Age | Commit message (Collapse) | Author |
|
A virtual method named device_name() was added to
Kernel::PCI to support logging the PCI::Device name
and address using dmesgln_pci. Previously, PCI::Device
did not store the device name.
All devices inheriting from PCI::Device now use dmesgln_pci where
they previously used dmesgln.
|
|
This step would ideally not have been necessary (increases amount of
refactoring and templates necessary, which in turn increases build
times), but it gives us a couple of nice properties:
- SpinlockProtected inside Singleton (a very common combination) can now
obtain any lock rank just via the template parameter. It was not
previously possible to do this with SingletonInstanceCreator magic.
- SpinlockProtected's lock rank is now mandatory; this is the majority
of cases and allows us to see where we're still missing proper ranks.
- The type already informs us what lock rank a lock has, which aids code
readability and (possibly, if gdb cooperates) lock mismatch debugging.
- The rank of a lock can no longer be dynamic, which is not something we
wanted in the first place (or made use of). Locks randomly changing
their rank sounds like a disaster waiting to happen.
- In some places, we might be able to statically check that locks are
taken in the right order (with the right lock rank checking
implementation) as rank information is fully statically known.
This refactoring even more exposes the fact that Mutex has no lock rank
capabilites, which is not fixed here.
|
|
|
|
Add support for async transfers by using a separate kernel task to poll
a list of active async transfers on a set time interval, and invoke
their user-provided callback function when they are complete. Also add
support for the interrupt class of transfers, building off of this async
functionality.
|
|
With these missing header files, we can now build these files for
aarch64.
|
|
We now have a seperately allocated structure for the bookkeeping
information in the QueueHead and TransferDescriptor UHCI strucutres.
This way, we can support 64-bit pointers in UHCI, fixing a problem where
32-bit pointers would truncate the upper 32-bits of the (virtual)
address of the descriptor, causing a crash.
Co-authored-by: b14ckcat <b14ckcat@protonmail.com>
|
|
Decompose the current monolithic USBD Pipe interface into several
subclasses, one for each pair of endpoint type & direction. This is to
make it more clear what data and functionality belongs to which Pipe
type, and prevent nonsensical things like trying to execute a control
transfer on a non-control pipe. This is important, because the Pipe
class is the interface by which USB device drivers will interact with
the HCD, so the clearer and more explicit this interface is the better.
|
|
Allocate DMA buffer pages for use within the USBD Pipe class, and allow
for the user to specify the size of this buffer, rounding up to the
next page boundary.
|
|
This class is intended to replace all IOAddress usages in the Kernel
codebase altogether. The idea is to ensure IO can be done in
arch-specific manner that is determined mostly in compile-time, but to
still be able to use most of the Kernel code in non-x86 builds. Specific
devices that rely on x86-specific IO instructions are already placed in
the Arch/x86 directory and are omitted for non-x86 builds.
The reason this works so well is the fact that x86 IO space acts in a
similar fashion to the traditional memory space being available in most
CPU architectures - the x86 IO space is essentially just an array of
bytes like the physical memory address space, but requires x86 IO
instructions to load and store data. Therefore, many devices allow host
software to interact with the hardware registers in both ways, with a
noticeable trend even in the modern x86 hardware to move away from the
old x86 IO space to exclusively using memory-mapped IO.
Therefore, the IOWindow class encapsulates both methods for x86 builds.
The idea is to allow PCI devices to be used in either way in x86 builds,
so when trying to map an IOWindow on a PCI BAR, the Kernel will try to
find the proper method being declared with the PCI BAR flags.
For old PCI hardware on non-x86 builds this might turn into a problem as
we can't use port mapped IO, so the Kernel will gracefully fail with
ENOTSUP error code if that's the case, as there's really nothing we can
do within such case.
For general IO, the read{8,16,32} and write{8,16,32} methods are
available as a convenient API for other places in the Kernel. There are
simply no direct 64-bit IO API methods yet, as it's not needed right now
and is not considered to be Arch-agnostic too - the x86 IO space doesn't
support generating 64 bit cycle on IO bus and instead requires two 2
32-bit accesses. If for whatever reason it appears to be necessary to do
IO in such manner, it could probably be added with some neat tricks to
do so. It is recommended to use Memory::TypedMapping struct if direct 64
bit IO is actually needed.
|
|
The AHCI code doesn't rely on x86 IO at all as it only uses memory
mapped IO so we can simply remove the header.
We also simply don't use x86 IO in the Intel graphics driver, so we can
simply remove the include of the x86 IO header there too.
Everything else was a bunch of stale includes to the x86 IO header and
are actually not necessary, so let's remove them to make it easier to
compile non-x86 Kernel builds.
|
|
Many code patterns and hardware procedures rely on reliable delay in the
microseconds granularity, and since they are using such delays which are
valid cases, but should not rely on x86 specific code, we allow to
determine in compile time the proper platform-specific code to use to
invoke such delays.
|
|
|
|
This reworks the way the UHCI schedule is set up to handle interrupt
transfers, creating 11 queue heads each assigned a different
period/latency, so that interrupt transfers can be linked into the
schedule with their specified period more easily.
|
|
Modifies the way the UHCI schedule is set up & modified to allow for
multiple transfers of the same type, from one or more devices, to be
queued up and handled simultaneously.
|
|
Until now, our kernel has reimplemented a number of AK classes to
provide automatic internal locking:
- RefPtr
- NonnullRefPtr
- WeakPtr
- Weakable
This patch renames the Kernel classes so that they can coexist with
the original AK classes:
- RefPtr => LockRefPtr
- NonnullRefPtr => NonnullLockRefPtr
- WeakPtr => LockWeakPtr
- Weakable => LockWeakable
The goal here is to eventually get rid of the Lock* classes in favor of
using external locking.
|
|
Instead of having two separate implementations of AK::RefCounted, one
for userspace and one for kernelspace, there is now RefCounted and
AtomicRefCounted.
|
|
All users which relied on the default constructor use a None lock rank
for now. This will make it easier to in the future remove LockRank and
actually annotate the ranks by searching for None.
|
|
Currently the SysFS node for USB devices is only initialized for USB
hubs, which means it will cause a kernel crash upon being dereferenced
in a non-hub device. This fixes the problem by making initialization
happen for all USB devices.
|
|
Right now the TD and QH descriptor pools look to be susceptible
to a race condition in the event they are accessed simultaneously
by separate threads making USB transfers. This fix does not seem to
add any noticeable overhead.
|
|
|
|
|
|
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
|
|
Currently when allocating buffers for USB transfers, it is done
once for every transfer rather than once upon creation of the
USB device. This commit changes that by moving allocation of buffers
to the USB Pipe class where they can be reused.
|
|
|
|
|
|
Instead, start to put everything in one place to resemble the directory
structure of the SysFS when actually using it.
|
|
This change unifies the naming convention for kernel tasks.
The goal of this change is to:
- Make the task names more descriptive, so users can more
easily understand their purpose in System Monitor.
- Unify the naming convention so they are consistent.
|
|
This name was misleading, as it wasn't really "getting" anything. It has
hence been renamed to `enumerate_interfaces` to reflect what it's
actually doing.
|
|
Each USB object now contains the entire descriptor chain for the device
instead of just info from the device descriptor.
|
|
|
|
|
|
These weren't accessible by an accessor, so let's fix that :^)
|
|
These weren't accessible by an accessor, so let's fix that :^)
|
|
|
|
Moved constants in USBRequest.h from global scope to the Kernel::USB
namespace.
|
|
A request of `GET_DESCRIPTOR` should be sending the entire configuration
chain, and not just the configuration descriptor.
|
|
This creates all interfaces when the device is enumerated, with a link
to the configuration that it is a part of. As such, a new class,
`USBInterface` has been introduced to express this state.
|
|
|
|
Some other parts of the USB stack may require us to perform a control
transfer. Instead of abusing `friend` to expose the default pipe, let's
just expose it via a function.
|
|
This also introduces a new class, `USBConfiguration` that stores a
configuration. The device, when instructed, sets this configuration and
holds a pointer to it so we have a record of what configuration is
currently active.
|
|
|
|
Found by PVS-Studio.
|
|
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#cother-other-default-operation-rules
"The compiler is more likely to get the default semantics right and
you cannot implement these functions better than the compiler."
|
|
Instead, hold the lock while we copy the contents to a stack-based
Vector then iterate on it without any locking.
Because we rely on heap allocations, we need to propagate errors back
in case of OOM condition, therefore, both PCI::enumerate API function
and PCI::Access::add_host_controller_and_enumerate_attached_devices use
now a ErrorOr<void> return value to propagate errors. OOM Error can only
occur when enumerating the m_device_identifiers vector under a spinlock
and trying to expand the temporary Vector which will be used locklessly
to actually iterate over the PCI::DeviceIdentifiers objects.
|
|
This allows us to eliminate a major source of infallible allocation in
the Kernel, as well as lay down the groundwork for OOM fallibility in
userland.
|
|
|
|
There's no need to use this non-standard shorthand mnemonic.
(This commit also removes the unimplemented do_debug_transfer while
we're here.)
|
|
|
|
Port UCHI, AC97, SB16, BMIDEChannel and AHCIPort to use the helper to
allocate DMA buffers.
|
|
|