Age | Commit message (Collapse) | Author |
|
Instead of copying a Vector everytime we need to enumerate a Process'
file descriptions, we can just temporarily lock so it won't change.
|
|
The new ProcFS design consists of two main parts:
1. The representative ProcFS class, which is derived from the FS class.
The ProcFS and its inodes are much more lean - merely 3 classes to
represent the common type of inodes - regular files, symbolic links and
directories. They're backed by a ProcFSExposedComponent object, which
is responsible for the functional operation behind the scenes.
2. The backend of the ProcFS - the ProcFSComponentsRegistrar class
and all derived classes from the ProcFSExposedComponent class. These
together form the entire backend and handle all the functions you can
expect from the ProcFS.
The ProcFSExposedComponent derived classes split to 3 types in the
manner of lifetime in the kernel:
1. Persistent objects - this category includes all basic objects, like
the root folder, /proc/bus folder, main blob files in the root folders,
etc. These objects are persistent and cannot die ever.
2. Semi-persistent objects - this category includes all PID folders,
and subdirectories to the PID folders. It also includes exposed objects
like the unveil JSON'ed blob. These object are persistent as long as the
the responsible process they represent is still alive.
3. Dynamic objects - this category includes files in the subdirectories
of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially,
these objects are always created dynamically and when no longer in need
after being used, they're deallocated.
Nevertheless, the new allocated backend objects and inodes try to use
the same InodeIndex if possible - this might change only when a thread
dies and a new thread is born with a new thread stack, or when a file
descriptor is closed and a new one within the same file descriptor
number is opened. This is needed to actually be able to do something
useful with these objects.
The new design assures that many ProcFS instances can be used at once,
with one backend for usage for all instances.
|
|
|
|
This is to make the 0xc0000000 less a magic number, and will make it
easier in the future to move the Kernel around
|
|
|
|
|
|
We're using software context switches so calling this struct tss is
somewhat misleading.
|
|
The types for asm_signal_trampoline and asm_signal_trampoline_end
were incorrect. They both point into the text segment but they're
not really functions.
|
|
This commit converts naked `new`s to `AK::try_make` and `AK::try_create`
wherever possible. If the called constructor is private, this can not be
done, so we instead now use the standard-defined and compiler-agnostic
`new (nothrow)`.
|
|
This adds just enough stubs to make the kernel compile on x86_64. Obviously
it won't do anything useful - in fact it won't even attempt to boot because
Multiboot doesn't support ELF64 binaries - but it gets those compiler errors
out of the way so more progress can be made getting all the missing
functionality in place.
|
|
This also removes a lot of CPU.h includes infavor for Sections.h
|
|
This does not add any functional changes
|
|
|
|
|
|
|
|
|
|
This API now returns a KResultOr<NonnullOwnPtr<KString>> and allocation
failures should be propagated everywhere nicely. :^)
|
|
|
|
When profiling a single process we didn't disable the profile timer.
enable_profile_timer()/disable_profiler_timer() support nested calls
so no special care has to be taken here to only disable the timer when
nobody else is using it.
|
|
By constraining two implementations, the compiler will select the best
fitting one. All this will require is duplicating the implementation and
simplifying for the `void` case.
This constraining also informs both the caller and compiler by passing
the callback parameter types as part of the constraint
(e.g.: `IterationFunction<int>`).
Some `for_each` functions in LibELF only take functions which return
`void`. This is a minimal correctness check, as it removes one way for a
function to incompletely do something.
There seems to be a possible idiom where inside a lambda, a `return;` is
the same as `continue;` in a for-loop.
|
|
This change looks more involved than it actually is. This simply
reshuffles the previous Process constructor and splits out the
parts which can fail (resource allocation) into separate methods
which can be called from a factory method. The factory is then
used everywhere instead of the constructor.
|
|
Modify the API so it's possible to propagate error on OOM failure.
NonnullOwnPtr<T> is not appropriate for the ThreadTracer::create() API,
so switch to OwnPtr<T>, use adopt_own_if_nonnull() to handle creation.
|
|
|
|
|
|
GCC with -flto is more aggressive when it comes to inlining and
discarding functions which is why we must mark some of the functions
as NEVER_INLINE (because they contain asm labels which would be
duplicated in the object files if the compiler decides to inline
the function elsewhere) and __attribute__((used)) for others so
that GCC doesn't discard them.
|
|
This turns the perfcore format into more a log than it was before,
which lets us properly log process, thread and region
creation/destruction. This also makes it unnecessary to dump the
process' regions every time it is scheduled like we did before.
Incidentally this also fixes 'profile -c' because we previously ended
up incorrectly dumping the parent's region map into the profile data.
Log-based mmap support enables profiling shared libraries which
are loaded at runtime, e.g. via dlopen().
This enables profiling both the parent and child process for
programs which use execve(). Previously we'd discard the profiling
data for the old process.
The Profiler tool has been updated to not treat thread IDs as
process IDs anymore. This enables support for processes with more
than one thread. Also, there's a new widget to filter which
process should be displayed.
|
|
This makes it more symmetrical with adopt_own() (which is used to
create a NonnullOwnPtr from the result of a naked new.)
|
|
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
|
|
While profiling all processes the profile buffer lives forever.
Once you have copied the profile to disk, there's no need to keep it
in memory. This syscall surfaces the ability to clear that buffer.
|
|
Crash reports for page faults now tell you what kind of memory access
failed and where. :^)
|
|
Alot of code is shared between i386/i686/x86 and x86_64
and a lot probably will be used for compatability modes.
So we start by moving the headers into one Directory.
We will probalby be able to move some cpp files aswell.
|
|
|
|
|
|
|
|
The previous architecture had a huge flaw: the pointer to the protected
data was itself unprotected, allowing you to overwrite it at any time.
This patch reorganizes the protected data so it's part of the Process
class itself. (Actually, it's a new ProcessBase helper class.)
We use the first 4 KB of Process objects themselves as the new storage
location for protected data. Then we make Process objects page-aligned
using MAKE_ALIGNED_ALLOCATED.
This allows us to easily turn on/off write-protection for everything in
the ProcessBase portion of Process. :^)
Thanks to @bugaevc for pointing out the flaw! This is still not perfect
but it's an improvement.
|
|
|
|
|
|
|
|
Process member variable like m_euid are very valuable targets for
kernel exploits and until now they have been writable at all times.
This patch moves m_euid along with a whole bunch of other members
into a new Process::ProtectedData struct. This struct is remapped
as read-only memory whenever we don't need to write to it.
This means that a kernel write primitive is no longer enough to
overwrite a process's effective UID, you must first unprotect the
protected data where the UID is stored. :^)
|
|
It's now possible to build the whole kernel with an x86_64 toolchain.
There's no bootstrap code so it doesn't work yet (obviously.)
|
|
The perfcore file format was previously limited to a single process
since the pid/executable/regions data was top-level in the JSON.
This patch moves the process-specific data into a top-level array
named "processes" and we now add entries for each process that has
been sampled during the profile run.
This makes it possible to see samples from multiple threads when
viewing a perfcore file with Profiler. This is extremely cool! :^)
|
|
If we can't allocate a PerformanceEventBuffer to store the profiling
events, we now fail sys$profiling_enable() and sys$perf_event()
with ENOMEM instead of carrying on with a broken buffer.
|
|
|
|
|
|
I don't dare touch the multi-threading logic and locking mechanism, so it stays
timespec for now. However, this could and should be changed to AK::Time, and I
bet it will simplify the "increment_time_since_boot()" code.
|
|
Currently, when a process which has a tracee exits, nothing will happen,
leaving the tracee unable to be attached again. This will call the
stop_tracing function on any process which is traced by the exiting
process and sending the SIGSTOP signal making the traced process wait
for a SIGCONT (just as Linux does)
|
|
This was necessary in the past when crash handling would modify
various global things, but all that stuff is long gone so we can
simplify crashes by leaving the interrupt flag alone.
|
|
Make more of the kernel compile in 64-bit mode, and make some things
pointer-size-agnostic (by using FlatPtr.)
There's a lot of work to do here before the kernel will even compile.
|
|
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
|
|
Raw memset is relatively easy to mess up, avoid it when there are
better alternatives provided by the compiler in modern C++.
|