl->m_size; } void append(const T* values, size_t count) { ensureCapacity(size() + count); for (size_t i = 0; i < count; ++i) new (m_impl->slot(m_impl->m_size + i)) T(values[i]); m_impl->m_size += count; } void ensureCapacity(size_t neededCapacity) { if (capacity() >= neededCapacity) return; size_t newCapacity = paddedCapacity(neededCapacity); auto newImpl = VectorImpl::create(newCapacity); if (m_impl) { newImpl->m_size = m_impl->m_size; for (size_t i = 0; i < size(); ++i) { new (newImpl->slot(i)) T(move(m_impl->at(i))); m_impl->at(i).~T(); } Allocator::deallocate(m_impl); } m_impl = newImpl; } void resize(size_t new_size) { ASSERT(new_size >= size()); if (!new_size) return; ensureCapacity(new_size); for (size_t i = size(); i < new_size; ++i) new (m_impl->slot(i)) T; m_impl->m_size = new_size; } class Iterator { public: bool operator!=(const Iterator& other) { return m_index != other.m_index; } Iterator& operator++() { ++m_index; return *this; } T& operator*() { return m_vector[m_index]; } private: friend class Vector; Iterator(Vector& vector, size_t index) : m_vector(vector), m_index(index) { } Vector& m_vector; size_t m_index { 0 }; }; Iterator begin() { return Iterator(*this, 0); } Iterator end() { return Iterator(*this, size()); } class ConstIterator { public: bool operator!=(const ConstIterator& other) { return m_index != other.m_index; } ConstIterator& operator++() { ++m_index; return *this; } const T& operator*() const { return m_vector[m_index]; } private: friend class Vector; ConstIterator(const Vector& vector, const size_t index) : m_vector(vector), m_index(index) { } const Vector& m_vector; size_t m_index { 0 }; }; ConstIterator begin() const { return ConstIterator(*this, 0); } ConstIterator end() const { return ConstIterator(*this, size()); } //private: static size_t paddedCapacity(size_t capacity) { return max(size_t(4), capacity + (capacity / 4) + 4); } VectorImpl* m_impl { nullptr }; }; } using AK::Vector; using AK::KmallocEternalAllocator; using AK::KmallocAllocator;