Age | Commit message (Collapse) | Author |
|
This is now also not a concept that VM knows about and handled
completely by the REPL.
|
|
|
|
|
|
Instead of making it a void function, checking for an exception, and
then receiving the relevant result via VM::last_value(), we can
consolidate all of this by using completions.
This allows us to remove more uses of VM::exception(), and all uses of
VM::last_value().
|
|
This includes:
- Parsing proper LabelledStatements with try_parse_labelled_statement()
- Removing LabelableStatement
- Implementing the LoopEvaluation semantics via loop_evaluation() in
each IterationStatement subclass; and IterationStatement evaluation
via {For,ForIn,ForOf,ForAwaitOf,While,DoWhile}Statement::execute()
- Updating ReturnStatement, BreakStatement and ContinueStatement to
return the appropriate completion types
- Basically reimplementing TryStatement and SwitchStatement according to
the spec, using completions
- Honoring result completion types in AsyncBlockStart and
OrdinaryCallEvaluateBody
- Removing any uses of the VM unwind mechanism - most importantly,
VM::throw_exception() now exclusively sets an exception and no longer
triggers any unwinding mechanism.
However, we already did a good job updating all of LibWeb and userland
applications to not use it, and the few remaining uses elsewhere don't
rely on unwinding AFAICT.
|
|
Slightly more verbose, but that's the last user of TRY_OR_DISCARD gone!
|
|
In the end this is a nicer API than having separate has_{value,target}()
and having to check those first, and then making another Optional from
the unwrapped value:
completion.has_value() ? completion.value() : Optional<Value> {}
// ^^^^^^^^^^^^^^^^^^
// Implicit creation of non-empty Optional<Value>
This way we need to unwrap the optional ourselves, but can easily pass
it to something else as well.
This is in anticipation of the AST using completions :^)
|
|
The spec has a note stating that resolve binding will always return a
reference whose [[ReferencedName]] field is name. However this is not
correct as the underlying method GetIdentifierReference may throw on
env.HasBinding(name) thus it can throw. However, there are some
scenarios where it cannot throw because the reference is known to exist
in that case we use MUST with a comment.
|
|
This is partially a revert of commits:
10a8b6d4116c6a627a6c189154af032f69b29c21
561b67a1add82538502ef2f5733f1d86718898ad
Rather than adding the prot_exec pledge requried to use dlopen(), we can
link directly against LibUnicodeData in applications that we know need
that library.
This might make the dlopen() dance a bit unnecessary. The same purpose
might now be fulfilled with weak symbols. That can be revisted next, but
for now, this at least removes the potential security risk of apps like
the Browser having prot_exec privileges.
|
|
This implements:
- console.group()
- console.groupCollapsed()
- console.groupEnd()
In the Browser, we use `<details>` for the groups, which is not actually
implemented yet, so groups are always open.
In the REPL, groups are non-interactive, but still indent any output.
This looks weird since the console prompt and return values remain on
the far left, but this matches what Node does so it's probably fine. :^)
I expect `console.group()` is not used much outside of browsers.
|
|
The spec very kindly defines `Printer` as accepting
"Implementation-specific representations of printable things such as a
stack trace or group." for the `args`. We make use of that here by
passing the `Trace` itself to `Printer`, instead of having to produce a
representation of the stack trace in advance and then pass that to
`Printer`. That both avoids the hassle of tracking whether the data has
been html-encoded or not, and means clients don't have to implement the
whole `trace()` algorithm, but only the code needed to output the trace.
|
|
|
|
This is identical to before, since we don't have "group stacks" yet, but
clear() now uses ThrowCompletionOr.
|
|
The `CountReset` log level is displayed as a warning, since the message
is always to warn that the counter doesn't exist. This is also in line
with the table at https://console.spec.whatwg.org/#loglevel-severity
|
|
This implements the Logger and Printer abstract operations defined in
the console spec, and stubs out the Formatter AO. These are then used
for the "output a categorized log message" functions.
|
|
Loading libunicodedata.so will require dlopen(), which in turn requires
mmap(). The 'prot_exec' pledge is needed for this.
Further, the .so itself must be unveiled for reading. The "real" path is
unveiled (libunicodedata.so.serenity) as the symlink (libunicodedata.so)
itself cannot be unveiled.
|
|
Being really close to Object.prototype.valueOf() name wise makes this
unnecessarily confusing - while it sometimes serves as the
implementation of a valueOf() function, it's an abstraction which the
spec doesn't have.
Use the appropriate getters to retrieve specific internal slots instead,
most commonly [[FooData]] from the primitive wrapper objects.
For the Object class specifically, use the Value(Object*) ctor instead.
|
|
|
|
|
|
|
|
...and remove the Vector<String> variant since there are no remaining
users of this API.
|
|
|
|
|
|
|
|
With this change, System::foo() becomes Core::System::foo().
Since LibCore builds on other systems than SerenityOS, we now have to
make sure that wrappers work with just a standard C library underneath.
|
|
Use the updated API everywhere we are currently manually passing in
`arguments.argc` and `arguments.argv`.
|
|
It is now no longer possible to make network connections from a hijacked
js(1) :^)
|
|
This wasn't particularly difficult, and there's not much use for the
nicer interface yet either. While unveil() is of limited use in js(1)
as it should be able to open arbitrary files, I feel like we should be
able to add a pledge() call.
|
|
When the bytecode interpreter was converted to ThrowCompletionOr<Value>
it then also cleared the vm.exception() making it seem like no exception
was thrown.
Also removed the TRY_OR_DISCARD as that would skip the error handling
parts.
|
|
Also add slightly richer parse errors now that we can include a string
literal with returned errors.
This will allow us to use TRY() when working with JSON data.
|
|
Note that this is just a shallow API change.
|
|
|
|
|
|
|
|
|
|
This will allow us to trigger bytecode executable dumps when generating
bytecode inside LibJS as well, not just in clients like js and test-js.
|
|
This method will eventually be removed once all native functions are
converted to ThrowCompletionOr
|
|
The old versions were renamed to JS_DECLARE_OLD_NATIVE_FUNCTION and
JS_DEFINE_OLD_NATIVE_FUNCTION, and will be eventually removed once all
native functions were converted to the new format.
|
|
|
|
|
|
|
|
Also update get_function_name() to use ThrowCompletionOr, but this is
not a standard AO and should be refactored out of existence eventually.
|
|
Regressed in b7e5f08.
Use the newly available RegExpObject::escape_regexp_pattern() instead of
attempting to call the RegExp.prototype.source accessor getter directly.
|
|
To no one's surprise, this patch is pretty big - this is possibly the
most used AO of all of them. Definitely worth it though.
|
|
This does require us to have a method which lists all the bindings in
a declarative environment which is not in the spec.
|
|
For this we store the global environment in which we can do a lookup
for the references variable. This is probably not entirely as the spec
would specify as we would need a running executing context at all times
you do things with references.
Fixes #10281
|
|
Since this is a debug-only feature, let's not have it impact GC marking
performance when you don't need it.
|
|
Before this we used an ad-hoc combination of references and 'variables'
stored in a hashmap. This worked in most cases but is not spec like.
Additionally hoisting, dynamically naming functions and scope analysis
was not done properly.
This patch fixes all of that by:
- Implement BindingInitialization for destructuring assignment.
- Implementing a new ScopePusher which tracks the lexical and var
scoped declarations. This hoists functions to the top level if no
lexical declaration name overlaps. Furthermore we do checking of
redeclarations in the ScopePusher now requiring less checks all over
the place.
- Add methods for parsing the directives and statement lists instead
of having that code duplicated in multiple places. This allows
declarations to pushed to the appropriate scope more easily.
- Remove the non spec way of storing 'variables' in
DeclarativeEnvironment and make Reference follow the spec instead of
checking both the bindings and 'variables'.
- Remove all scoping related things from the Interpreter. And instead
use environments as specified by the spec. This also includes fixing
that NativeFunctions did not produce a valid FunctionEnvironment
which could cause issues with callbacks and eval. All
FunctionObjects now have a valid NewFunctionEnvironment
implementation.
- Remove execute_statements from Interpreter and instead use
ASTNode::execute everywhere this simplifies AST.cpp as you no longer
need to worry about which method to call.
- Make ScopeNodes setup their own environment. This uses four
different methods specified by the spec
{Block, Function, Eval, Global}DeclarationInstantiation with the
annexB extensions.
- Implement and use NamedEvaluation where specified.
Additionally there are fixes to things exposed by these changes to eval,
{for, for-in, for-of} loops and assignment.
Finally it also fixes some tests in test-js which where passing before
but not now that we have correct behavior :^).
|
|
The old name is the result of the perhaps somewhat confusingly named
abstract operation OrdinaryFunctionCreate(), which creates an "ordinary
object" (https://tc39.es/ecma262/#ordinary-object) in contrast to an
"exotic object" (https://tc39.es/ecma262/#exotic-object).
However, the term "Ordinary Function" is not used anywhere in the spec,
instead the created object is referred to as an "ECMAScript Function
Object" (https://tc39.es/ecma262/#sec-ecmascript-function-objects), so
let's call it that.
The "ordinary" vs. "exotic" distinction is important because there are
also "Built-in Function Objects", which can be either implemented as
ordinary ECMAScript function objects, or as exotic objects (our
NativeFunction).
More work needs to be done to move a lot of infrastructure to
ECMAScriptFunctionObject in order to make FunctionObject nothing more
than an interface for objects that implement [[Call]] and optionally
[[Construct]].
|
|
This is very handy when you want to load data from /proc, for example.
|