Age | Commit message (Collapse) | Author |
|
By designating a committed page pool we can guarantee to have physical
pages available for lazy allocation in mappings. However, when forking
we will overcommit. The assumption is that worst-case it's better for
the fork to die due to insufficient physical memory on COW access than
the parent that created the region. If a fork wants to ensure that all
memory is available (trigger a commit) then it can use madvise.
This also means that fork now can gracefully fail if we don't have
enough physical pages available.
|
|
Rather than lazily committing regions by default, we now commit
the entire region unless MAP_NORESERVE is specified.
This solves random crashes in low-memory situations where e.g. the
malloc heap allocated memory, but using pages that haven't been
used before triggers a crash when no more physical memory is available.
Use this flag to create large regions without actually committing
the backing memory. madvise() can be used to commit arbitrary areas
of such regions after creating them.
|
|
This adds the ability for a Region to define volatile/nonvolatile
areas within mapped memory using madvise(). This also means that
memory purging takes into account all views of the PurgeableVMObject
and only purges memory that is not needed by all of them. When calling
madvise() to change an area to nonvolatile memory, return whether
memory from that area was purged. At that time also try to remap
all memory that is requested to be nonvolatile, and if insufficient
pages are available notify the caller of that fact.
|
|
This syscall can currently only remap a shared file-backed mapping into
a private file-backed mapping.
|
|
|
|
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
|
|
Sometimes a physical underlying page may be there, but we may be
unable to allocate a page table that may be needed to map it. Bubble
up such mapping errors so that they can be handled more appropriately.
|
|
This is something I've been meaning to do for a long time, and here we
finally go. This patch moves all sys$foo functions out of Process.cpp
and into files in Kernel/Syscalls/.
It's not exactly one syscall per file (although it could be, but I got
a bit tired of the repetitive work here..)
This makes hacking on individual syscalls a lot less painful since you
don't have to rebuild nearly as much code every time. I'm also hopeful
that this makes it easier to understand individual syscalls. :^)
|
|
Rather than sending one TLB flush request for each page,
aggregate them so that we're not spamming the other
processors with FlushTLB IPIs.
|
|
|
|
|
|
This patch adds PageFaultResponse::OutOfMemory which informs the fault
handler that we were unable to allocate a necessary physical page and
cannot continue.
In response to this, the kernel will crash the current process. Because
we are OOM, we can't symbolicate the crash like we normally would
(since the ELF symbolication code needs to allocate), so we also
communicate to Process::crash() that we're out of memory.
Now we can survive "allocate 300 MB" (only the allocate process dies.)
This is definitely not perfect and can easily end up killing a random
innocent other process who happened to allocate one page at the wrong
time, but it's a *lot* better than panicking on OOM. :^)
|
|
Since a Region is basically a view into a potentially larger VMObject,
it was always necessary to include the Region starting offset when
accessing its underlying physical pages.
Until now, you had to do that manually, but this patch adds a simple
Region::physical_page() for read-only access and a physical_page_slot()
when you want a mutable reference to the RefPtr<PhysicalPage> itself.
A lot of code is simplified by making use of this.
|
|
PT_POKE writes a single word to the tracee's address space.
Some caveats:
- If the user requests to write to an address in a read-only region, we
temporarily change the page's protections to allow it.
- If the user requests to write to a region that's backed by a
SharedInodeVMObject, we replace the vmobject with a PrivateIndoeVMObject.
|
|
This patch adds the minherit() syscall originally invented by OpenBSD.
Only the MAP_INHERIT_ZERO mode is supported for now. If set on an mmap
region, that region will be zeroed out on fork().
|
|
It's now up to the caller to provide a VMObject when constructing a new
Region object. This will make it easier to handle things going wrong,
like allocation failures, etc.
|
|
InodeFile now directly calls Process::allocate_region_with_vmobject()
instead of taking an awkward detour via a special Region constructor.
|
|
This turns use-after-free bugs into null pointer dereferences instead.
|
|
This makes Region 4 bytes smaller and we can use bitfield initializers
since they are allowed in C++20. :^)
|
|
|
|
|
|
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
|
|
We now can create a cacheable Region, so when map() is called, if a
Region is cacheable then all the virtual memory space being allocated
to it will be marked as not cache disabled.
In addition to that, OS components can create a Region that will be
mapped to a specific physical address by using the appropriate helper
method.
|
|
When loading a new executable, we now map the ELF image in kernel-only
memory and parse it there. Then we use copy_to_user() when initializing
writable regions with data from the executable.
Note that the exec() syscall still disables SMAP protection and will
require additional work. This patch only affects kernel-originated
process spawns.
|
|
These were doing mostly the same things, so let's just share the code.
|
|
Dirty private memory is all memory in non-inode-backed mappings that's
process-private, meaning it's not shared with any other process.
This patch exposes that number via SystemMonitor, giving us an idea of
how much memory each process is responsible for all on its own.
|
|
|
|
|
|
|
|
Every process keeps its own ELF executable mapped in memory in case we
need to do symbol lookup (for backtraces, etc.)
Until now, it was mapped in a way that made it accessible to the
program, despite the program not having mapped it itself.
I don't really see a need for userspace to have access to this right
now, so let's lock things down a little bit.
This patch makes it inaccessible to userspace and exposes that fact
through /proc/PID/vm (per-region "user_accessible" flag.)
|
|
This number tells us how many more pages in a given region will trigger
a CoW fault if written to.
|
|
This patch makes it possible to make memory regions non-readable.
This is enforced using the "present" bit in the page tables.
A process that hits an not-present page fault in a non-readable
region will be crashed.
|
|
A typo in Region::set_writable() caused us to update the readable flag
rather than the writable flag.
|
|
Then only allow regions with that bit to be manipulated via munmap()
and mprotect(). This prevents messing with non-mmap()ed regions in
a process's address space (stacks, shared buffers, ...)
|
|
VM regions can now be marked as stack regions, which is then validated
on syscall, and on page fault.
If a thread is caught with its stack pointer pointing into anything
that's *not* a Region with its stack bit set, we'll crash the whole
process with SIGSTKFLT.
Userspace must now allocate custom stacks by using mmap() with the new
MAP_STACK flag. This mechanism was first introduced in OpenBSD, and now
we have it too, yay! :^)
|
|
After the page fault handler has found the region in which the fault
occurred, do the rest of the work in the region itself.
This patch also makes all fault types consistently crash the process
if a new page is needed but we're all out of pages.
|
|
Now that region manages its own mapping/unmapping, there's no need for
the outside world to be able to grab at its page directory.
|
|
This is done implicitly by mapping or unmapping the region.
|
|
It's never valid to construct a Region with a null Inode pointer using
this constructor, so just take a NonnullRefPtr<Inode> instead.
|
|
Now remapping (i.e flushing kernel metadata to the CPU page tables)
is done by simply calling Region::remap().
|
|
This patch changes the parameter to Region::map() to be a PageDirectory
since that matches how we think about the memory model:
Regions are views onto VMObjects, and are mapped into PageDirectories.
Each Process has a PageDirectory. The kernel also has a PageDirectory.
|
|
The more Region can take care of itself, the better.
|
|
Let Region deal with this, instead of everyone calling MemoryManager.
|
|
Instead of allocating and populating a Copy-on-Write bitmap for each
Region up front, wait until we actually clone the Region for sharing
with another process.
In most cases, we never need any CoW bits and we save ourselves a lot
of kmalloc() memory and time.
|
|
When splitting an Region that's already the result of an earlier split,
we have to take the Region's offset-in-VMObject into account since it
may be non-zero.
|
|
This simplifies the ownership model and makes Region easier to reason
about. Userspace Regions are now primarily kept by Process::m_regions.
Kernel Regions are kept in various OwnPtr<Regions>'s.
Regions now only ever get unmapped when they are destroyed.
|
|
This is a freelist allocator with static size classes that works as a
complement to the generic kmalloc(). It's a lot faster than kmalloc()
since allocation just means popping from the freelist.
It's also significantly more compact when there are a lot of objects
smaller than the minimum kmalloc chunk size (32 bytes.)
This patch enables it for the Region and PhysicalPage classes.
In the PhysicalPage (8 bytes) case, it's a huge improvement since we
no longer waste 75% of the storage allocated.
There are also a number of ways this can be improved, so let's keep
working on it going forward.
|
|
This was a workaround to be able to build on case-insensitive file
systems where it might get confused about <string.h> vs <String.h>.
Let's just not support building that way, so String.h can have an
objectively nicer name. :^)
|
|
|
|
Add getters for the underlying Range, the access bits, and also add
contains(Range) which just wraps m_range.contains().
|