/* * Copyright (c) 2018-2020, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include #include #include #include namespace AK { enum class HashSetResult { InsertedNewEntry, ReplacedExistingEntry, KeptExistingEntry }; enum class HashSetExistingEntryBehavior { Keep, Replace }; template class HashTableIterator { friend HashTableType; public: bool operator==(const HashTableIterator& other) const { return m_bucket == other.m_bucket; } bool operator!=(const HashTableIterator& other) const { return m_bucket != other.m_bucket; } T& operator*() { return *m_bucket->slot(); } T* operator->() { return m_bucket->slot(); } void operator++() { skip_to_next(); } private: void skip_to_next() { if (!m_bucket) return; do { ++m_bucket; if (m_bucket->used) return; } while (!m_bucket->end); if (m_bucket->end) m_bucket = nullptr; } explicit HashTableIterator(BucketType* bucket) : m_bucket(bucket) { } BucketType* m_bucket { nullptr }; }; template class OrderedHashTableIterator { friend OrderedHashTableType; public: bool operator==(const OrderedHashTableIterator& other) const { return m_bucket == other.m_bucket; } bool operator!=(const OrderedHashTableIterator& other) const { return m_bucket != other.m_bucket; } T& operator*() { return *m_bucket->slot(); } T* operator->() { return m_bucket->slot(); } void operator++() { m_bucket = m_bucket->next; } void operator--() { m_bucket = m_bucket->previous; } private: explicit OrderedHashTableIterator(BucketType* bucket) : m_bucket(bucket) { } BucketType* m_bucket { nullptr }; }; template class HashTable { static constexpr size_t load_factor_in_percent = 60; struct Bucket { bool used; bool deleted; bool end; alignas(T) u8 storage[sizeof(T)]; T* slot() { return reinterpret_cast(storage); } const T* slot() const { return reinterpret_cast(storage); } }; struct OrderedBucket { OrderedBucket* previous; OrderedBucket* next; bool used; bool deleted; alignas(T) u8 storage[sizeof(T)]; T* slot() { return reinterpret_cast(storage); } const T* slot() const { return reinterpret_cast(storage); } }; using BucketType = Conditional; struct CollectionData { }; struct OrderedCollectionData { BucketType* head { nullptr }; BucketType* tail { nullptr }; }; using CollectionDataType = Conditional; public: HashTable() = default; explicit HashTable(size_t capacity) { rehash(capacity); } ~HashTable() { if (!m_buckets) return; for (size_t i = 0; i < m_capacity; ++i) { if (m_buckets[i].used) m_buckets[i].slot()->~T(); } kfree_sized(m_buckets, size_in_bytes(m_capacity)); } HashTable(const HashTable& other) { rehash(other.capacity()); for (auto& it : other) set(it); } HashTable& operator=(const HashTable& other) { HashTable temporary(other); swap(*this, temporary); return *this; } HashTable(HashTable&& other) noexcept : m_buckets(other.m_buckets) , m_collection_data(other.m_collection_data) , m_size(other.m_size) , m_capacity(other.m_capacity) , m_deleted_count(other.m_deleted_count) { other.m_size = 0; other.m_capacity = 0; other.m_deleted_count = 0; other.m_buckets = nullptr; if constexpr (IsOrdered) other.m_collection_data = { nullptr, nullptr }; } HashTable& operator=(HashTable&& other) noexcept { HashTable temporary { move(other) }; swap(*this, temporary); return *this; } friend void swap(HashTable& a, HashTable& b) noexcept { swap(a.m_buckets, b.m_buckets); swap(a.m_size, b.m_size); swap(a.m_capacity, b.m_capacity); swap(a.m_deleted_count, b.m_deleted_count); if constexpr (IsOrdered) swap(a.m_collection_data, b.m_collection_data); } [[nodiscard]] bool is_empty() const { return m_size == 0; } [[nodiscard]] size_t size() const { return m_size; } [[nodiscard]] size_t capacity() const { return m_capacity; } template ErrorOr try_set_from(U (&from_array)[N]) { for (size_t i = 0; i < N; ++i) TRY(try_set(from_array[i])); return {}; } template void set_from(U (&from_array)[N]) { MUST(try_set_from(from_array)); } void ensure_capacity(size_t capacity) { VERIFY(capacity >= size()); rehash(capacity * 2); } ErrorOr try_ensure_capacity(size_t capacity) { VERIFY(capacity >= size()); return try_rehash(capacity * 2); } [[nodiscard]] bool contains(T const& value) const { return find(value) != end(); } template K> requires(IsSame>) [[nodiscard]] bool contains(K const& value) const { return find(value) != end(); } using Iterator = Conditional, HashTableIterator>; [[nodiscard]] Iterator begin() { if constexpr (IsOrdered) return Iterator(m_collection_data.head); for (size_t i = 0; i < m_capacity; ++i) { if (m_buckets[i].used) return Iterator(&m_buckets[i]); } return end(); } [[nodiscard]] Iterator end() { return Iterator(nullptr); } using ConstIterator = Conditional, HashTableIterator>; [[nodiscard]] ConstIterator begin() const { if constexpr (IsOrdered) return ConstIterator(m_collection_data.head); for (size_t i = 0; i < m_capacity; ++i) { if (m_buckets[i].used) return ConstIterator(&m_buckets[i]); } return end(); } [[nodiscard]] ConstIterator end() const { return ConstIterator(nullptr); } void clear() { *this = HashTable(); } void clear_with_capacity() { if constexpr (!Detail::IsTriviallyDestructible) { for (auto* bucket : *this) bucket->~T(); } __builtin_memset(m_buckets, 0, size_in_bytes(capacity())); m_size = 0; m_deleted_count = 0; if constexpr (IsOrdered) m_collection_data = { nullptr, nullptr }; else m_buckets[m_capacity].end = true; } template ErrorOr try_set(U&& value, HashSetExistingEntryBehavior existing_entry_behavior = HashSetExistingEntryBehavior::Replace) { auto* bucket = TRY(try_lookup_for_writing(value)); if (bucket->used) { if (existing_entry_behavior == HashSetExistingEntryBehavior::Keep) return HashSetResult::KeptExistingEntry; (*bucket->slot()) = forward(value); return HashSetResult::ReplacedExistingEntry; } new (bucket->slot()) T(forward(value)); bucket->used = true; if (bucket->deleted) { bucket->deleted = false; --m_deleted_count; } if constexpr (IsOrdered) { if (!m_collection_data.head) [[unlikely]] { m_collection_data.head = bucket; } else { bucket->previous = m_collection_data.tail; m_collection_data.tail->next = bucket; } m_collection_data.tail = bucket; } ++m_size; return HashSetResult::InsertedNewEntry; } template HashSetResult set(U&& value, HashSetExistingEntryBehavior existing_entry_behaviour = HashSetExistingEntryBehavior::Replace) { return MUST(try_set(forward(value), existing_entry_behaviour)); } template [[nodiscard]] Iterator find(unsigned hash, TUnaryPredicate predicate) { return Iterator(lookup_with_hash(hash, move(predicate))); } [[nodiscard]] Iterator find(T const& value) { return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); }); } template [[nodiscard]] ConstIterator find(unsigned hash, TUnaryPredicate predicate) const { return ConstIterator(lookup_with_hash(hash, move(predicate))); } [[nodiscard]] ConstIterator find(T const& value) const { return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); }); } // FIXME: Support for predicates, while guaranteeing that the predicate call // does not call a non trivial constructor each time invoked template K> requires(IsSame>) [[nodiscard]] Iterator find(K const& value) { return find(Traits::hash(value), [&](auto& other) { return Traits::equals(other, value); }); } template K, typename TUnaryPredicate> requires(IsSame>) [[nodiscard]] Iterator find(K const& value, TUnaryPredicate predicate) { return find(Traits::hash(value), move(predicate)); } template K> requires(IsSame>) [[nodiscard]] ConstIterator find(K const& value) const { return find(Traits::hash(value), [&](auto& other) { return Traits::equals(other, value); }); } template K, typename TUnaryPredicate> requires(IsSame>) [[nodiscard]] ConstIterator find(K const& value, TUnaryPredicate predicate) const { return find(Traits::hash(value), move(predicate)); } bool remove(const T& value) { auto it = find(value); if (it != end()) { remove(it); return true; } return false; } template K> requires(IsSame>) bool remove(K const& value) { auto it = find(value); if (it != end()) { remove(it); return true; } return false; } void remove(Iterator iterator) { VERIFY(iterator.m_bucket); auto& bucket = *iterator.m_bucket; VERIFY(bucket.used); VERIFY(!bucket.deleted); if constexpr (!IsOrdered) VERIFY(!bucket.end); delete_bucket(bucket); --m_size; ++m_deleted_count; } template bool remove_all_matching(TUnaryPredicate predicate) { size_t removed_count = 0; for (size_t i = 0; i < m_capacity; ++i) { auto& bucket = m_buckets[i]; if (bucket.used && predicate(*bucket.slot())) { delete_bucket(bucket); ++removed_count; } } if (removed_count) { m_deleted_count += removed_count; m_size -= removed_count; return true; } return false; } private: void insert_during_rehash(T&& value) { auto& bucket = lookup_for_writing(value); new (bucket.slot()) T(move(value)); bucket.used = true; if constexpr (IsOrdered) { if (!m_collection_data.head) [[unlikely]] { m_collection_data.head = &bucket; } else { bucket.previous = m_collection_data.tail; m_collection_data.tail->next = &bucket; } m_collection_data.tail = &bucket; } } [[nodiscard]] static constexpr size_t size_in_bytes(size_t capacity) { if constexpr (IsOrdered) { return sizeof(BucketType) * capacity; } else { return sizeof(BucketType) * (capacity + 1); } } ErrorOr try_rehash(size_t new_capacity) { new_capacity = max(new_capacity, static_cast(4)); new_capacity = kmalloc_good_size(new_capacity * sizeof(BucketType)) / sizeof(BucketType); auto* old_buckets = m_buckets; auto old_capacity = m_capacity; Iterator old_iter = begin(); auto* new_buckets = kmalloc(size_in_bytes(new_capacity)); if (!new_buckets) return Error::from_errno(ENOMEM); m_buckets = (BucketType*)new_buckets; __builtin_memset(m_buckets, 0, size_in_bytes(new_capacity)); m_capacity = new_capacity; m_deleted_count = 0; if constexpr (IsOrdered) m_collection_data = { nullptr, nullptr }; else m_buckets[m_capacity].end = true; if (!old_buckets) return {}; for (auto it = move(old_iter); it != end(); ++it) { insert_during_rehash(move(*it)); it->~T(); } kfree_sized(old_buckets, size_in_bytes(old_capacity)); return {}; } void rehash(size_t new_capacity) { MUST(try_rehash(new_capacity)); } template [[nodiscard]] BucketType* lookup_with_hash(unsigned hash, TUnaryPredicate predicate) const { if (is_empty()) return nullptr; for (;;) { auto& bucket = m_buckets[hash % m_capacity]; if (bucket.used && predicate(*bucket.slot())) return &bucket; if (!bucket.used && !bucket.deleted) return nullptr; hash = double_hash(hash); } } ErrorOr try_lookup_for_writing(T const& value) { // FIXME: Maybe overrun the "allowed" load factor to avoid OOM // If we are allowed to do that, separate that logic from // the normal lookup_for_writing if (should_grow()) TRY(try_rehash(capacity() * 2)); auto hash = TraitsForT::hash(value); BucketType* first_empty_bucket = nullptr; for (;;) { auto& bucket = m_buckets[hash % m_capacity]; if (bucket.used && TraitsForT::equals(*bucket.slot(), value)) return &bucket; if (!bucket.used) { if (!first_empty_bucket) first_empty_bucket = &bucket; if (!bucket.deleted) return const_cast(first_empty_bucket); } hash = double_hash(hash); } } [[nodiscard]] BucketType& lookup_for_writing(T const& value) { return *MUST(try_lookup_for_writing(value)); } [[nodiscard]] size_t used_bucket_count() const { return m_size + m_deleted_count; } [[nodiscard]] bool should_grow() const { return ((used_bucket_count() + 1) * 100) >= (m_capacity * load_factor_in_percent); } void delete_bucket(auto& bucket) { bucket.slot()->~T(); bucket.used = false; bucket.deleted = true; if constexpr (IsOrdered) { if (bucket.previous) bucket.previous->next = bucket.next; else m_collection_data.head = bucket.next; if (bucket.next) bucket.next->previous = bucket.previous; else m_collection_data.tail = bucket.previous; } } BucketType* m_buckets { nullptr }; [[no_unique_address]] CollectionDataType m_collection_data; size_t m_size { 0 }; size_t m_capacity { 0 }; size_t m_deleted_count { 0 }; }; } using AK::HashTable; using AK::OrderedHashTable;