/* * Copyright (c) 2020, the SerenityOS developers. * Copyright (c) 2021, Idan Horowitz * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include namespace AK { // Obsoleted by LibCore/{Big, Little}EndianInputBitStream. class InputBitStream final : public InputStream { public: explicit InputBitStream(InputStream& stream) : m_stream(stream) { } size_t read(Bytes bytes) override { if (has_any_error()) return 0; size_t nread = 0; if (bytes.size() >= 1) { if (m_next_byte.has_value()) { bytes[0] = m_next_byte.value(); m_next_byte.clear(); ++nread; } } return nread + m_stream.read(bytes.slice(nread)); } bool read_or_error(Bytes bytes) override { if (read(bytes) != bytes.size()) { set_fatal_error(); return false; } return true; } bool unreliable_eof() const override { return !m_next_byte.has_value() && m_stream.unreliable_eof(); } bool discard_or_error(size_t count) override { if (count >= 1) { if (m_next_byte.has_value()) { m_next_byte.clear(); --count; } } return m_stream.discard_or_error(count); } u64 read_bits(size_t count) { u64 result = 0; size_t nread = 0; while (nread < count) { if (m_stream.has_any_error()) { set_fatal_error(); return 0; } if (m_next_byte.has_value()) { auto const bit = (m_next_byte.value() >> m_bit_offset) & 1; result |= bit << nread; ++nread; if (m_bit_offset++ == 7) m_next_byte.clear(); } else { m_stream >> m_next_byte; m_bit_offset = 0; } } return result; } u64 read_bits_big_endian(size_t count) { u64 result = 0; size_t nread = 0; while (nread < count) { if (m_stream.has_any_error()) { set_fatal_error(); return 0; } if (m_next_byte.has_value()) { // read an entire byte if (((count - nread) >= 8) && m_bit_offset == 0) { // shift existing bytes over result <<= 8; result |= m_next_byte.value(); nread += 8; m_next_byte.clear(); } else { auto const bit = (m_next_byte.value() >> (7 - m_bit_offset)) & 1; result <<= 1; result |= bit; ++nread; if (m_bit_offset++ == 7) m_next_byte.clear(); } } else { m_stream >> m_next_byte; m_bit_offset = 0; } } return result; } bool read_bit() { return static_cast(read_bits(1)); } bool read_bit_big_endian() { return static_cast(read_bits_big_endian(1)); } void align_to_byte_boundary() { if (m_next_byte.has_value()) m_next_byte.clear(); } bool handle_any_error() override { bool handled_errors = m_stream.handle_any_error(); return Stream::handle_any_error() || handled_errors; } private: Optional m_next_byte; size_t m_bit_offset { 0 }; InputStream& m_stream; }; class OutputBitStream final : public OutputStream { public: explicit OutputBitStream(OutputStream& stream) : m_stream(stream) { } // WARNING: write aligns to the next byte boundary before writing, if unaligned writes are needed this should be rewritten size_t write(ReadonlyBytes bytes) override { if (has_any_error()) return 0; align_to_byte_boundary(); if (has_fatal_error()) // if align_to_byte_boundary failed return 0; return m_stream.write(bytes); } bool write_or_error(ReadonlyBytes bytes) override { if (write(bytes) < bytes.size()) { set_fatal_error(); return false; } return true; } void write_bits(u32 bits, size_t count) { VERIFY(count <= 32); if (count == 32 && !m_next_byte.has_value()) { // fast path for aligned 32 bit writes m_stream << bits; return; } size_t n_written = 0; while (n_written < count) { if (m_stream.has_any_error()) { set_fatal_error(); return; } if (m_next_byte.has_value()) { m_next_byte.value() |= ((bits >> n_written) & 1) << m_bit_offset; ++n_written; if (m_bit_offset++ == 7) { m_stream << m_next_byte.value(); m_next_byte.clear(); } } else if (count - n_written >= 16) { // fast path for aligned 16 bit writes m_stream << (u16)((bits >> n_written) & 0xFFFF); n_written += 16; } else if (count - n_written >= 8) { // fast path for aligned 8 bit writes m_stream << (u8)((bits >> n_written) & 0xFF); n_written += 8; } else { m_bit_offset = 0; m_next_byte = 0; } } } void write_bit(bool bit) { write_bits(bit, 1); } void align_to_byte_boundary() { if (m_next_byte.has_value()) { if (!m_stream.write_or_error(ReadonlyBytes { &m_next_byte.value(), 1 })) { set_fatal_error(); } m_next_byte.clear(); } } size_t bit_offset() const { return m_bit_offset; } private: Optional m_next_byte; size_t m_bit_offset { 0 }; OutputStream& m_stream; }; } using AK::InputBitStream; using AK::OutputBitStream;