Age | Commit message (Collapse) | Author |
|
These configurations are simply invalid. Ignoring those allow us to boot
with the virtio-gpu-pci device (in addition to the already supported
virtio-vga PCI device).
|
|
This patch switches away from {Nonnull,}LockRefPtr to the non-locking
smart pointers throughout the kernel.
I've looked at the handful of places where these were being persisted
and I don't see any race situations.
Note that the process file descriptor table (Process::m_fds) was already
guarded via MutexProtected.
|
|
|
|
|
|
Same as NonnullRefPtrVector: weird semantics, questionable benefits.
|
|
|
|
This class had slightly confusing semantics and the added weirdness
doesn't seem worth it just so we can say "." instead of "->" when
iterating over a vector of NNRPs.
This patch replaces NonnullRefPtrVector<T> with Vector<NNRP<T>>.
|
|
Since the ProcFS doesn't hold many global objects within it, the need
for a fully-structured design of backing components and a registry like
with the SysFS is no longer true.
To acommodate this, let's remove all backing store and components of the
ProcFS, so now it resembles what we had in the early days of ProcFS in
the project - a mostly-static filesystem, with very small amount of
kmalloc allocations needed.
We still use the inode index mechanism to understand the role of each
inode, but this is done in a much "static"ier way than before.
|
|
|
|
Either take the underlying objects with release_* methods or move() the
instances around.
|
|
|
|
|
|
For each exposed PCI device in sysfs, there's a new node called "rom"
and by reading it, it exposes the raw data of a PCI option ROM blob to
a user for examining the blob.
|
|
There are now 2 separate classes for almost the same object type:
- EnumerableDeviceIdentifier, which is used in the enumeration code for
all PCI host controller classes. This is allowed to be moved and
copied, as it doesn't support ref-counting.
- DeviceIdentifier, which inherits from EnumerableDeviceIdentifier. This
class uses ref-counting, and is not allowed to be copied. It has a
spinlock member in its structure to allow safely executing complicated
IO sequences on a PCI device and its space configuration.
There's a static method that allows a quick conversion from
EnumerableDeviceIdentifier to DeviceIdentifier while creating a
NonnullRefPtr out of it.
The reason for doing this is for the sake of integrity and reliablity of
the system in 2 places:
- Ensure that "complicated" tasks that rely on manipulating PCI device
registers are done in a safe manner. For example, determining a PCI
BAR space size requires multiple read and writes to the same register,
and if another CPU tries to do something else with our selected
register, then the result will be a catastrophe.
- Allow the PCI API to have a united form around a shared object which
actually holds much more data than the PCI::Address structure. This is
fundamental if we want to do certain types of optimizations, and be
able to support more features of the PCI bus in the foreseeable
future.
This patch already has several implications:
- All PCI::Device(s) hold a reference to a DeviceIdentifier structure
being given originally from the PCI::Access singleton. This means that
all instances of DeviceIdentifier structures are located in one place,
and all references are pointing to that location. This ensures that
locking the operation spinlock will take effect in all the appropriate
places.
- We no longer support adding PCI host controllers and then immediately
allow for enumerating it with a lambda function. It was found that
this method is extremely broken and too much complicated to work
reliably with the new paradigm being introduced in this patch. This
means that for Volume Management Devices (Intel VMD devices), we
simply first enumerate the PCI bus for such devices in the storage
code, and if we find a device, we attach it in the PCI::Access method
which will scan for devices behind that bridge and will add new
DeviceIdentifier(s) objects to its internal Vector. Afterwards, we
just continue as usual with scanning for actual storage controllers,
so we will find a corresponding NVMe controllers if there were any
behind that VMD bridge.
|
|
A lot of places were relying on AK/Traits.h to give it strnlen, memcmp,
memcpy and other related declarations.
In the quest to remove inclusion of LibC headers from Kernel files, deal
with all the fallout of this included-everywhere header including less
things.
|
|
These are formatters that can only be used with debug print
functions, such as dbgln(). Currently this is limited to
Formatter<ErrorOr<T>>. With this you can still debug log ErrorOr
values (good for debugging), but trying to use them in any
String::formatted() call will fail (which prevents .to_string()
errors with the new failable strings being ignored).
You make a formatter debug only by adding a constexpr method like:
static constexpr bool is_debug_only() { return true; }
|
|
A virtual method named device_name() was added to
Kernel::PCI to support logging the PCI::Device name
and address using dmesgln_pci. Previously, PCI::Device
did not store the device name.
All devices inheriting from PCI::Device now use dmesgln_pci where
they previously used dmesgln.
|
|
This step would ideally not have been necessary (increases amount of
refactoring and templates necessary, which in turn increases build
times), but it gives us a couple of nice properties:
- SpinlockProtected inside Singleton (a very common combination) can now
obtain any lock rank just via the template parameter. It was not
previously possible to do this with SingletonInstanceCreator magic.
- SpinlockProtected's lock rank is now mandatory; this is the majority
of cases and allows us to see where we're still missing proper ranks.
- The type already informs us what lock rank a lock has, which aids code
readability and (possibly, if gdb cooperates) lock mismatch debugging.
- The rank of a lock can no longer be dynamic, which is not something we
wanted in the first place (or made use of). Locks randomly changing
their rank sounds like a disaster waiting to happen.
- In some places, we might be able to statically check that locks are
taken in the right order (with the right lock rank checking
implementation) as rank information is fully statically known.
This refactoring even more exposes the fact that Mutex has no lock rank
capabilites, which is not fixed here.
|
|
No functional change.
|
|
|
|
This is step 1 to removing `must_create()`.
|
|
From now on, we don't allow jailed processes to open all device nodes in
/dev, but only allow jailed processes to open /dev/full, /dev/zero,
/dev/null, and various TTY and PTY devices (and not including virtual
consoles) so we basically restrict applications to what they can do when
they are in jail.
The motivation for this type of restriction is to ensure that even if a
remote code execution occurred, the damage that can be done is very
small.
We also don't restrict reading and writing on device nodes that were
already opened, because that limit seems not useful, especially in the
case where we do want to provide an OpenFileDescription to such device
but nothing further than that.
|
|
This patch fixes some include problems on aarch64. aarch64 is still
currently broken but this will get us back to the underlying problem
of FloatExtractor.
|
|
|
|
Add support for async transfers by using a separate kernel task to poll
a list of active async transfers on a set time interval, and invoke
their user-provided callback function when they are complete. Also add
support for the interrupt class of transfers, building off of this async
functionality.
|
|
|
|
With these missing header files, we can now build these files for
aarch64.
|
|
We now have a seperately allocated structure for the bookkeeping
information in the QueueHead and TransferDescriptor UHCI strucutres.
This way, we can support 64-bit pointers in UHCI, fixing a problem where
32-bit pointers would truncate the upper 32-bits of the (virtual)
address of the descriptor, causing a crash.
Co-authored-by: b14ckcat <b14ckcat@protonmail.com>
|
|
Decompose the current monolithic USBD Pipe interface into several
subclasses, one for each pair of endpoint type & direction. This is to
make it more clear what data and functionality belongs to which Pipe
type, and prevent nonsensical things like trying to execute a control
transfer on a non-control pipe. This is important, because the Pipe
class is the interface by which USB device drivers will interact with
the HCD, so the clearer and more explicit this interface is the better.
|
|
Allocate DMA buffer pages for use within the USBD Pipe class, and allow
for the user to specify the size of this buffer, rounding up to the
next page boundary.
|
|
|
|
This class is intended to replace all IOAddress usages in the Kernel
codebase altogether. The idea is to ensure IO can be done in
arch-specific manner that is determined mostly in compile-time, but to
still be able to use most of the Kernel code in non-x86 builds. Specific
devices that rely on x86-specific IO instructions are already placed in
the Arch/x86 directory and are omitted for non-x86 builds.
The reason this works so well is the fact that x86 IO space acts in a
similar fashion to the traditional memory space being available in most
CPU architectures - the x86 IO space is essentially just an array of
bytes like the physical memory address space, but requires x86 IO
instructions to load and store data. Therefore, many devices allow host
software to interact with the hardware registers in both ways, with a
noticeable trend even in the modern x86 hardware to move away from the
old x86 IO space to exclusively using memory-mapped IO.
Therefore, the IOWindow class encapsulates both methods for x86 builds.
The idea is to allow PCI devices to be used in either way in x86 builds,
so when trying to map an IOWindow on a PCI BAR, the Kernel will try to
find the proper method being declared with the PCI BAR flags.
For old PCI hardware on non-x86 builds this might turn into a problem as
we can't use port mapped IO, so the Kernel will gracefully fail with
ENOTSUP error code if that's the case, as there's really nothing we can
do within such case.
For general IO, the read{8,16,32} and write{8,16,32} methods are
available as a convenient API for other places in the Kernel. There are
simply no direct 64-bit IO API methods yet, as it's not needed right now
and is not considered to be Arch-agnostic too - the x86 IO space doesn't
support generating 64 bit cycle on IO bus and instead requires two 2
32-bit accesses. If for whatever reason it appears to be necessary to do
IO in such manner, it could probably be added with some neat tricks to
do so. It is recommended to use Memory::TypedMapping struct if direct 64
bit IO is actually needed.
|
|
This device is supposed to be used in microvm and ISA-PC machine types,
and we assume that if we are able to probe for the QEMU BGA version of
0xB0C5, then we have an existing ISA Bochs VGA adapter to utilize.
To ensure we don't instantiate the driver for non isa-vga devices, we
try to ensure that PCI is disabled because hardware IO test probe failed
so we can be sure that we use this special handling code only in the
QEMU microvm and ISA-PC machine types. Unfortunately, this means that if
for some reason the isa-vga device is attached for the i440FX or Q35
machine types, we simply are not able to drive the device in such setups
at all.
To determine the amount of VRAM being available, we read VBE register at
offset 0xA. That register holds the amount of VRAM divided by 64K, so we
need to multiply the value in our code to use the actual VRAM size value
again.
The isa-vga device requires us to hardcode the framebuffer physical
address to 0xE0000000, and that address is not expected to change in the
future as many other projects rely on the isa-vga framebuffer to be
present at that physical memory address.
|
|
|
|
The AHCI code doesn't rely on x86 IO at all as it only uses memory
mapped IO so we can simply remove the header.
We also simply don't use x86 IO in the Intel graphics driver, so we can
simply remove the include of the x86 IO header there too.
Everything else was a bunch of stale includes to the x86 IO header and
are actually not necessary, so let's remove them to make it easier to
compile non-x86 Kernel builds.
|
|
It seems more correct to let each platform to define its own sequence of
initialization of the PCI bus, so let's remove the #if flags and just
put the entire Initializer.cpp file in the appropriate code directory.
|
|
The simple PCI::HostBridge class implements access to the PCI
configuration space by using x86 IO instructions. Therefore, it should
be put in the Arch/x86/PCI directory so it can be easily omitted for
non-x86 builds.
|
|
Many code patterns and hardware procedures rely on reliable delay in the
microseconds granularity, and since they are using such delays which are
valid cases, but should not rely on x86 specific code, we allow to
determine in compile time the proper platform-specific code to use to
invoke such delays.
|
|
Using the IO address space is only relevant for x86 machines, so let's
not compile instructions to access the PCI configuration space when we
don't target x86 platforms.
|
|
|
|
This reworks the way the UHCI schedule is set up to handle interrupt
transfers, creating 11 queue heads each assigned a different
period/latency, so that interrupt transfers can be linked into the
schedule with their specified period more easily.
|
|
Modifies the way the UHCI schedule is set up & modified to allow for
multiple transfers of the same type, from one or more devices, to be
queued up and handled simultaneously.
|
|
Until now, our kernel has reimplemented a number of AK classes to
provide automatic internal locking:
- RefPtr
- NonnullRefPtr
- WeakPtr
- Weakable
This patch renames the Kernel classes so that they can coexist with
the original AK classes:
- RefPtr => LockRefPtr
- NonnullRefPtr => NonnullLockRefPtr
- WeakPtr => LockWeakPtr
- Weakable => LockWeakable
The goal here is to eventually get rid of the Lock* classes in favor of
using external locking.
|
|
Instead of having two separate implementations of AK::RefCounted, one
for userspace and one for kernelspace, there is now RefCounted and
AtomicRefCounted.
|
|
All users which relied on the default constructor use a None lock rank
for now. This will make it easier to in the future remove LockRank and
actually annotate the ranks by searching for None.
|
|
The SystemMonitor program was the last client to utilize this node, and
now it is not using this node anymore, we can simply remove this for
good.
|
|
Currently the SysFS node for USB devices is only initialized for USB
hubs, which means it will cause a kernel crash upon being dereferenced
in a non-hub device. This fixes the problem by making initialization
happen for all USB devices.
|
|
|
|
Right now the TD and QH descriptor pools look to be susceptible
to a race condition in the event they are accessed simultaneously
by separate threads making USB transfers. This fix does not seem to
add any noticeable overhead.
|
|
|