diff options
Diffstat (limited to 'Userland/Libraries/LibCrypto/BigInt/Algorithms/ModularPower.cpp')
-rw-r--r-- | Userland/Libraries/LibCrypto/BigInt/Algorithms/ModularPower.cpp | 232 |
1 files changed, 232 insertions, 0 deletions
diff --git a/Userland/Libraries/LibCrypto/BigInt/Algorithms/ModularPower.cpp b/Userland/Libraries/LibCrypto/BigInt/Algorithms/ModularPower.cpp index a990313fe0..15dca5a721 100644 --- a/Userland/Libraries/LibCrypto/BigInt/Algorithms/ModularPower.cpp +++ b/Userland/Libraries/LibCrypto/BigInt/Algorithms/ModularPower.cpp @@ -49,4 +49,236 @@ void UnsignedBigIntegerAlgorithms::destructive_modular_power_without_allocation( } } +/** + * Compute (1/value) % 2^32. + * This needs an odd input value + * Algorithm from: Dumas, J.G. "On Newton–Raphson Iteration for Multiplicative Inverses Modulo Prime Powers". + */ +ALWAYS_INLINE static u32 inverse_wrapped(u32 value) +{ + VERIFY(value & 1); + + i64 b = static_cast<i64>(value); + i64 k0 = (2 - b); + i64 t = (b - 1); + size_t i = 1; + while (i < 32) { + t = t * t; + k0 = k0 * (t + 1); + i <<= 1; + } + return static_cast<u32>(-k0); +} + +/** + * Computes z = x * y + c. z_carry contains the top bits, z contains the bottom bits. + */ +ALWAYS_INLINE static void linear_multiplication_with_carry(u32 x, u32 y, u32 c, u32& z_carry, u32& z) +{ + u64 result = static_cast<u64>(x) * static_cast<u64>(y) + static_cast<u64>(c); + z_carry = static_cast<u32>(result >> 32); + z = static_cast<u32>(result); +} + +/** + * Computes z = a + b. z_carry contains the top bit (1 or 0), z contains the bottom bits. + */ +ALWAYS_INLINE static void addition_with_carry(u32 a, u32 b, u32& z_carry, u32& z) +{ + u64 result = static_cast<u64>(a) + static_cast<u64>(b); + z_carry = static_cast<u32>(result >> 32); + z = static_cast<u32>(result); +} + +/** + * Computes a montgomery "fragment" for y_i. This computes "z[i] += x[i] * y_i" for all words while rippling the carry, and returns the carry. + * Algorithm from: Gueron, "Efficient Software Implementations of Modular Exponentiation". (https://eprint.iacr.org/2011/239.pdf) + */ +UnsignedBigInteger::Word UnsignedBigIntegerAlgorithms::montgomery_fragment(UnsignedBigInteger& z, size_t offset_in_z, UnsignedBigInteger const& x, UnsignedBigInteger::Word y_digit, size_t num_words) +{ + UnsignedBigInteger::Word carry { 0 }; + for (size_t i = 0; i < num_words; ++i) { + UnsignedBigInteger::Word a_carry; + UnsignedBigInteger::Word a; + linear_multiplication_with_carry(x.m_words[i], y_digit, z.m_words[offset_in_z + i], a_carry, a); + UnsignedBigInteger::Word b_carry; + UnsignedBigInteger::Word b; + addition_with_carry(a, carry, b_carry, b); + z.m_words[offset_in_z + i] = b; + carry = a_carry + b_carry; + } + return carry; +} + +/** + * Computes the "almost montgomery" product : x * y * 2 ^ (-num_words * BITS_IN_WORD) % modulo + * [Note : that means that the result z satisfies z * 2^(num_words * BITS_IN_WORD) % modulo = x * y % modulo] + * assuming : + * - x, y and modulo are all already padded to num_words + * - k = inverse_wrapped(modulo) (optimization to not recompute K each time) + * Algorithm from: Gueron, "Efficient Software Implementations of Modular Exponentiation". (https://eprint.iacr.org/2011/239.pdf) + */ +void UnsignedBigIntegerAlgorithms::almost_montgomery_multiplication_without_allocation( + UnsignedBigInteger const& x, + UnsignedBigInteger const& y, + UnsignedBigInteger const& modulo, + UnsignedBigInteger& z, + UnsignedBigInteger::Word k, + size_t num_words, + UnsignedBigInteger& result) +{ + VERIFY(x.length() >= num_words); + VERIFY(y.length() >= num_words); + VERIFY(modulo.length() >= num_words); + + z.set_to(0); + z.resize_with_leading_zeros(num_words * 2); + + UnsignedBigInteger::Word previous_double_carry { 0 }; + for (size_t i = 0; i < num_words; ++i) { + // z[i->num_words+i] += x * y_i + UnsignedBigInteger::Word carry_1 = montgomery_fragment(z, i, x, y.m_words[i], num_words); + // z[i->num_words+i] += modulo * (z_i * k) + UnsignedBigInteger::Word t = z.m_words[i] * k; + UnsignedBigInteger::Word carry_2 = montgomery_fragment(z, i, modulo, t, num_words); + + // Compute the carry by combining all of the carrys of the previous computations + // Put it "right after" the range that we computed above + UnsignedBigInteger::Word temp_carry = previous_double_carry + carry_1; + UnsignedBigInteger::Word overall_carry = temp_carry + carry_2; + z.m_words[num_words + i] = overall_carry; + + // Detect if there was a "double carry" for this word by checking if our carry results are smaller than their components + previous_double_carry = (temp_carry < carry_1 || overall_carry < carry_2) ? 1 : 0; + } + + if (previous_double_carry == 0) { + // Return the top num_words bytes of Z, which contains our result. + shift_right_by_n_words(z, num_words, result); + result.resize_with_leading_zeros(num_words); + return; + } + + // We have a carry, so we're "one bigger" than we need to be. + // Subtract the modulo from the result (the top half of z), and write it to the bottom half of Z since we have space. + // (With carry, of course.) + UnsignedBigInteger::Word c { 0 }; + for (size_t i = 0; i < num_words; ++i) { + UnsignedBigInteger::Word z_digit = z.m_words[num_words + i]; + UnsignedBigInteger::Word modulo_digit = modulo.m_words[i]; + UnsignedBigInteger::Word new_z_digit = z_digit - modulo_digit - c; + z.m_words[i] = new_z_digit; + // Detect if the subtraction underflowed - from "Hacker's Delight" + c = ((modulo_digit & ~z_digit) | ((modulo_digit | ~z_digit) & new_z_digit)) >> (UnsignedBigInteger::BITS_IN_WORD - 1); + } + + // Return the bottom num_words bytes of Z (with the carry bit handled) + z.m_words.resize(num_words); + result.set_to(z); + result.resize_with_leading_zeros(num_words); +} + +/** + * Complexity: still O(N^3) with N the number of words in the largest word, but less complex than the classical mod power. + * Note: the montgomery multiplications requires an inverse modulo over 2^32, which is only defined for odd numbers. + */ +void UnsignedBigIntegerAlgorithms::montgomery_modular_power_with_minimal_allocations( + UnsignedBigInteger const& base, + UnsignedBigInteger const& exponent, + UnsignedBigInteger const& modulo, + UnsignedBigInteger& temp_z, + UnsignedBigInteger& rr, + UnsignedBigInteger& one, + UnsignedBigInteger& z, + UnsignedBigInteger& zz, + UnsignedBigInteger& x, + UnsignedBigInteger& temp_extra, + UnsignedBigInteger& result) +{ + VERIFY(modulo.is_odd()); + + // Note: While this is a constexpr variable for clarity and could be changed in theory, + // various optimized parts of the algorithm rely on this value being exactly 4. + constexpr size_t window_size = 4; + + size_t num_words = modulo.trimmed_length(); + UnsignedBigInteger::Word k = inverse_wrapped(modulo.m_words[0]); + + one.set_to(1); + + // rr = ( 2 ^ (2 * modulo.length() * BITS_IN_WORD) ) % modulo + shift_left_by_n_words(one, 2 * num_words, x); + divide_without_allocation(x, modulo, temp_z, one, z, zz, temp_extra, rr); + rr.resize_with_leading_zeros(num_words); + + // x = base [% modulo, if x doesn't already fit in modulo's words] + x.set_to(base); + if (x.trimmed_length() > num_words) + divide_without_allocation(base, modulo, temp_z, one, z, zz, temp_extra, x); + x.resize_with_leading_zeros(num_words); + + one.set_to(1); + one.resize_with_leading_zeros(num_words); + + // Compute the montgomery powers from 0 to 2^window_size. powers[i] = x^i + UnsignedBigInteger powers[1 << window_size]; + almost_montgomery_multiplication_without_allocation(one, rr, modulo, temp_z, k, num_words, powers[0]); + almost_montgomery_multiplication_without_allocation(x, rr, modulo, temp_z, k, num_words, powers[1]); + for (size_t i = 2; i < (1 << window_size); ++i) + almost_montgomery_multiplication_without_allocation(powers[i - 1], powers[1], modulo, temp_z, k, num_words, powers[i]); + + z.set_to(powers[0]); + z.resize_with_leading_zeros(num_words); + zz.set_to(0); + zz.resize_with_leading_zeros(num_words); + + ssize_t exponent_length = exponent.trimmed_length(); + for (ssize_t word_in_exponent = exponent_length - 1; word_in_exponent >= 0; --word_in_exponent) { + UnsignedBigInteger::Word exponent_word = exponent.m_words[word_in_exponent]; + size_t bit_in_word = 0; + while (bit_in_word < UnsignedBigInteger::BITS_IN_WORD) { + if (word_in_exponent != exponent_length - 1 || bit_in_word != 0) { + almost_montgomery_multiplication_without_allocation(z, z, modulo, temp_z, k, num_words, zz); + almost_montgomery_multiplication_without_allocation(zz, zz, modulo, temp_z, k, num_words, z); + almost_montgomery_multiplication_without_allocation(z, z, modulo, temp_z, k, num_words, zz); + almost_montgomery_multiplication_without_allocation(zz, zz, modulo, temp_z, k, num_words, z); + } + auto power_index = exponent_word >> (UnsignedBigInteger::BITS_IN_WORD - window_size); + auto& power = powers[power_index]; + almost_montgomery_multiplication_without_allocation(z, power, modulo, temp_z, k, num_words, zz); + + swap(z, zz); + + // Move to the next window + exponent_word <<= window_size; + bit_in_word += window_size; + } + } + + almost_montgomery_multiplication_without_allocation(z, one, modulo, temp_z, k, num_words, zz); + + if (zz < modulo) { + result.set_to(zz); + result.clamp_to_trimmed_length(); + return; + } + + // Note : Since we were using "almost montgomery" multiplications, we aren't guaranteed to be under the modulo already. + // So, if we're here, we need to respect the modulo. + // We can, however, start by trying to subtract the modulo, just in case we're close. + subtract_without_allocation(zz, modulo, result); + + if (modulo < zz) { + // Note: This branch shouldn't happen in theory (as noted in https://github.com/rust-num/num-bigint/blob/master/src/biguint/monty.rs#L210) + // Let's dbgln the values we used. That way, if we hit this branch, we can contribute these values for test cases. + dbgln("Encountered the modulo branch during a montgomery modular power. Params : {} - {} - {}", base, exponent, modulo); + // We just clobber all the other temporaries that we don't need for the division. + // This is wasteful, but we're on the edgiest of cases already. + divide_without_allocation(zz, modulo, temp_z, rr, z, x, temp_extra, result); + } + + result.clamp_to_trimmed_length(); + return; +} + } |