Age | Commit message (Collapse) | Author |
|
Ben noticed this copy paste error during code review.
Co-authored-by: Ben Wiederhake <BenWiederhake.GitHub@gmx.de>
|
|
Previously there was a mix of returning plain strings and returning
explicit string views using `operator ""sv`. This change switches them
all to standardized on `operator ""sv` as it avoids a call to strlen.
|
|
Previously there was a mix of returning plain strings and returning
explicit string views using `operator ""sv`. This change switches them
all to standardized on `operator ""sv` as it avoids a call to strlen.
|
|
|
|
|
|
|
|
If we need that address, we can always get it from the DeviceIdentifier.
|
|
This allows us to remove the PCI::get_interrupt_line API function. As a
result, this removes a bunch of not so great patterns that we used to
cache PCI interrupt line in many IRQHandler derived classes instead of
just using interrupt_number method of IRQHandler class.
|
|
This allows us to remove a bunch of PCI API functions, and instead to
leverage the cached data from DeviceIdentifier object in many places.
|
|
Rename ID => HardwareID, and PhysicalID => DeviceIdentifier.
This change merely does that to clarify what these objects really are.
|
|
There's no good reason to fetch these values each time we need them.
|
|
|
|
This ensures we dont try to hold the PCI Access mutex under IRQ when
printing VirtIO debug logs (which is not allowed and results in an
assertion). This is also relatively free, as it requires no allocations
(we're just storing a pointer to the rodata section).
|
|
Since the return type is StringView we can just create them at compile
time and avoid the run-time construction.
|
|
This fixes a Kernel Panic where the lazy allocation triggers inside an
ISR and grabs a mutex, which isn't allowed when interrupts are
disabled. This also fixes a bug where the mapping for VirtIO device
BARs is never allocated. #9876
|
|
This will somwhat help unify them also under the same SysFS directory in
the commit.
Also, it feels much more like this change reflects the reality that both
ACPI and the BIOS are part of the firmware on x86 computers.
|
|
The USB bus directory is already in /sys/bus directory, so I don't see a
reason why the PCI bus directory shouldn't be in that directory too.
|
|
This makes the user-facing type only take the node member pointer, and
lets the compiler figure out the other needed types from that.
|
|
This is a fix so the VirtIO code doesn't lead to assertion because we
try to determine the name based on the PCI values of the VirtIO device,
because trying to read from the PCI configuration space requires to
acquire a Mutex, which fails in an IRQ context.
To ensure we never encounter a situation when we call a pure virtual
function in an IRQ context, let's make class_name() method to be a
non-pure virtual function, so it can be still called at anytime.
|
|
This is a better pattern than returning a PhysicalAddress with a zero
value, so the code is more understandable now.
|
|
Devices might be removed and inserted at anytime, so let's ensure we
always do these kind of operations with a good known state of the
HashMap.
The VirtIO code was modified to create devices outside the IRQ handler,
so now it works with the new locking of the devices singleton, but a
better approach might be needed later on.
|
|
These methods are no longer needed because SystemServer is able to
populate the DevFS on its own.
Device absolute_path no longer assume a path to the /dev location,
because it really should not assume any path to a Device node.
Because StorageManagement still needs to know the storage name, we
declare a virtual method only for StorageDevices to override, but this
technique should really be removed later on.
|
|
This patch adds KBufferBuilder::try_create() and treats it like anything
else that can fail. And so, failure to allocate the initial internal
buffer of the builder will now propagate an ENOMEM to the caller. :^)
|
|
|
|
Dr. POSIX really calls these "open file description", not just
"file description", so let's call them exactly that. :^)
|
|
|
|
|
|
This allows us to simplify a whole bunch of call sites with TRY(). :^)
|
|
A couple of things were changed:
1. Semantic changes - PCI segments are now called PCI domains, to better
match what they are really. It's also the name that Linux gave, and it
seems that Wikipedia also uses this name.
We also remove PCI::ChangeableAddress, because it was used in the past
but now it's no longer being used.
2. There are no WindowedMMIOAccess or MMIOAccess classes anymore, as
they made a bunch of unnecessary complexity. Instead, Windowed access is
removed entirely (this was tested, but never was benchmarked), so we are
left with IO access and memory access options. The memory access option
is essentially mapping the PCI bus (from the chosen PCI domain), to
virtual memory as-is. This means that unless needed, at any time, there
is only one PCI bus being mapped, and this is changed if access to
another PCI bus in the same PCI domain is needed. For now, we don't
support mapping of different PCI buses from different PCI domains at the
same time, because basically it's still a non-issue for most machines
out there.
2. OOM-safety is increased, especially when constructing the Access
object. It means that we pre-allocating any needed resources, and we try
to find PCI domains (if requested to initialize memory access) after we
attempt to construct the Access object, so it's possible to fail at this
point "gracefully".
3. All PCI API functions are now separated into a different header file,
which means only "clients" of the PCI subsystem API will need to include
that header file.
4. Functional changes - we only allow now to enumerate the bus after
a hardware scan. This means that the old method "enumerate_hardware"
is removed, so, when initializing an Access object, the initializing
function must call rescan on it to force it to find devices. This makes
it possible to fail rescan, and also to defer it after construction from
both OOM-safety terms and hotplug capabilities.
|
|
This allows us to propagate a whole bunch of KBufferBuilder errors.
|
|
|
|
This expands the reach of error propagation greatly throughout the
kernel. Sadly, it also exposes the fact that we're allocating (and
doing other fallible things) in constructors all over the place.
This patch doesn't attempt to address that of course. That's work for
our future selves.
|
|
- Use KResultOr<NonnullRefPtr<UHCIDescriptorPool<T>>
- Make the constructor private
- Use TRY() at call sites
|
|
|
|
|
|
The default template argument is only used in one place, and it
looks like it was probably just an oversight. The rest of the Kernel
code all uses u8 as the type. So lets make that the default and remove
the unused template argument, as there doesn't seem to be a reason to
allow the size to be customizable.
|
|
This will provide better debug ability when the size comparison fails.
|
|
|
|
This commit moves the KResult and KResultOr objects to Kernel/API to
signify that they may now be freely used by userspace code at points
where a syscall-related error result is to be expected. It also exposes
KResult and KResultOr to the global namespace to make it nicer to use
for userspace code.
|
|
According to the VirtIO 1.0 specification:
"Non-transitional devices SHOULD have a PCI Device ID in the range
0x1040 to 0x107f. Non-transitional devices SHOULD have a PCI Revision ID
of 1 or higher. Non-transitional devices SHOULD have a PCI Subsystem
Device ID of 0x40 or higher."
It also says that:
"Transitional devices MUST have a PCI Revision ID of 0. Transitional
devices MUST have the PCI Subsystem Device ID matching the Virtio
Device ID, as indicated in section 5. Transitional devices MUST have the
Transitional PCI Device ID in the range 0x1000 to 0x103f."
So, for legacy devices, we know that revision ID in the PCI header won't
be 1, so we probe for PCI_SUBSYSTEM_ID value.
Instead of using the subsystem device ID, we can probe the DEVICE_ID
value directly in case it's not a legacy device.
This should cover all possibilities for identifying VirtIO devices, both
per the specification of 0.9.5, and future revisions from 1.0 onwards.
|
|
This ensures we safely handle interrupts (which can call virtual
functions), so they don't happen in the constructor - this pattern can
lead to a crash, if we are still in the constructor context because
not all methods are available for usage (some are pure virtual,
so it's possible to call __cxa_pure_virtual).
Also, under some conditions like adding a PCI device via PCI-passthrough
mechanism in QEMU, it became exposed to the eye that the code asserts on
RNG::handle_device_config_change(). That device has no configuration but
if the hypervisor still misbehaves and tries to configure it, we should
simply return false to indicate nothing happened.
|
|
Like with the ProcFS, description data can change at anytime, so it's
wise to ensure that when the userland reads from an Inode, data is
consistent unless the userland indicated it wants to refresh the data
(by seeking to offset 0, or re-attaching the Inode).
Otherwise, if the data changes in the middle of the reading, it can
cause silent corruption in output which can lead to random crashes.
|
|
|
|
|
|
And also try_create<T> => try_make_ref_counted<T>.
A global "create" was a bit much. The new name matches make<T> better,
which we've used for making single-owner objects since forever.
|
|
|
|
This leads to a bad pattern where anyone could create an RNG or a
Console object. Instead, let's just use the common pattern of a static
method to instantiate a new object and return it wrapped by a
NonnullRefPtr.
|
|
Now that all related VirtIO classes are in the VirtIO namespace, let's
just remove the redundant VirtIO word from filenames.
|
|
Before of this change, many specific classes to VirtIO were in the
Kernel namespace, which polluted it.
Everything should be more organized now, but there's still room for
improvement later.
|
|
This class member was used only to determine the device type when
printing messages to the debug log. Instead, remove this class member,
and add a quick way to find the device type according to how the VirtIO
specification says to do that.
This simplifies construction of VirtIODevices a bit, because now the
constructor doesn't need to ask for a String identified with the device
type.
|