Age | Commit message (Collapse) | Author |
|
|
|
This makes for nicer handling of errors compared to checking whether a
RefPtr is null. Additionally, this will give way to return different
types of errors in the future.
|
|
|
|
...and also RangeAllocator => VirtualRangeAllocator.
This clarifies that the ranges we're dealing with are *virtual* memory
ranges and not anything else.
|
|
|
|
This directory isn't just about virtual memory, it's about all kinds
of memory management.
|
|
Now that all KResult and KResultOr are used consistently throughout the
kernel, it's no longer necessary to return negative error codes.
However, we were still doing that in some places, so let's fix all those
(bugs) by removing the minuses. :^)
|
|
The kernel has been gradually moving towards KResult from just bare
int's, this change migrates the IOCTL paths.
|
|
It's easy to forget the responsibility of validating and safely copying
kernel parameters in code that is far away from syscalls. ioctl's are
one such example, and bugs there are just as dangerous as at the root
syscall level.
To avoid this case, utilize the AK::Userspace<T> template in the ioctl
kernel interface so that implementors have no choice but to properly
validate and copy ioctl pointer arguments.
|
|
Instead of returning char const*, we can also give you a StringView.
|
|
Currently, Kernel::Graphics::FramebufferConsole is written assuming that
the underlying framebuffer memory exists in physically contiguous
memory. There are a bunch of framebuffer devices that would need to use
the components of FramebufferConsole (in particular access to the kernel
bitmap font rendering logic). To reduce code duplication, framebuffer
console has been split into two parts, the abstract
GenericFramebufferConsole class which does the rendering, and the
ContiguousFramebufferConsole class which contains all logic related to
managing the underling vm object.
Also, a new flush method has been added to the class, to support devices
that require an extra flush step to render.
|
|
It seems like overly-specific classes were written for no good reason.
Instead of making each adapter to have its own unique FramebufferDevice
class, let's generalize everything to keep implementation more
consistent.
|
|
|
|
When mmaping a Framebuffer from userspace, we need to check whether the
framebuffer device is actually enabled (e.g. graphical mode is being
used) or a textual VirtualConsole is active.
Considering the above state, we mmap the right VMObject to ensure we
don't have graphical artifacts if we change the resolution from
DisplaySettings, changed to textual mode and after the resolution change
was reverted, we will see the Desktop reappearing even though we are
still in textual mode.
|
|
As we removed the support of VBE modesetting that was done by GRUB early
on boot, we need to determine if we can modeset the resolution with our
drivers, and if not, we should enable text mode and ensure that
SystemServer knows about it too.
Also, SystemServer should first check if there's a framebuffer device
node, which is an indication that text mode was not even if it was
requested. Then, if it doesn't find it, it should check what boot_mode
argument the user specified (in case it's self-test). This way if we
try to use bochs-display device (which is not VGA compatible) and
request a text mode, it will not honor the request and will continue
with graphical mode.
Also try to print critical messages with mininum memory allocations
possible.
In LibVT, We make the implementation flexible for kernel-specific
methods that are implemented in ConsoleImpl class.
|
|
This new subsystem is replacing the old code that was used to
create device nodes of framebuffer devices in /dev.
This subsystem includes for now 3 roles:
1. GraphicsManagement singleton object that is used in the boot
process to enumerate and initialize display devices.
2. GraphicsDevice(s) that are used to control the display adapter.
3. FramebufferDevice(s) that are used to control the device node in
/dev.
For now, we support the Bochs display adapter and any other
generic VGA compatible adapter that was configured by the boot
loader to a known and fixed resolution.
Two improvements in the Bochs display adapter code are that
we can support native bochs-display device (this device doesn't
expose any VGA capabilities) and also that we use the MMIO region,
to configure the device, instead of setting IO ports for such tasks.
|