Age | Commit message (Collapse) | Author |
|
|
|
We need to process SMP messages while looping.
|
|
|
|
We can now properly initialize all processors without
crashing by sending SMP IPI messages to synchronize memory
between processors.
We now initialize the APs once we have the scheduler running.
This is so that we can process IPI messages from the other
cores.
Also rework interrupt handling a bit so that it's more of a
1:1 mapping. We need to allocate non-sharable interrupts for
IPIs.
This also fixes the occasional hang/crash because all
CPUs now synchronize memory with each other.
|
|
If WaitQueue::wake_all, WaitQueue::wake_one, or WaitQueue::wake_n
is called but nobody is currently waiting, we should remember that
fact and prevent someone from waiting after such a request. This
solves a race condition where the Finalizer thread is notified
to finalize a thread, but it is not (yet) waiting on this queue.
Fixes #2693
|
|
These changes solve a number of problems with the software
context swithcing:
* The scheduler lock really should be held throughout context switches
* Transitioning from the initial (idle) thread to another needs to
hold the scheduler lock
* Transitioning from a dying thread to another also needs to hold
the scheduler lock
* Dying threads cannot necessarily be finalized if they haven't
switched out of it yet, so flag them as active while a processor
is running it (the Running state may be switched to Dying while
it still is actually running)
|
|
The Lock class still permits no reason, but for everything else
require a reason to be passed to Thread::wait_on. This makes it
easier to diagnose why a Thread is in Queued state.
|
|
When delivering urgent signals to the current thread
we need to check if we should be unblocked, and if not
we need to yield to another process.
We also need to make sure that we suppress context switches
during Process::exec() so that we don't clobber the registers
that it sets up (eip mainly) by a context switch. To be able
to do that we add the concept of a critical section, which are
similar to Process::m_in_irq but different in that they can be
requested at any time. Calls to Scheduler::yield and
Scheduler::donate_to will return instantly without triggering
a context switch, but the processor will then asynchronously
trigger a context switch once the critical section is left.
|
|
This allows us to query the current thread and process on a
per processor basis
|
|
Moving certain globals into a new Processor structure for
each CPU allows us to eventually run an instance of the
scheduler on each CPU.
|
|
This change plumbs a new optional timeout option to wait_on.
The timeout is enabled by enqueing a timer on the timer queue
while we are waiting. We can then see if we were woken up or
timed out by checking if we are still on the wait queue or not.
|
|
A Lock can now be held either in shared or exclusive mode. Multiple threads can
hold the same lock in shared mode at one time, but if any thread holds the lock
in exclusive mode, no other thread can hold it at the same time in either mode.
|
|
Also, duplicate data in dbg() and klog() calls were removed.
In addition, leakage of virtual address to kernel log is prevented.
This is done by replacing kprintf() calls to dbg() calls with the
leaked data instead.
Also, other kprintf() calls were replaced with klog().
|
|
This allows a process wich has more than 1 thread to call exec, even
from a thread. This kills all the other threads, but it won't wait for
them to finish, just makes sure that they are not in a running/runable
state.
In the case where a thread does exec, the new program PID will be the
thread TID, to keep the PID == TID in the new process.
This introduces a new function inside the Process class,
kill_threads_except_self which is called on exit() too (exit with
multiple threads wasn't properly working either).
Inside the Lock class, there is the need for a new function,
clear_waiters, which removes all the waiters from the
Process::big_lock. This is needed since after a exit/exec, there should
be no other threads waiting for this lock, the threads should be simply
killed. Only queued threads should wait for this lock at this point,
since blocked threads are handled in set_should_die.
|
|
Suggested by Sergey. The currently running Thread and Process are now
Thread::current and Process::current respectively. :^)
|
|
|
|
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
|
|
This is needed to eliminate a race in Thread::wait_on() where we'd
otherwise have to wait until after unlocking the process lock before
we can disable interrupts.
|
|
There was a time window between releasing Lock::m_lock and calling into
the lock's WaitQueue where someone else could take m_lock and bring two
threads into a deadlock situation.
Fix this issue by holding Lock::m_lock until interrupts are disabled by
either Thread::wait_on() or WaitQueue::wake_one().
|
|
Instead of using the generic block mechanism, wait-queued threads now
go into the special Queued state.
This fixes an issue where signal dispatch would unblock a wait-queued
thread (because signal dispatch unblocks blocked threads) and cause
confusion since the thread only expected to be awoken by the queue.
|
|
The kernel's Lock class now uses a proper wait queue internally instead
of just having everyone wake up regularly to try to acquire the lock.
We also keep the donation mechanism, so that whenever someone tries to
take the lock and fails, that thread donates the remainder of its
timeslice to the current lock holder.
After unlocking a Lock, the unlocking thread calls WaitQueue::wake_one,
which unblocks the next thread in queue.
|
|
Use gcc built-in atomics
|
|
We shouldn't assert if you call this on a Lock held by another Thread
in the same Process. Instead, we should just not unlock.
|
|
The scheduler is not allowed to take locks, so if that's happening,
we want to make that clear instead of crashing with the more general
"Interrupts disabled while trying to take Lock" error.
|
|
|