/* * Copyright (c) 2018-2021, Andreas Kling * Copyright (c) 2021, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include namespace AK { namespace Detail { template struct CanBePlacedInsideVectorHelper; template struct CanBePlacedInsideVectorHelper { template static constexpr bool value = requires(U&& u) { StorageType { &u }; }; }; template struct CanBePlacedInsideVectorHelper { template static constexpr bool value = requires(U&& u) { StorageType(forward(u)); }; }; } template requires(!IsRvalueReference) class Vector { private: static constexpr bool contains_reference = IsLvalueReference; using StorageType = Conditional>, T>; using VisibleType = RemoveReference; template static constexpr bool CanBePlacedInsideVector = Detail::CanBePlacedInsideVectorHelper::template value; public: using ValueType = T; Vector() : m_capacity(inline_capacity) { } Vector(std::initializer_list list) requires(!IsLvalueReference) { ensure_capacity(list.size()); for (auto& item : list) unchecked_append(item); } Vector(Vector&& other) : m_size(other.m_size) , m_capacity(other.m_capacity) , m_outline_buffer(other.m_outline_buffer) { if constexpr (inline_capacity > 0) { if (!m_outline_buffer) { for (size_t i = 0; i < m_size; ++i) { new (&inline_buffer()[i]) StorageType(move(other.inline_buffer()[i])); other.inline_buffer()[i].~StorageType(); } } } other.m_outline_buffer = nullptr; other.m_size = 0; other.reset_capacity(); } Vector(Vector const& other) { ensure_capacity(other.size()); TypedTransfer::copy(data(), other.data(), other.size()); m_size = other.size(); } explicit Vector(Span other) requires(!IsLvalueReference) { ensure_capacity(other.size()); TypedTransfer::copy(data(), other.data(), other.size()); m_size = other.size(); } template Vector(Vector const& other) { ensure_capacity(other.size()); TypedTransfer::copy(data(), other.data(), other.size()); m_size = other.size(); } ~Vector() { clear(); } Span span() { return { data(), size() }; } Span span() const { return { data(), size() }; } operator Span() { return span(); } operator Span() const { return span(); } bool is_empty() const { return size() == 0; } ALWAYS_INLINE size_t size() const { return m_size; } size_t capacity() const { return m_capacity; } ALWAYS_INLINE StorageType* data() { if constexpr (inline_capacity > 0) return m_outline_buffer ? m_outline_buffer : inline_buffer(); return m_outline_buffer; } ALWAYS_INLINE StorageType const* data() const { if constexpr (inline_capacity > 0) return m_outline_buffer ? m_outline_buffer : inline_buffer(); return m_outline_buffer; } ALWAYS_INLINE VisibleType const& at(size_t i) const { VERIFY(i < m_size); if constexpr (contains_reference) return *data()[i]; else return data()[i]; } ALWAYS_INLINE VisibleType& at(size_t i) { VERIFY(i < m_size); if constexpr (contains_reference) return *data()[i]; else return data()[i]; } ALWAYS_INLINE VisibleType const& operator[](size_t i) const { return at(i); } ALWAYS_INLINE VisibleType& operator[](size_t i) { return at(i); } VisibleType const& first() const { return at(0); } VisibleType& first() { return at(0); } VisibleType const& last() const { return at(size() - 1); } VisibleType& last() { return at(size() - 1); } template Optional first_matching(TUnaryPredicate predicate) requires(!contains_reference) { for (size_t i = 0; i < size(); ++i) { if (predicate(at(i))) { return at(i); } } return {}; } template Optional last_matching(TUnaryPredicate predicate) requires(!contains_reference) { for (ssize_t i = size() - 1; i >= 0; --i) { if (predicate(at(i))) { return at(i); } } return {}; } template bool operator==(V const& other) const { if (m_size != other.size()) return false; return TypedTransfer::compare(data(), other.data(), size()); } bool contains_slow(VisibleType const& value) const { for (size_t i = 0; i < size(); ++i) { if (Traits::equals(at(i), value)) return true; } return false; } bool contains_in_range(VisibleType const& value, size_t const start, size_t const end) const { VERIFY(start <= end); VERIFY(end < size()); for (size_t i = start; i <= end; ++i) { if (Traits::equals(at(i), value)) return true; } return false; } #ifndef KERNEL template void insert(size_t index, U&& value) requires(CanBePlacedInsideVector) { MUST(try_insert(index, forward(value))); } template void insert_before_matching(U&& value, TUnaryPredicate predicate, size_t first_index = 0, size_t* inserted_index = nullptr) requires(CanBePlacedInsideVector) { MUST(try_insert_before_matching(forward(value), predicate, first_index, inserted_index)); } void extend(Vector&& other) { MUST(try_extend(move(other))); } void extend(Vector const& other) { MUST(try_extend(other)); } #endif ALWAYS_INLINE void append(T&& value) { if constexpr (contains_reference) MUST(try_append(value)); else MUST(try_append(move(value))); } ALWAYS_INLINE void append(T const& value) requires(!contains_reference) { MUST(try_append(T(value))); } #ifndef KERNEL void append(StorageType const* values, size_t count) { MUST(try_append(values, count)); } #endif template ALWAYS_INLINE void unchecked_append(U&& value) requires(CanBePlacedInsideVector) { VERIFY((size() + 1) <= capacity()); if constexpr (contains_reference) new (slot(m_size)) StorageType(&value); else new (slot(m_size)) StorageType(forward(value)); ++m_size; } ALWAYS_INLINE void unchecked_append(StorageType const* values, size_t count) { if (count == 0) return; VERIFY((size() + count) <= capacity()); TypedTransfer::copy(slot(m_size), values, count); m_size += count; } #ifndef KERNEL template void empend(Args&&... args) requires(!contains_reference) { MUST(try_empend(forward(args)...)); } template void prepend(U&& value) requires(CanBePlacedInsideVector) { MUST(try_insert(0, forward(value))); } void prepend(Vector&& other) { MUST(try_prepend(move(other))); } void prepend(StorageType const* values, size_t count) { MUST(try_prepend(values, count)); } #endif // FIXME: What about assigning from a vector with lower inline capacity? Vector& operator=(Vector&& other) { if (this != &other) { clear(); m_size = other.m_size; m_capacity = other.m_capacity; m_outline_buffer = other.m_outline_buffer; if constexpr (inline_capacity > 0) { if (!m_outline_buffer) { for (size_t i = 0; i < m_size; ++i) { new (&inline_buffer()[i]) StorageType(move(other.inline_buffer()[i])); other.inline_buffer()[i].~StorageType(); } } } other.m_outline_buffer = nullptr; other.m_size = 0; other.reset_capacity(); } return *this; } Vector& operator=(Vector const& other) { if (this != &other) { clear(); ensure_capacity(other.size()); TypedTransfer::copy(data(), other.data(), other.size()); m_size = other.size(); } return *this; } template Vector& operator=(Vector const& other) { clear(); ensure_capacity(other.size()); TypedTransfer::copy(data(), other.data(), other.size()); m_size = other.size(); return *this; } void clear() { clear_with_capacity(); if (m_outline_buffer) { kfree_sized(m_outline_buffer, m_capacity * sizeof(StorageType)); m_outline_buffer = nullptr; } reset_capacity(); } void clear_with_capacity() { for (size_t i = 0; i < m_size; ++i) data()[i].~StorageType(); m_size = 0; } void remove(size_t index) { VERIFY(index < m_size); if constexpr (Traits::is_trivial()) { TypedTransfer::copy(slot(index), slot(index + 1), m_size - index - 1); } else { at(index).~StorageType(); for (size_t i = index + 1; i < m_size; ++i) { new (slot(i - 1)) StorageType(move(at(i))); at(i).~StorageType(); } } --m_size; } void remove(size_t index, size_t count) { if (count == 0) return; VERIFY(index + count > index); VERIFY(index + count <= m_size); if constexpr (Traits::is_trivial()) { TypedTransfer::copy(slot(index), slot(index + count), m_size - index - count); } else { for (size_t i = index; i < index + count; i++) at(i).~StorageType(); for (size_t i = index + count; i < m_size; ++i) { new (slot(i - count)) StorageType(move(at(i))); at(i).~StorageType(); } } m_size -= count; } template bool remove_first_matching(TUnaryPredicate predicate) { for (size_t i = 0; i < size(); ++i) { if (predicate(at(i))) { remove(i); return true; } } return false; } template bool remove_all_matching(TUnaryPredicate predicate) { bool something_was_removed = false; for (size_t i = 0; i < size();) { if (predicate(at(i))) { remove(i); something_was_removed = true; } else { ++i; } } return something_was_removed; } ALWAYS_INLINE T take_last() { VERIFY(!is_empty()); auto value = move(raw_last()); if constexpr (!contains_reference) last().~T(); --m_size; if constexpr (contains_reference) return *value; else return value; } T take_first() { VERIFY(!is_empty()); auto value = move(raw_first()); remove(0); if constexpr (contains_reference) return *value; else return value; } T take(size_t index) { auto value = move(raw_at(index)); remove(index); if constexpr (contains_reference) return *value; else return value; } T unstable_take(size_t index) { VERIFY(index < m_size); swap(raw_at(index), raw_at(m_size - 1)); return take_last(); } template ErrorOr try_insert(size_t index, U&& value) requires(CanBePlacedInsideVector) { if (index > size()) return Error::from_errno(EINVAL); if (index == size()) return try_append(forward(value)); TRY(try_grow_capacity(size() + 1)); ++m_size; if constexpr (Traits::is_trivial()) { TypedTransfer::move(slot(index + 1), slot(index), m_size - index - 1); } else { for (size_t i = size() - 1; i > index; --i) { new (slot(i)) StorageType(move(at(i - 1))); at(i - 1).~StorageType(); } } if constexpr (contains_reference) new (slot(index)) StorageType(&value); else new (slot(index)) StorageType(forward(value)); return {}; } template ErrorOr try_insert_before_matching(U&& value, TUnaryPredicate predicate, size_t first_index = 0, size_t* inserted_index = nullptr) requires(CanBePlacedInsideVector) { for (size_t i = first_index; i < size(); ++i) { if (predicate(at(i))) { TRY(try_insert(i, forward(value))); if (inserted_index) *inserted_index = i; return {}; } } TRY(try_append(forward(value))); if (inserted_index) *inserted_index = size() - 1; return {}; } ErrorOr try_extend(Vector&& other) { if (is_empty() && capacity() <= other.capacity()) { *this = move(other); return {}; } auto other_size = other.size(); Vector tmp = move(other); TRY(try_grow_capacity(size() + other_size)); TypedTransfer::move(data() + m_size, tmp.data(), other_size); m_size += other_size; return {}; } ErrorOr try_extend(Vector const& other) { TRY(try_grow_capacity(size() + other.size())); TypedTransfer::copy(data() + m_size, other.data(), other.size()); m_size += other.m_size; return {}; } ErrorOr try_append(T&& value) { TRY(try_grow_capacity(size() + 1)); if constexpr (contains_reference) new (slot(m_size)) StorageType(&value); else new (slot(m_size)) StorageType(move(value)); ++m_size; return {}; } ErrorOr try_append(T const& value) requires(!contains_reference) { return try_append(T(value)); } ErrorOr try_append(StorageType const* values, size_t count) { if (count == 0) return {}; TRY(try_grow_capacity(size() + count)); TypedTransfer::copy(slot(m_size), values, count); m_size += count; return {}; } template ErrorOr try_empend(Args&&... args) requires(!contains_reference) { TRY(try_grow_capacity(m_size + 1)); new (slot(m_size)) StorageType { forward(args)... }; ++m_size; return {}; } template ErrorOr try_prepend(U&& value) requires(CanBePlacedInsideVector) { return try_insert(0, forward(value)); } ErrorOr try_prepend(Vector&& other) { if (other.is_empty()) return {}; if (is_empty()) { *this = move(other); return {}; } auto other_size = other.size(); TRY(try_grow_capacity(size() + other_size)); for (size_t i = size() + other_size - 1; i >= other.size(); --i) { new (slot(i)) StorageType(move(at(i - other_size))); at(i - other_size).~StorageType(); } Vector tmp = move(other); TypedTransfer::move(slot(0), tmp.data(), tmp.size()); m_size += other_size; return {}; } ErrorOr try_prepend(StorageType const* values, size_t count) { if (count == 0) return {}; TRY(try_grow_capacity(size() + count)); TypedTransfer::move(slot(count), slot(0), m_size); TypedTransfer::copy(slot(0), values, count); m_size += count; return {}; } ErrorOr try_grow_capacity(size_t needed_capacity) { if (m_capacity >= needed_capacity) return {}; return try_ensure_capacity(padded_capacity(needed_capacity)); } ErrorOr try_ensure_capacity(size_t needed_capacity) { if (m_capacity >= needed_capacity) return {}; size_t new_capacity = kmalloc_good_size(needed_capacity * sizeof(StorageType)) / sizeof(StorageType); auto* new_buffer = static_cast(kmalloc_array(new_capacity, sizeof(StorageType))); if (new_buffer == nullptr) return Error::from_errno(ENOMEM); if constexpr (Traits::is_trivial()) { TypedTransfer::copy(new_buffer, data(), m_size); } else { for (size_t i = 0; i < m_size; ++i) { new (&new_buffer[i]) StorageType(move(at(i))); at(i).~StorageType(); } } if (m_outline_buffer) kfree_sized(m_outline_buffer, m_capacity * sizeof(StorageType)); m_outline_buffer = new_buffer; m_capacity = new_capacity; return {}; } ErrorOr try_resize(size_t new_size, bool keep_capacity = false) requires(!contains_reference) { if (new_size <= size()) { shrink(new_size, keep_capacity); return {}; } TRY(try_ensure_capacity(new_size)); for (size_t i = size(); i < new_size; ++i) new (slot(i)) StorageType {}; m_size = new_size; return {}; } ErrorOr try_resize_and_keep_capacity(size_t new_size) requires(!contains_reference) { return try_resize(new_size, true); } void grow_capacity(size_t needed_capacity) { MUST(try_grow_capacity(needed_capacity)); } void ensure_capacity(size_t needed_capacity) { MUST(try_ensure_capacity(needed_capacity)); } void shrink(size_t new_size, bool keep_capacity = false) { VERIFY(new_size <= size()); if (new_size == size()) return; if (new_size == 0) { if (keep_capacity) clear_with_capacity(); else clear(); return; } for (size_t i = new_size; i < size(); ++i) at(i).~StorageType(); m_size = new_size; } void resize(size_t new_size, bool keep_capacity = false) requires(!contains_reference) { MUST(try_resize(new_size, keep_capacity)); } void resize_and_keep_capacity(size_t new_size) requires(!contains_reference) { MUST(try_resize_and_keep_capacity(new_size)); } using ConstIterator = SimpleIterator; using Iterator = SimpleIterator; using ReverseIterator = SimpleReverseIterator; ConstIterator begin() const { return ConstIterator::begin(*this); } Iterator begin() { return Iterator::begin(*this); } ReverseIterator rbegin() { return ReverseIterator::rbegin(*this); } ConstIterator end() const { return ConstIterator::end(*this); } Iterator end() { return Iterator::end(*this); } ReverseIterator rend() { return ReverseIterator::rend(*this); } ALWAYS_INLINE constexpr auto in_reverse() { return ReverseWrapper::in_reverse(*this); } template ConstIterator find_if(TUnaryPredicate&& finder) const { return AK::find_if(begin(), end(), forward(finder)); } template Iterator find_if(TUnaryPredicate&& finder) { return AK::find_if(begin(), end(), forward(finder)); } ConstIterator find(VisibleType const& value) const { return AK::find(begin(), end(), value); } Iterator find(VisibleType const& value) { return AK::find(begin(), end(), value); } Optional find_first_index(VisibleType const& value) const { if (auto const index = AK::find_index(begin(), end(), value); index < size()) { return index; } return {}; } void reverse() { for (size_t i = 0; i < size() / 2; ++i) AK::swap(at(i), at(size() - i - 1)); } private: void reset_capacity() { m_capacity = inline_capacity; } static size_t padded_capacity(size_t capacity) { return max(static_cast(4), capacity + (capacity / 4) + 4); } StorageType* slot(size_t i) { return &data()[i]; } StorageType const* slot(size_t i) const { return &data()[i]; } StorageType* inline_buffer() { static_assert(inline_capacity > 0); return reinterpret_cast(m_inline_buffer_storage); } StorageType const* inline_buffer() const { static_assert(inline_capacity > 0); return reinterpret_cast(m_inline_buffer_storage); } StorageType& raw_last() { return raw_at(size() - 1); } StorageType& raw_first() { return raw_at(0); } StorageType& raw_at(size_t index) { return *slot(index); } size_t m_size { 0 }; size_t m_capacity { 0 }; alignas(StorageType) unsigned char m_inline_buffer_storage[sizeof(StorageType) * inline_capacity]; StorageType* m_outline_buffer { nullptr }; }; template Vector(Args... args) -> Vector>; } using AK::Vector;