Age | Commit message (Collapse) | Author |
|
This eliminates the window between calling Processor::current and
the member function where a thread could be moved to another
processor. This is generally not as big of a concern as with
Processor::current_thread, but also slightly more light weight.
|
|
The following script was used to make these changes:
#!/bin/bash
set -e
tmp=$(mktemp -d)
echo "tmp=$tmp"
find Kernel \( -name '*.cpp' -o -name '*.h' \) | sort > $tmp/Kernel.files
find . \( -path ./Toolchain -prune -o -path ./Build -prune -o -path ./Kernel -prune \) -o \( -name '*.cpp' -o -name '*.h' \) -print | sort > $tmp/EverythingExceptKernel.files
cat $tmp/Kernel.files | xargs grep -Eho '[A-Z0-9_]+_DEBUG' | sort | uniq > $tmp/Kernel.macros
cat $tmp/EverythingExceptKernel.files | xargs grep -Eho '[A-Z0-9_]+_DEBUG' | sort | uniq > $tmp/EverythingExceptKernel.macros
comm -23 $tmp/Kernel.macros $tmp/EverythingExceptKernel.macros > $tmp/Kernel.unique
comm -1 $tmp/Kernel.macros $tmp/EverythingExceptKernel.macros > $tmp/EverythingExceptKernel.unique
cat $tmp/Kernel.unique | awk '{ print "#cmakedefine01 "$1 }' > $tmp/Kernel.header
cat $tmp/EverythingExceptKernel.unique | awk '{ print "#cmakedefine01 "$1 }' > $tmp/EverythingExceptKernel.header
for macro in $(cat $tmp/Kernel.unique)
do
cat $tmp/Kernel.files | xargs grep -l $macro >> $tmp/Kernel.new-includes ||:
done
cat $tmp/Kernel.new-includes | sort > $tmp/Kernel.new-includes.sorted
for macro in $(cat $tmp/EverythingExceptKernel.unique)
do
cat $tmp/Kernel.files | xargs grep -l $macro >> $tmp/Kernel.old-includes ||:
done
cat $tmp/Kernel.old-includes | sort > $tmp/Kernel.old-includes.sorted
comm -23 $tmp/Kernel.new-includes.sorted $tmp/Kernel.old-includes.sorted > $tmp/Kernel.includes.new
comm -13 $tmp/Kernel.new-includes.sorted $tmp/Kernel.old-includes.sorted > $tmp/Kernel.includes.old
comm -12 $tmp/Kernel.new-includes.sorted $tmp/Kernel.old-includes.sorted > $tmp/Kernel.includes.mixed
for file in $(cat $tmp/Kernel.includes.new)
do
sed -i -E 's/#include <AK\/Debug\.h>/#include <Kernel\/Debug\.h>/' $file
done
for file in $(cat $tmp/Kernel.includes.mixed)
do
echo "mixed include in $file, requires manual editing."
done
|
|
|
|
|
|
This was done with the following script:
find . \( -name '*.cpp' -o -name '*.h' -o -name '*.in' \) -not -path './Toolchain/*' -not -path './Build/*' -exec sed -i -E 's/dbgln<debug_([a-z_]+)>/dbgln<\U\1_DEBUG>/' {} \;
find . \( -name '*.cpp' -o -name '*.h' -o -name '*.in' \) -not -path './Toolchain/*' -not -path './Build/*' -exec sed -i -E 's/if constexpr \(debug_([a-z0-9_]+)/if constexpr \(\U\1_DEBUG/' {} \;
|
|
It would be tempting to uncomment these statements, but that won't work
with the new changes.
This was done with the following commands:
find . \( -name '*.cpp' -o -name '*.h' -o -name '*.in' \) -not -path './Toolchain/*' -not -path './Build/*' -exec awk -i inplace '$0 !~ /\/\/#define/ { if (!toggle) { print; } else { toggle = !toggle } } ; $0 ~/\/\/#define/ { toggle = 1 }' {} \;
find . \( -name '*.cpp' -o -name '*.h' -o -name '*.in' \) -not -path './Toolchain/*' -not -path './Build/*' -exec awk -i inplace '$0 !~ /\/\/ #define/ { if (!toggle) { print; } else { toggle = !toggle } } ; $0 ~/\/\/ #define/ { toggle = 1 }' {} \;
|
|
This was done with the help of several scripts, I dump them here to
easily find them later:
awk '/#ifdef/ { print "#cmakedefine01 "$2 }' AK/Debug.h.in
for debug_macro in $(awk '/#ifdef/ { print $2 }' AK/Debug.h.in)
do
find . \( -name '*.cpp' -o -name '*.h' -o -name '*.in' \) -not -path './Toolchain/*' -not -path './Build/*' -exec sed -i -E 's/#ifdef '$debug_macro'/#if '$debug_macro'/' {} \;
done
# Remember to remove WRAPPER_GERNERATOR_DEBUG from the list.
awk '/#cmake/ { print "set("$2" ON)" }' AK/Debug.h.in
|
|
These changes are arbitrarily divided into multiple commits to make it
easier to find potentially introduced bugs with git bisect.
|
|
|
|
These changes are arbitrarily divided into multiple commits to make it
easier to find potentially introduced bugs with git bisect.Everything:
|
|
These changes are arbitrarily divided into multiple commits to make it
easier to find potentially introduced bugs with git bisect.Everything:
The modifications in this commit were automatically made using the
following command:
find . -name '*.cpp' -exec sed -i -E 's/dbg\(\) << ("[^"{]*");/dbgln\(\1\);/' {} \;
|
|
Compared to version 10 this fixes a bunch of formatting issues, mostly
around structs/classes with attributes like [[gnu::packed]], and
incorrect insertion of spaces in parameter types ("T &"/"T &&").
I also removed a bunch of // clang-format off/on and FIXME comments that
are no longer relevant - on the other hand it tried to destroy a couple of
neatly formatted comments, so I had to add some as well.
|
|
ticks_this_second must be less than the ticks per second (frequency).
|
|
The PIT is now also running at a rate of ~250 ticks/second, so rather
than assuming there are 1000 ticks/second we need to query the timer
being used for the actual frequency.
Fixes #4508
|
|
This implements a number of changes related to time:
* If a HPET is present, it is now used only as a system timer, unless
the Local APIC timer is used (in which case the HPET timer will not
trigger any interrupts at all).
* If a HPET is present, the current time can now be as accurate as the
chip can be, independently from the system timer. We now query the
HPET main counter for the current time in CPU #0's system timer
interrupt, and use that as a base line. If a high precision time is
queried, that base line is used in combination with quering the HPET
timer directly, which should give a much more accurate time stamp at
the expense of more overhead. For faster time stamps, the more coarse
value based on the last interrupt will be returned. This also means
that any missed interrupts should not cause the time to drift.
* The default system interrupt rate is reduced to about 250 per second.
* Fix calculation of Thread CPU usage by using the amount of ticks they
used rather than the number of times a context switch happened.
* Implement CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE and use it
for most cases where precise timestamps are not needed.
|
|
Problem:
- `(void)` simply casts the expression to void. This is understood to
indicate that it is ignored, but this is really a compiler trick to
get the compiler to not generate a warning.
Solution:
- Use the `[[maybe_unused]]` attribute to indicate the value is unused.
Note:
- Functions taking a `(void)` argument list have also been changed to
`()` because this is not needed and shows up in the same grep
command.
|
|
This allows us to use blocking timeouts with either monotonic or
real time for all blockers. Which means that clock_nanosleep()
now also supports CLOCK_REALTIME.
Also, switch alarm() to use CLOCK_REALTIME as per specification.
|
|
Use the TimerQueue to expire blocking operations, which is one less thing
the Scheduler needs to check on every iteration.
Also, add a BlockTimeout class that will automatically handle relative or
absolute timeouts as well as overriding timeouts (e.g. socket timeouts)
more consistently.
Also, rework the TimerQueue class to be able to fire events from
any processor, which requires Timer to be RefCounted. Also allow
creating id-less timers for use by blocking operations.
|
|
Most systems (Linux, OpenBSD) adjust 0.5 ms per second, or 0.5 us per
1 ms tick. That is, the clock is sped up or slowed down by at most
0.05%. This means adjusting the clock by 1 s takes 2000 s, and the
clock an be adjusted by at most 1.8 s per hour.
FreeBSD adjusts 5 ms per second if the remaining time adjustment is
>= 1 s (0.5%) , else it adjusts by 0.5 ms as well. This allows adjusting
by (almost) 18 s per hour.
Since Serenity OS can lose more than 22 s per hour (#3429), this
picks an adjustment rate up to 1% for now. This allows us to
adjust up to 36s per hour, which should be sufficient to adjust
the clock fast enough to keep up with how much time the clock
currently loses. Once we have a fancier NTP implementation that can
adjust tick rate in addition to offset, we can think about reducing
this.
adjtime is a bit old-school and most current POSIX-y OSs instead
implement adjtimex/ntp_adjtime, but a) we have to start somewhere
b) ntp_adjtime() is a fairly gnarly API. OpenBSD's adjfreq looks
like it might provide similar functionality with a nicer API. But
before worrying about all this, it's probably a good idea to get
to a place where the kernel APIs are (barely) good enough so that
we can write an ntp service, and once we have that we should write
a way to automatically evaluate how well it keeps the time adjusted,
and only then should we add improvements ot the adjustment mechanism.
|
|
increment_time_since_boot
|
|
* Change the register structures to use the volatile keyword explicitly
on the register values. This avoids accidentally omitting it as any
access will be guaranteed volatile.
* Don't assume we can read/write 64 bit value to the main counter and
the comparator. Not all HPET implementations may support this. So,
just use 32 bit words to access the registers. This ultimately works
around a bug in Bochs 2.6.11 that loses 32 bits of a 64 bit write to
a timer's comparator register (it internally writes one half and
clears the Tn_VAL_SET_CNF bit, and then because it's cleared it
fails to write the second half).
* Properly calculate the tick duration in calculate_ticks_in_nanoseconds
* As per specification, changing the frequency of one periodic timer
requires a restart of all periodic timers as it requires the main
counter to be reset.
|
|
|
|
The APIC current count register decrements on each clock tick.
Fixes the APIC timer firing much less frequently than it should be.
|
|
|
|
This enables the APIC timer on all CPUs, which means Scheduler::timer_tick
is now called on all CPUs independently. We still don't do anything on
the APs as it instantly crashes due to a number of other problems.
|
|
|
|
|
|
|
|
Previously, it was kept as just a time_t and the sub-second
offset was inferred from the monotonic clock. This means that
sub-second time adjustments were ignored.
Now that `ntpquery -s` can pass in a time with sub-second
precision, it makes sense to keep time at that granularity
in the kernel.
After this, `ntpquery -s` immediately followed by `ntpquery` shows
an offset of 0.02s (that is, on the order of network roundtrip time)
instead of up to 0.75s previously.
|
|
MemoryManager cannot use the Singleton class because
MemoryManager::initialize is called before the global constructors
are run. That caused the Singleton to be re-initialized, causing
it to create another MemoryManager instance.
Fixes #3226
|
|
This reverts commit f48feae0b2a300992479abf0b2ded85e45ac6045.
|
|
This reverts commit f0906250a181c831508a45434b9f645ff98f33e4.
|
|
This reverts commit 5a98e329d157a2db8379e0c97c6bdc1328027843.
|
|
Just default the InitFunction template argument.
|
|
|
|
Fixes #3226
|
|
|
|
This resolves a bochs panic during bootup:
[Kernel]: HPET @ P0x07ff0fc0
00691951632p[HPET ] >>PANIC<< Unsupported HPET read at address 0x0000fed00100
These changes however don't fully resolve #2162
|
|
This was supposed to be the foundation for some kind of pre-kernel
environment, but nobody is working on it right now, so let's move
everything back into the kernel and remove all the confusion.
|
|
Hide the implementation of time-of-day computation in TimeManagement.
|
|
|
|
|
|
lookup() returns an Optional<String> which allows us to implement easy
default values using lookup(key).value_or(default_value);
|
|
|
|
Also make it non-virtual since nothing needs to override it.
|
|
If a hardware timer doesn't have a callback registered, it's now simply
represented by a null m_callback.
|
|
|
|
We don't need a wrapper Function object that just forwards the timer
callback to the scheduler tick function. It already has the same
signature, so we can just plug it in directly. :^)
Same with the clock updating function.
|
|
Instead of passing around indices into the m_hardware_timers vector,
just pass around a HardwareTimer* instead.
|
|
|