Age | Commit message (Collapse) | Author |
|
Different thread highlights between widgets lead to different
visual weights between splitters, even when they have the same
width or height. This means some splitters look best at odd
sizes while others even. This sets the default spacing to the
most commonly used, depending on orientation, and adjusts
spacing for a few apps based on the new paint rect.
The most consistent look across apps requires some manual
tweaking occassionally. Knurlheads, use your discretion!
|
|
Splitters could be resized in such an order that all their remaining
children were fixed size, leading to unfillable gaps on resize events.
HackStudio and TextEditor already had logic to handle this edge case,
so this patch factors it into a general solution for all Splitters.
At least one widget is now guaranteed to be resizeable after a child
is removed.
|
|
This gives Splitters more versatility when the right resizee is
intended to remain fixed or be toggled on and off.
|
|
Previously, the rect began on the edge of the first widget instead of
immediately after, causing an overpaint visible on hover.
|
|
This will verify that the signature of the ephemeral key used in the
DHE and ECDHE key exchanges is actually generated by the server.
This verification is done using the first certificate provided by the
server, however the validity of this certificate is not checked here.
Instead this code expects the validity to be checked earlier by
`TLSv12::handle_certificate`.
|
|
This add an implementation for the EMSA-PKCS1-V1_5-ENCODE function from
RFC8017 section 9.2. The verification of this encoding is implemented by
simply encoding the message to be verified, and then comparing the two
encoded string.
The digest info for the different hash function is from RFC8017 section
9.2 notes 1. These byte sequences are actually ASN.1 encoded data,
however these are always constant for a specific hash function and can
be treated as opaque byte sequences.
|
|
NotUnderstood will generate a TLS alert with an InternalError instead of
crashing the RequestServer.
|
|
|
|
|
|
Previously the target result was only a partial completion.
|
|
Previously, the names of declarations where stored as a simple
StringView.
Because of that, we couldn't parse out-of-line function definitions,
which have qualified names.
For example, we couldn't parse the following snippet:
```
void MyClass::foo(){}
```
To fix this, we now store the name of a declaration with a
ASTNode::Name node, which represents a qualified named.
|
|
We were erroneously setting the projection matrix when `GL_MODELVIEW`
was supplied.
|
|
Do not convert to float too early. Additionally, handle some error
cases for the input parameters.
|
|
|
|
Our API still specifies it as a double, but internally we communicate a
float to the rasterizer. Additionally, clamp the value to 0..1 as
described in the spec.
|
|
Our implementation keeps the top-most item on the matrix stacks in a
member variable, so we can always use that instead of considering the
actual stack.
Additionally, the current matrix mode should not influence retrieving
the projection or model view matrix.
|
|
No functional changes.
|
|
This fixes the issue where e.g. `299.97` would be cast to an integer
value of `299`, whereas the pixel's center would lie at `299.5` and
would then erroneously be excluded.
|
|
Currently, LibSoftGPU is still OpenGL-minded in that it uses a
coordinate system with the origin of `(0, 0)` at the lower-left of
textures, buffers and window coordinates. Because we are blitting to a
`Gfx::Bitmap` that has the origin at the top-left, we need to flip the
Y-coordinates somewhere in the rasterization logic.
We used to do this during conversion of NDC-coordinates to window
coordinates. This resulted in some incorrect behavior when
rasterization did not pass through the vertex transformation logic,
e.g. when calling `glDrawPixels`.
This changes the coordinate system to OpenGL's throughout, only to blit
the final color buffer upside down to the target bitmap. This fixes
drawing to the depth buffer directly resulting in upside down images.
|
|
No functional changes.
|
|
|
|
|
|
We get `double`s as input, so convert them to `float` first.
|
|
Between the OpenGL client and server, a lot of data type and color
conversion needs to happen. We are performing these conversions both in
`LibSoftGPU` and `LibGL`, which is not ideal. Additionally, some
concepts like the color, depth and stencil buffers should share their
logic but have separate implementations.
This is the first step towards generalizing our `LibSoftGPU` frame
buffer: a generalized `Typed3DBuffer` is introduced for arbitrary 3D
value storage and retrieval, and `Typed2DBuffer` wraps around it to
provide in an easy-to-use 2D pixel buffer. The color, depth and stencil
buffers are replaced by `Typed2DBuffer` and are now managed by the new
`FrameBuffer` class.
The `Image` class now uses multiple `Typed3DBuffer`s for layers and
mipmap levels. Additionally, the textures are now always stored as
BGRA8888, only converting between formats when reading or writing
pixels.
Ideally this refactor should have no functional changes, but some
graphical glitches in Grim Fandango seem to be fixed and most OpenGL
ports get an FPS boost on my machine. :^)
|
|
|
|
This function was added as a FIXME but was then arbitrarily invoked in
the rest of `Device`. We are better off removing this FIXME for now and
reevaluate introducing multithreading later on, so the code is not
littered with useless empty function calls.
|
|
|
|
Let's not do a `float -> double -> float` roundtrip. :^)
|
|
We check for primitive support in `glEnd()`, so we do not need to
preemptively reject the mode in `glBegin()`. This allows `glBegin()` to
be invoked with `GL_POINTS`, for example.
|
|
As there's a somewhat active development going on, let's keep the
expected behaviour under tests to make sure nothing blows up :^)
|
|
'ExpectationError' is hardly an actionable error message.
|
|
Previously would show the list of history items starting from
an index of 0.
This is a bit misleading though. Running `!0` would actually cause
the parser to error out and prevent you from running the command.
|
|
We need to set Window::m_invalidated_frame to true when invalidating
the title, otherwise we may miss re-rendering the frame if nothing
else triggers it.
|
|
When using the stack tab as root LibSymbolication uses this file to
provide Kernel symbols.
|
|
Unlike all the other CSS properties, 'float' is special, and can only be
accessed via 'cssFloat' on CSSStyleDeclaration. So this patch adds
support for that. 1 point on ACID3! :^)
|
|
This is what the spec wants us to do.
|
|
This necessitated making HTMLParser ref-counted, and having it register
itself with Document when created. That makes it possible for scripts to
add new input at the current parser insertion point.
There is now a reference cycle between Document and HTMLParser. This
cycle is explicitly broken by calling Document::detach_parser() at the
end of HTMLParser::run().
This is a huge progression on ACID3, from 31% to 49%! :^)
|
|
When calculating how much space is available for inline content between
left and right floated elements, we have to use coordinates in the
containing block's coordinate space, since that's what floats use.
This fixes an issue where text would sometimes overlap floats.
|
|
|
|
We were subtracting the content width of right-floated boxes from their
X position for no reason. Removing this makes floats snuggle up to each
other on the right side. :^)
|
|
This was caused by the freestanding margin_box_rect() using 0 for the
content height instead of the actual content height.
|
|
|
|
This makes it much more obvious what the difference between get() and
get_mutable() is.
|
|
When encountering a box that claims to have block-level children, but
its CSS display type isn't actually "flow" inside, we would previously
crash due to a VERIFY() failure.
However, many sites choke on this due to freestanding table-related
boxes like those created by "table-row" and "table-row-group".
We're supposed to fix those up by wrapping them in a full set of table
boxes during layout tree construction, but that algorithm obviously
isn't working correctly in all cases. So let's work around the crashes
for now, allowing many more sites to load (even if visually incorrect.)
This is a rather monstrous hack, and we should get rid of it as soon as
it's not needed anymore.
|
|
"5em" means 5*font-size, but by forcing "em" to mean the presentation
size of the bitmap font actually used, we broke a bunch of layouts that
depended on a correct interpretation of "em".
This means that "em" units will no longer be relative to the exact
size of the bitmap font in use, but I think that's a compromise we'll
have to make, since accurate layouts are more important.
This yields a visual progression on both ACID2 and ACID3. :^)
|
|
|
|
Previously, these were added during layout. This didn't fit into the new
world where layout doesn't mutate the tree incrementally, so this patch
adds logic to Layout::TreeBuilder for adding a marker to each list-item
box after its children have been constructed.
|
|
This patch adds a map of Layout::Node to FormattingState::NodeState.
Instead of updating layout nodes incrementally as layout progresses
through the formatting contexts, all updates are now written to the
corresponding NodeState instead.
At the end of layout, FormattingState::commit() is called, which
transfers all the values from the NodeState objects to the Node.
This will soon allow us to perform completely non-destructive layouts
which don't affect the tree.
Note that there are many imperfections here, and still many places
where we assign to the NodeState, but later read directly from the Node
instead. I'm just committing at this stage to make subsequent diffs
easier to understand.
|
|
The purpose of this new object will be to keep track of various states
during an ongoing layout.
Until now, we've been updating layout tree nodes as we go during layout,
which adds an invisible layer of implicit serialization to the whole
layout system.
My idea with FormattingState is that running layout will produce a
result entirely contained within the FormattingState object. At the end
of layout, it can then be applied to the layout tree, or simply queried
for some metrics we were trying to determine.
When doing subtree layouts to determine intrinsic sizes, we will
eventually be able to clone the current FormattingState, and run the
subtree layout in isolation, opening up opportunities for parallelism.
This first patch doesn't go very far though, it merely adds the object
as a skeleton class, and makes sure the root BFC has one. :^)
|
|
The ICB (initial containing block) gets its style from StyleComputer's
create_document_style(). It's basically a generic style for the root of
the layout tree.
With this patch, we now assign the width and height of the viewport rect
as two CSS "px" lengths to the "width" and "height" properties of the
ICB style. (Previously they were just defaulting to "auto" and we
assigned override dimensions during layout.)
This fixes an issue where position:absolute elements with relative width
and/or height were not dimensioned correctly, since the values were
relative to the width and/or height of the ICB style.
|