summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibJS/Runtime/MathObject.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Userland/Libraries/LibJS/Runtime/MathObject.cpp')
-rw-r--r--Userland/Libraries/LibJS/Runtime/MathObject.cpp504
1 files changed, 504 insertions, 0 deletions
diff --git a/Userland/Libraries/LibJS/Runtime/MathObject.cpp b/Userland/Libraries/LibJS/Runtime/MathObject.cpp
new file mode 100644
index 0000000000..bdd3ec6e17
--- /dev/null
+++ b/Userland/Libraries/LibJS/Runtime/MathObject.cpp
@@ -0,0 +1,504 @@
+/*
+ * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
+ * Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice, this
+ * list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <AK/FlyString.h>
+#include <AK/Function.h>
+#include <LibJS/Runtime/GlobalObject.h>
+#include <LibJS/Runtime/MathObject.h>
+#include <math.h>
+
+namespace JS {
+
+MathObject::MathObject(GlobalObject& global_object)
+ : Object(*global_object.object_prototype())
+{
+}
+
+void MathObject::initialize(GlobalObject& global_object)
+{
+ auto& vm = this->vm();
+ Object::initialize(global_object);
+ u8 attr = Attribute::Writable | Attribute::Configurable;
+ define_native_function(vm.names.abs, abs, 1, attr);
+ define_native_function(vm.names.random, random, 0, attr);
+ define_native_function(vm.names.sqrt, sqrt, 1, attr);
+ define_native_function(vm.names.floor, floor, 1, attr);
+ define_native_function(vm.names.ceil, ceil, 1, attr);
+ define_native_function(vm.names.round, round, 1, attr);
+ define_native_function(vm.names.max, max, 2, attr);
+ define_native_function(vm.names.min, min, 2, attr);
+ define_native_function(vm.names.trunc, trunc, 1, attr);
+ define_native_function(vm.names.sin, sin, 1, attr);
+ define_native_function(vm.names.cos, cos, 1, attr);
+ define_native_function(vm.names.tan, tan, 1, attr);
+ define_native_function(vm.names.pow, pow, 2, attr);
+ define_native_function(vm.names.exp, exp, 1, attr);
+ define_native_function(vm.names.expm1, expm1, 1, attr);
+ define_native_function(vm.names.sign, sign, 1, attr);
+ define_native_function(vm.names.clz32, clz32, 1, attr);
+ define_native_function(vm.names.acos, acos, 1, attr);
+ define_native_function(vm.names.acosh, acosh, 1, attr);
+ define_native_function(vm.names.asin, asin, 1, attr);
+ define_native_function(vm.names.asinh, asinh, 1, attr);
+ define_native_function(vm.names.atan, atan, 1, attr);
+ define_native_function(vm.names.atanh, atanh, 1, attr);
+ define_native_function(vm.names.log1p, log1p, 1, attr);
+ define_native_function(vm.names.cbrt, cbrt, 1, attr);
+ define_native_function(vm.names.atan2, atan2, 2, attr);
+ define_native_function(vm.names.fround, fround, 1, attr);
+ define_native_function(vm.names.hypot, hypot, 2, attr);
+ define_native_function(vm.names.log, log, 1, attr);
+ define_native_function(vm.names.log2, log2, 1, attr);
+ define_native_function(vm.names.log10, log10, 1, attr);
+ define_native_function(vm.names.sinh, sinh, 1, attr);
+ define_native_function(vm.names.cosh, cosh, 1, attr);
+ define_native_function(vm.names.tanh, tanh, 1, attr);
+
+ define_property(vm.names.E, Value(M_E), 0);
+ define_property(vm.names.LN2, Value(M_LN2), 0);
+ define_property(vm.names.LN10, Value(M_LN10), 0);
+ define_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
+ define_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
+ define_property(vm.names.PI, Value(M_PI), 0);
+ define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
+ define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
+
+ define_property(vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), "Math"), Attribute::Configurable);
+}
+
+MathObject::~MathObject()
+{
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
+{
+#ifdef __serenity__
+ double r = (double)arc4random() / (double)UINT32_MAX;
+#else
+ double r = (double)rand() / (double)RAND_MAX;
+#endif
+ return Value(r);
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ return Value(::sqrt(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ return Value(::floor(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ auto number_double = number.as_double();
+ if (number_double < 0 && number_double > -1)
+ return Value(-0.f);
+ return Value(::ceil(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ return Value(::round(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
+{
+ if (!vm.argument_count())
+ return js_negative_infinity();
+
+ auto max = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ for (size_t i = 1; i < vm.argument_count(); ++i) {
+ auto cur = vm.argument(i).to_number(global_object);
+ if (vm.exception())
+ return {};
+ max = Value(cur.as_double() > max.as_double() ? cur : max);
+ }
+ return max;
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
+{
+ if (!vm.argument_count())
+ return js_infinity();
+
+ auto min = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ for (size_t i = 1; i < vm.argument_count(); ++i) {
+ auto cur = vm.argument(i).to_number(global_object);
+ if (vm.exception())
+ return {};
+ min = Value(cur.as_double() < min.as_double() ? cur : min);
+ }
+ return min;
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ if (number.as_double() < 0)
+ return MathObject::ceil(vm, global_object);
+ return MathObject::floor(vm, global_object);
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ return Value(::sin(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ return Value(::cos(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ return Value(::tan(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
+{
+ return JS::exp(global_object, vm.argument(0), vm.argument(1));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ return Value(::exp(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ return Value(::expm1(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_positive_zero())
+ return Value(0);
+ if (number.is_negative_zero())
+ return Value(-0.0);
+ if (number.as_double() > 0)
+ return Value(1);
+ if (number.as_double() < 0)
+ return Value(-1);
+ return js_nan();
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
+ return Value(32);
+ return Value(__builtin_clz((unsigned)number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
+ return js_nan();
+ if (number.as_double() == 1)
+ return Value(0);
+ return Value(::acos(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.as_double() < 1)
+ return js_nan();
+ return Value(::acosh(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
+ return number;
+ return Value(::asin(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ return Value(::asinh(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
+ return number;
+ if (number.is_positive_infinity())
+ return Value(M_PI_2);
+ if (number.is_negative_infinity())
+ return Value(-M_PI_2);
+ return Value(::atan(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.as_double() > 1 || number.as_double() < -1)
+ return js_nan();
+ return Value(::atanh(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.as_double() < -1)
+ return js_nan();
+ return Value(::log1p(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ return Value(::cbrt(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
+{
+ auto y = vm.argument(0).to_number(global_object), x = vm.argument(1).to_number(global_object);
+ auto pi_4 = M_PI_2 / 2;
+ auto three_pi_4 = pi_4 + M_PI_2;
+ if (vm.exception())
+ return {};
+ if (x.is_positive_zero()) {
+ if (y.is_positive_zero() || y.is_negative_zero())
+ return y;
+ else
+ return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
+ }
+ if (x.is_negative_zero()) {
+ if (y.is_positive_zero())
+ return Value(M_PI);
+ else if (y.is_negative_zero())
+ return Value(-M_PI);
+ else
+ return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
+ }
+ if (x.is_positive_infinity()) {
+ if (y.is_infinity())
+ return (y.is_positive_infinity()) ? Value(pi_4) : Value(-pi_4);
+ else
+ return (y.as_double() > 0) ? Value(+0.0) : Value(-0.0);
+ }
+ if (x.is_negative_infinity()) {
+ if (y.is_infinity())
+ return (y.is_positive_infinity()) ? Value(three_pi_4) : Value(-three_pi_4);
+ else
+ return (y.as_double() > 0) ? Value(M_PI) : Value(-M_PI);
+ }
+ if (y.is_infinity())
+ return (y.is_positive_infinity()) ? Value(M_PI_2) : Value(-M_PI_2);
+ if (y.is_positive_zero())
+ return (x.as_double() > 0) ? Value(+0.0) : Value(M_PI);
+ if (y.is_negative_zero())
+ return (x.as_double() > 0) ? Value(-0.0) : Value(-M_PI);
+
+ return Value(::atan2(y.as_double(), x.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ return Value((float)number.as_double());
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
+{
+ if (!vm.argument_count())
+ return Value(0);
+
+ auto hypot = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ hypot = Value(hypot.as_double() * hypot.as_double());
+ for (size_t i = 1; i < vm.argument_count(); ++i) {
+ auto cur = vm.argument(i).to_number(global_object);
+ if (vm.exception())
+ return {};
+ hypot = Value(hypot.as_double() + cur.as_double() * cur.as_double());
+ }
+ return Value(::sqrt(hypot.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.as_double() < 0)
+ return js_nan();
+ return Value(::log(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.as_double() < 0)
+ return js_nan();
+ return Value(::log2(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.as_double() < 0)
+ return js_nan();
+ return Value(::log10(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ return Value(::sinh(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ return Value(::cosh(number.as_double()));
+}
+
+JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
+{
+ auto number = vm.argument(0).to_number(global_object);
+ if (vm.exception())
+ return {};
+ if (number.is_nan())
+ return js_nan();
+ if (number.is_positive_infinity())
+ return Value(1);
+ if (number.is_negative_infinity())
+ return Value(-1);
+ return Value(::tanh(number.as_double()));
+}
+
+}