summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibCrypto/BigInt/Algorithms/ModularPower.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Userland/Libraries/LibCrypto/BigInt/Algorithms/ModularPower.cpp')
-rw-r--r--Userland/Libraries/LibCrypto/BigInt/Algorithms/ModularPower.cpp232
1 files changed, 232 insertions, 0 deletions
diff --git a/Userland/Libraries/LibCrypto/BigInt/Algorithms/ModularPower.cpp b/Userland/Libraries/LibCrypto/BigInt/Algorithms/ModularPower.cpp
index a990313fe0..15dca5a721 100644
--- a/Userland/Libraries/LibCrypto/BigInt/Algorithms/ModularPower.cpp
+++ b/Userland/Libraries/LibCrypto/BigInt/Algorithms/ModularPower.cpp
@@ -49,4 +49,236 @@ void UnsignedBigIntegerAlgorithms::destructive_modular_power_without_allocation(
}
}
+/**
+ * Compute (1/value) % 2^32.
+ * This needs an odd input value
+ * Algorithm from: Dumas, J.G. "On Newton–Raphson Iteration for Multiplicative Inverses Modulo Prime Powers".
+ */
+ALWAYS_INLINE static u32 inverse_wrapped(u32 value)
+{
+ VERIFY(value & 1);
+
+ i64 b = static_cast<i64>(value);
+ i64 k0 = (2 - b);
+ i64 t = (b - 1);
+ size_t i = 1;
+ while (i < 32) {
+ t = t * t;
+ k0 = k0 * (t + 1);
+ i <<= 1;
+ }
+ return static_cast<u32>(-k0);
+}
+
+/**
+ * Computes z = x * y + c. z_carry contains the top bits, z contains the bottom bits.
+ */
+ALWAYS_INLINE static void linear_multiplication_with_carry(u32 x, u32 y, u32 c, u32& z_carry, u32& z)
+{
+ u64 result = static_cast<u64>(x) * static_cast<u64>(y) + static_cast<u64>(c);
+ z_carry = static_cast<u32>(result >> 32);
+ z = static_cast<u32>(result);
+}
+
+/**
+ * Computes z = a + b. z_carry contains the top bit (1 or 0), z contains the bottom bits.
+ */
+ALWAYS_INLINE static void addition_with_carry(u32 a, u32 b, u32& z_carry, u32& z)
+{
+ u64 result = static_cast<u64>(a) + static_cast<u64>(b);
+ z_carry = static_cast<u32>(result >> 32);
+ z = static_cast<u32>(result);
+}
+
+/**
+ * Computes a montgomery "fragment" for y_i. This computes "z[i] += x[i] * y_i" for all words while rippling the carry, and returns the carry.
+ * Algorithm from: Gueron, "Efficient Software Implementations of Modular Exponentiation". (https://eprint.iacr.org/2011/239.pdf)
+ */
+UnsignedBigInteger::Word UnsignedBigIntegerAlgorithms::montgomery_fragment(UnsignedBigInteger& z, size_t offset_in_z, UnsignedBigInteger const& x, UnsignedBigInteger::Word y_digit, size_t num_words)
+{
+ UnsignedBigInteger::Word carry { 0 };
+ for (size_t i = 0; i < num_words; ++i) {
+ UnsignedBigInteger::Word a_carry;
+ UnsignedBigInteger::Word a;
+ linear_multiplication_with_carry(x.m_words[i], y_digit, z.m_words[offset_in_z + i], a_carry, a);
+ UnsignedBigInteger::Word b_carry;
+ UnsignedBigInteger::Word b;
+ addition_with_carry(a, carry, b_carry, b);
+ z.m_words[offset_in_z + i] = b;
+ carry = a_carry + b_carry;
+ }
+ return carry;
+}
+
+/**
+ * Computes the "almost montgomery" product : x * y * 2 ^ (-num_words * BITS_IN_WORD) % modulo
+ * [Note : that means that the result z satisfies z * 2^(num_words * BITS_IN_WORD) % modulo = x * y % modulo]
+ * assuming :
+ * - x, y and modulo are all already padded to num_words
+ * - k = inverse_wrapped(modulo) (optimization to not recompute K each time)
+ * Algorithm from: Gueron, "Efficient Software Implementations of Modular Exponentiation". (https://eprint.iacr.org/2011/239.pdf)
+ */
+void UnsignedBigIntegerAlgorithms::almost_montgomery_multiplication_without_allocation(
+ UnsignedBigInteger const& x,
+ UnsignedBigInteger const& y,
+ UnsignedBigInteger const& modulo,
+ UnsignedBigInteger& z,
+ UnsignedBigInteger::Word k,
+ size_t num_words,
+ UnsignedBigInteger& result)
+{
+ VERIFY(x.length() >= num_words);
+ VERIFY(y.length() >= num_words);
+ VERIFY(modulo.length() >= num_words);
+
+ z.set_to(0);
+ z.resize_with_leading_zeros(num_words * 2);
+
+ UnsignedBigInteger::Word previous_double_carry { 0 };
+ for (size_t i = 0; i < num_words; ++i) {
+ // z[i->num_words+i] += x * y_i
+ UnsignedBigInteger::Word carry_1 = montgomery_fragment(z, i, x, y.m_words[i], num_words);
+ // z[i->num_words+i] += modulo * (z_i * k)
+ UnsignedBigInteger::Word t = z.m_words[i] * k;
+ UnsignedBigInteger::Word carry_2 = montgomery_fragment(z, i, modulo, t, num_words);
+
+ // Compute the carry by combining all of the carrys of the previous computations
+ // Put it "right after" the range that we computed above
+ UnsignedBigInteger::Word temp_carry = previous_double_carry + carry_1;
+ UnsignedBigInteger::Word overall_carry = temp_carry + carry_2;
+ z.m_words[num_words + i] = overall_carry;
+
+ // Detect if there was a "double carry" for this word by checking if our carry results are smaller than their components
+ previous_double_carry = (temp_carry < carry_1 || overall_carry < carry_2) ? 1 : 0;
+ }
+
+ if (previous_double_carry == 0) {
+ // Return the top num_words bytes of Z, which contains our result.
+ shift_right_by_n_words(z, num_words, result);
+ result.resize_with_leading_zeros(num_words);
+ return;
+ }
+
+ // We have a carry, so we're "one bigger" than we need to be.
+ // Subtract the modulo from the result (the top half of z), and write it to the bottom half of Z since we have space.
+ // (With carry, of course.)
+ UnsignedBigInteger::Word c { 0 };
+ for (size_t i = 0; i < num_words; ++i) {
+ UnsignedBigInteger::Word z_digit = z.m_words[num_words + i];
+ UnsignedBigInteger::Word modulo_digit = modulo.m_words[i];
+ UnsignedBigInteger::Word new_z_digit = z_digit - modulo_digit - c;
+ z.m_words[i] = new_z_digit;
+ // Detect if the subtraction underflowed - from "Hacker's Delight"
+ c = ((modulo_digit & ~z_digit) | ((modulo_digit | ~z_digit) & new_z_digit)) >> (UnsignedBigInteger::BITS_IN_WORD - 1);
+ }
+
+ // Return the bottom num_words bytes of Z (with the carry bit handled)
+ z.m_words.resize(num_words);
+ result.set_to(z);
+ result.resize_with_leading_zeros(num_words);
+}
+
+/**
+ * Complexity: still O(N^3) with N the number of words in the largest word, but less complex than the classical mod power.
+ * Note: the montgomery multiplications requires an inverse modulo over 2^32, which is only defined for odd numbers.
+ */
+void UnsignedBigIntegerAlgorithms::montgomery_modular_power_with_minimal_allocations(
+ UnsignedBigInteger const& base,
+ UnsignedBigInteger const& exponent,
+ UnsignedBigInteger const& modulo,
+ UnsignedBigInteger& temp_z,
+ UnsignedBigInteger& rr,
+ UnsignedBigInteger& one,
+ UnsignedBigInteger& z,
+ UnsignedBigInteger& zz,
+ UnsignedBigInteger& x,
+ UnsignedBigInteger& temp_extra,
+ UnsignedBigInteger& result)
+{
+ VERIFY(modulo.is_odd());
+
+ // Note: While this is a constexpr variable for clarity and could be changed in theory,
+ // various optimized parts of the algorithm rely on this value being exactly 4.
+ constexpr size_t window_size = 4;
+
+ size_t num_words = modulo.trimmed_length();
+ UnsignedBigInteger::Word k = inverse_wrapped(modulo.m_words[0]);
+
+ one.set_to(1);
+
+ // rr = ( 2 ^ (2 * modulo.length() * BITS_IN_WORD) ) % modulo
+ shift_left_by_n_words(one, 2 * num_words, x);
+ divide_without_allocation(x, modulo, temp_z, one, z, zz, temp_extra, rr);
+ rr.resize_with_leading_zeros(num_words);
+
+ // x = base [% modulo, if x doesn't already fit in modulo's words]
+ x.set_to(base);
+ if (x.trimmed_length() > num_words)
+ divide_without_allocation(base, modulo, temp_z, one, z, zz, temp_extra, x);
+ x.resize_with_leading_zeros(num_words);
+
+ one.set_to(1);
+ one.resize_with_leading_zeros(num_words);
+
+ // Compute the montgomery powers from 0 to 2^window_size. powers[i] = x^i
+ UnsignedBigInteger powers[1 << window_size];
+ almost_montgomery_multiplication_without_allocation(one, rr, modulo, temp_z, k, num_words, powers[0]);
+ almost_montgomery_multiplication_without_allocation(x, rr, modulo, temp_z, k, num_words, powers[1]);
+ for (size_t i = 2; i < (1 << window_size); ++i)
+ almost_montgomery_multiplication_without_allocation(powers[i - 1], powers[1], modulo, temp_z, k, num_words, powers[i]);
+
+ z.set_to(powers[0]);
+ z.resize_with_leading_zeros(num_words);
+ zz.set_to(0);
+ zz.resize_with_leading_zeros(num_words);
+
+ ssize_t exponent_length = exponent.trimmed_length();
+ for (ssize_t word_in_exponent = exponent_length - 1; word_in_exponent >= 0; --word_in_exponent) {
+ UnsignedBigInteger::Word exponent_word = exponent.m_words[word_in_exponent];
+ size_t bit_in_word = 0;
+ while (bit_in_word < UnsignedBigInteger::BITS_IN_WORD) {
+ if (word_in_exponent != exponent_length - 1 || bit_in_word != 0) {
+ almost_montgomery_multiplication_without_allocation(z, z, modulo, temp_z, k, num_words, zz);
+ almost_montgomery_multiplication_without_allocation(zz, zz, modulo, temp_z, k, num_words, z);
+ almost_montgomery_multiplication_without_allocation(z, z, modulo, temp_z, k, num_words, zz);
+ almost_montgomery_multiplication_without_allocation(zz, zz, modulo, temp_z, k, num_words, z);
+ }
+ auto power_index = exponent_word >> (UnsignedBigInteger::BITS_IN_WORD - window_size);
+ auto& power = powers[power_index];
+ almost_montgomery_multiplication_without_allocation(z, power, modulo, temp_z, k, num_words, zz);
+
+ swap(z, zz);
+
+ // Move to the next window
+ exponent_word <<= window_size;
+ bit_in_word += window_size;
+ }
+ }
+
+ almost_montgomery_multiplication_without_allocation(z, one, modulo, temp_z, k, num_words, zz);
+
+ if (zz < modulo) {
+ result.set_to(zz);
+ result.clamp_to_trimmed_length();
+ return;
+ }
+
+ // Note : Since we were using "almost montgomery" multiplications, we aren't guaranteed to be under the modulo already.
+ // So, if we're here, we need to respect the modulo.
+ // We can, however, start by trying to subtract the modulo, just in case we're close.
+ subtract_without_allocation(zz, modulo, result);
+
+ if (modulo < zz) {
+ // Note: This branch shouldn't happen in theory (as noted in https://github.com/rust-num/num-bigint/blob/master/src/biguint/monty.rs#L210)
+ // Let's dbgln the values we used. That way, if we hit this branch, we can contribute these values for test cases.
+ dbgln("Encountered the modulo branch during a montgomery modular power. Params : {} - {} - {}", base, exponent, modulo);
+ // We just clobber all the other temporaries that we don't need for the division.
+ // This is wasteful, but we're on the edgiest of cases already.
+ divide_without_allocation(zz, modulo, temp_z, rr, z, x, temp_extra, result);
+ }
+
+ result.clamp_to_trimmed_length();
+ return;
+}
+
}