/* * Copyright (c) 2018-2020, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include namespace AK { static inline void atomic_signal_fence(MemoryOrder order) noexcept { return __atomic_signal_fence(order); } static inline void atomic_thread_fence(MemoryOrder order) noexcept { return __atomic_thread_fence(order); } static inline void full_memory_barrier() noexcept { atomic_signal_fence(AK::MemoryOrder::memory_order_acq_rel); atomic_thread_fence(AK::MemoryOrder::memory_order_acq_rel); } template static inline T atomic_exchange(volatile T* var, T desired, MemoryOrder order = memory_order_seq_cst) noexcept { return __atomic_exchange_n(var, desired, order); } template> static inline V* atomic_exchange(volatile T** var, V* desired, MemoryOrder order = memory_order_seq_cst) noexcept { return __atomic_exchange_n(var, desired, order); } template> static inline V* atomic_exchange(volatile T** var, std::nullptr_t, MemoryOrder order = memory_order_seq_cst) noexcept { return __atomic_exchange_n(const_cast(var), nullptr, order); } template [[nodiscard]] static inline bool atomic_compare_exchange_strong(volatile T* var, T& expected, T desired, MemoryOrder order = memory_order_seq_cst) noexcept { if (order == memory_order_acq_rel || order == memory_order_release) return __atomic_compare_exchange_n(var, &expected, desired, false, memory_order_release, memory_order_acquire); return __atomic_compare_exchange_n(var, &expected, desired, false, order, order); } template> [[nodiscard]] static inline bool atomic_compare_exchange_strong(volatile T** var, V*& expected, V* desired, MemoryOrder order = memory_order_seq_cst) noexcept { if (order == memory_order_acq_rel || order == memory_order_release) return __atomic_compare_exchange_n(var, &expected, desired, false, memory_order_release, memory_order_acquire); return __atomic_compare_exchange_n(var, &expected, desired, false, order, order); } template> [[nodiscard]] static inline bool atomic_compare_exchange_strong(volatile T** var, V*& expected, std::nullptr_t, MemoryOrder order = memory_order_seq_cst) noexcept { if (order == memory_order_acq_rel || order == memory_order_release) return __atomic_compare_exchange_n(const_cast(var), &expected, nullptr, false, memory_order_release, memory_order_acquire); return __atomic_compare_exchange_n(const_cast(var), &expected, nullptr, false, order, order); } template static inline T atomic_fetch_add(volatile T* var, T val, MemoryOrder order = memory_order_seq_cst) noexcept { return __atomic_fetch_add(var, val, order); } template static inline T atomic_fetch_sub(volatile T* var, T val, MemoryOrder order = memory_order_seq_cst) noexcept { return __atomic_fetch_sub(var, val, order); } template static inline T atomic_fetch_and(volatile T* var, T val, MemoryOrder order = memory_order_seq_cst) noexcept { return __atomic_fetch_and(var, val, order); } template static inline T atomic_fetch_or(volatile T* var, T val, MemoryOrder order = memory_order_seq_cst) noexcept { return __atomic_fetch_or(var, val, order); } template static inline T atomic_fetch_xor(volatile T* var, T val, MemoryOrder order = memory_order_seq_cst) noexcept { return __atomic_fetch_xor(var, val, order); } template static inline T atomic_load(volatile T* var, MemoryOrder order = memory_order_seq_cst) noexcept { return __atomic_load_n(var, order); } template> static inline V* atomic_load(volatile T** var, MemoryOrder order = memory_order_seq_cst) noexcept { return __atomic_load_n(const_cast(var), order); } template static inline void atomic_store(volatile T* var, T desired, MemoryOrder order = memory_order_seq_cst) noexcept { __atomic_store_n(var, desired, order); } template> static inline void atomic_store(volatile T** var, V* desired, MemoryOrder order = memory_order_seq_cst) noexcept { __atomic_store_n(var, desired, order); } template> static inline void atomic_store(volatile T** var, std::nullptr_t, MemoryOrder order = memory_order_seq_cst) noexcept { __atomic_store_n(const_cast(var), nullptr, order); } template static inline bool atomic_is_lock_free(volatile T* ptr = nullptr) noexcept { return __atomic_is_lock_free(sizeof(T), ptr); } template class Atomic { // FIXME: This should work through concepts/requires clauses, but according to the compiler, // "IsIntegral is not more specialized than IsFundamental". // Additionally, Enums are not fundamental types except that they behave like them in every observable way. static_assert(IsFundamental | IsEnum, "Atomic doesn't support non-primitive types, because it relies on compiler intrinsics. If you put non-primitives into it, you'll get linker errors like \"undefined reference to __atomic_store\"."); T m_value { 0 }; public: Atomic() noexcept = default; Atomic& operator=(const Atomic&) volatile = delete; Atomic& operator=(Atomic&&) volatile = delete; Atomic(const Atomic&) = delete; Atomic(Atomic&&) = delete; constexpr Atomic(T val) noexcept : m_value(val) { } volatile T* ptr() noexcept { return &m_value; } T exchange(T desired, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { // We use this hack to prevent unnecessary initialization, even if T has a default constructor. // NOTE: Will need to investigate if it pessimizes the generated assembly. alignas(T) u8 buffer[sizeof(T)]; T* ret = reinterpret_cast(buffer); __atomic_exchange(&m_value, &desired, ret, order); return *ret; } [[nodiscard]] bool compare_exchange_strong(T& expected, T desired, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { if (order == memory_order_acq_rel || order == memory_order_release) return __atomic_compare_exchange(&m_value, &expected, &desired, false, memory_order_release, memory_order_acquire); return __atomic_compare_exchange(&m_value, &expected, &desired, false, order, order); } ALWAYS_INLINE operator T() const volatile noexcept { return load(); } ALWAYS_INLINE T load(MemoryOrder order = DefaultMemoryOrder) const volatile noexcept { alignas(T) u8 buffer[sizeof(T)]; T* ret = reinterpret_cast(buffer); __atomic_load(&m_value, ret, order); return *ret; } // NOLINTNEXTLINE(misc-unconventional-assign-operator) We want operator= to exchange the value, so returning an object of type Atomic& here does not make sense ALWAYS_INLINE T operator=(T desired) volatile noexcept { store(desired); return desired; } ALWAYS_INLINE void store(T desired, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { __atomic_store(&m_value, &desired, order); } ALWAYS_INLINE bool is_lock_free() const volatile noexcept { return __atomic_is_lock_free(sizeof(m_value), &m_value); } }; template class Atomic { T m_value { 0 }; public: Atomic() noexcept = default; Atomic& operator=(const Atomic&) volatile = delete; Atomic& operator=(Atomic&&) volatile = delete; Atomic(const Atomic&) = delete; Atomic(Atomic&&) = delete; constexpr Atomic(T val) noexcept : m_value(val) { } volatile T* ptr() noexcept { return &m_value; } T exchange(T desired, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { return __atomic_exchange_n(&m_value, desired, order); } [[nodiscard]] bool compare_exchange_strong(T& expected, T desired, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { if (order == memory_order_acq_rel || order == memory_order_release) return __atomic_compare_exchange_n(&m_value, &expected, desired, false, memory_order_release, memory_order_acquire); return __atomic_compare_exchange_n(&m_value, &expected, desired, false, order, order); } ALWAYS_INLINE T operator++() volatile noexcept { return fetch_add(1) + 1; } ALWAYS_INLINE T operator++(int) volatile noexcept { return fetch_add(1); } ALWAYS_INLINE T operator+=(T val) volatile noexcept { return fetch_add(val) + val; } ALWAYS_INLINE T fetch_add(T val, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { return __atomic_fetch_add(&m_value, val, order); } ALWAYS_INLINE T operator--() volatile noexcept { return fetch_sub(1) - 1; } ALWAYS_INLINE T operator--(int) volatile noexcept { return fetch_sub(1); } ALWAYS_INLINE T operator-=(T val) volatile noexcept { return fetch_sub(val) - val; } ALWAYS_INLINE T fetch_sub(T val, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { return __atomic_fetch_sub(&m_value, val, order); } ALWAYS_INLINE T operator&=(T val) volatile noexcept { return fetch_and(val) & val; } ALWAYS_INLINE T fetch_and(T val, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { return __atomic_fetch_and(&m_value, val, order); } ALWAYS_INLINE T operator|=(T val) volatile noexcept { return fetch_or(val) | val; } ALWAYS_INLINE T fetch_or(T val, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { return __atomic_fetch_or(&m_value, val, order); } ALWAYS_INLINE T operator^=(T val) volatile noexcept { return fetch_xor(val) ^ val; } ALWAYS_INLINE T fetch_xor(T val, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { return __atomic_fetch_xor(&m_value, val, order); } ALWAYS_INLINE operator T() const volatile noexcept { return load(); } ALWAYS_INLINE T load(MemoryOrder order = DefaultMemoryOrder) const volatile noexcept { return __atomic_load_n(&m_value, order); } // NOLINTNEXTLINE(misc-unconventional-assign-operator) We want operator= to exchange the value, so returning an object of type Atomic& here does not make sense ALWAYS_INLINE T operator=(T desired) volatile noexcept { store(desired); return desired; } ALWAYS_INLINE void store(T desired, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { __atomic_store_n(&m_value, desired, order); } ALWAYS_INLINE bool is_lock_free() const volatile noexcept { return __atomic_is_lock_free(sizeof(m_value), &m_value); } }; template class Atomic { T* m_value { nullptr }; public: Atomic() noexcept = default; Atomic& operator=(const Atomic&) volatile = delete; Atomic& operator=(Atomic&&) volatile = delete; Atomic(const Atomic&) = delete; Atomic(Atomic&&) = delete; constexpr Atomic(T* val) noexcept : m_value(val) { } volatile T** ptr() noexcept { return &m_value; } T* exchange(T* desired, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { return __atomic_exchange_n(&m_value, desired, order); } [[nodiscard]] bool compare_exchange_strong(T*& expected, T* desired, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { if (order == memory_order_acq_rel || order == memory_order_release) return __atomic_compare_exchange_n(&m_value, &expected, desired, false, memory_order_release, memory_order_acquire); return __atomic_compare_exchange_n(&m_value, &expected, desired, false, order, order); } T* operator++() volatile noexcept { return fetch_add(1) + 1; } T* operator++(int) volatile noexcept { return fetch_add(1); } T* operator+=(ptrdiff_t val) volatile noexcept { return fetch_add(val) + val; } T* fetch_add(ptrdiff_t val, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { return __atomic_fetch_add(&m_value, val * sizeof(*m_value), order); } T* operator--() volatile noexcept { return fetch_sub(1) - 1; } T* operator--(int) volatile noexcept { return fetch_sub(1); } T* operator-=(ptrdiff_t val) volatile noexcept { return fetch_sub(val) - val; } T* fetch_sub(ptrdiff_t val, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { return __atomic_fetch_sub(&m_value, val * sizeof(*m_value), order); } operator T*() const volatile noexcept { return load(); } T* load(MemoryOrder order = DefaultMemoryOrder) const volatile noexcept { return __atomic_load_n(&m_value, order); } // NOLINTNEXTLINE(misc-unconventional-assign-operator) We want operator= to exchange the value, so returning an object of type Atomic& here does not make sense T* operator=(T* desired) volatile noexcept { store(desired); return desired; } void store(T* desired, MemoryOrder order = DefaultMemoryOrder) volatile noexcept { __atomic_store_n(&m_value, desired, order); } bool is_lock_free() const volatile noexcept { return __atomic_is_lock_free(sizeof(m_value), &m_value); } }; } using AK::Atomic; using AK::full_memory_barrier;