diff options
Diffstat (limited to 'Kernel/VM/AnonymousVMObject.cpp')
-rw-r--r-- | Kernel/VM/AnonymousVMObject.cpp | 442 |
1 files changed, 424 insertions, 18 deletions
diff --git a/Kernel/VM/AnonymousVMObject.cpp b/Kernel/VM/AnonymousVMObject.cpp index 2a2a49c542..692d71956b 100644 --- a/Kernel/VM/AnonymousVMObject.cpp +++ b/Kernel/VM/AnonymousVMObject.cpp @@ -24,15 +24,67 @@ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ +#include <Kernel/Process.h> #include <Kernel/VM/AnonymousVMObject.h> #include <Kernel/VM/MemoryManager.h> #include <Kernel/VM/PhysicalPage.h> +//#define COMMIT_DEBUG +//#define PAGE_FAULT_DEBUG + namespace Kernel { -NonnullRefPtr<AnonymousVMObject> AnonymousVMObject::create_with_size(size_t size) +RefPtr<VMObject> AnonymousVMObject::clone() +{ + // We need to acquire our lock so we copy a sane state + ScopedSpinLock lock(m_lock); + + // We're the parent. Since we're about to become COW we need to + // commit the number of pages that we need to potentially allocate + // so that the parent is still guaranteed to be able to have all + // non-volatile memory available. + size_t need_cow_pages = 0; + { + // We definitely need to commit non-volatile areas + for_each_nonvolatile_range([&](const VolatilePageRange& nonvolatile_range) { + need_cow_pages += nonvolatile_range.count; + return IterationDecision::Continue; + }); + } + +#ifdef COMMIT_DEBUG + klog() << "Cloning " << this << ", need " << need_cow_pages << " committed cow pages"; +#endif + if (!MM.commit_user_physical_pages(need_cow_pages)) + return {}; + // Create or replace the committed cow pages. When cloning a previously + // cloned vmobject, we want to essentially "fork", leaving us and the + // new clone with one set of shared committed cow pages, and the original + // one would keep the one it still has. This ensures that the original + // one and this one, as well as the clone have sufficient resources + // to cow all pages as needed + m_shared_committed_cow_pages = adopt(*new CommittedCowPages(need_cow_pages)); + + // Both original and clone become COW. So create a COW map for ourselves + // or reset all pages to be copied again if we were previously cloned + ensure_or_reset_cow_map(); + + return adopt(*new AnonymousVMObject(*this)); +} + +RefPtr<AnonymousVMObject> AnonymousVMObject::create_with_size(size_t size, AllocationStrategy commit) +{ + if (commit == AllocationStrategy::Reserve || commit == AllocationStrategy::AllocateNow) { + // We need to attempt to commit before actually creating the object + if (!MM.commit_user_physical_pages(ceil_div(size, PAGE_SIZE))) + return {}; + } + return adopt(*new AnonymousVMObject(size, commit)); +} + +NonnullRefPtr<AnonymousVMObject> AnonymousVMObject::create_with_physical_page(PhysicalPage& page) { - return adopt(*new AnonymousVMObject(size)); + return adopt(*new AnonymousVMObject(page)); } RefPtr<AnonymousVMObject> AnonymousVMObject::create_for_physical_range(PhysicalAddress paddr, size_t size) @@ -44,49 +96,403 @@ RefPtr<AnonymousVMObject> AnonymousVMObject::create_for_physical_range(PhysicalA return adopt(*new AnonymousVMObject(paddr, size)); } -NonnullRefPtr<AnonymousVMObject> AnonymousVMObject::create_with_physical_page(PhysicalPage& page) -{ - auto vmobject = create_with_size(PAGE_SIZE); - vmobject->m_physical_pages[0] = page; - return vmobject; -} - -AnonymousVMObject::AnonymousVMObject(size_t size, bool initialize_pages) +AnonymousVMObject::AnonymousVMObject(size_t size, AllocationStrategy strategy) : VMObject(size) + , m_volatile_ranges_cache({ 0, page_count() }) + , m_unused_committed_pages(strategy == AllocationStrategy::Reserve ? page_count() : 0) { - if (initialize_pages) { -#ifndef MAP_SHARED_ZERO_PAGE_LAZILY + if (strategy == AllocationStrategy::AllocateNow) { + // Allocate all pages right now. We know we can get all because we committed the amount needed for (size_t i = 0; i < page_count(); ++i) - physical_pages()[i] = MM.shared_zero_page(); -#endif + physical_pages()[i] = MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes); + } else { + auto& initial_page = (strategy == AllocationStrategy::Reserve) ? MM.lazy_committed_page() : MM.shared_zero_page(); + for (size_t i = 0; i < page_count(); ++i) + physical_pages()[i] = initial_page; } } AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, size_t size) : VMObject(size) + , m_volatile_ranges_cache({ 0, page_count() }) { ASSERT(paddr.page_base() == paddr); for (size_t i = 0; i < page_count(); ++i) physical_pages()[i] = PhysicalPage::create(paddr.offset(i * PAGE_SIZE), false, false); } +AnonymousVMObject::AnonymousVMObject(PhysicalPage& page) + : VMObject(PAGE_SIZE) + , m_volatile_ranges_cache({ 0, page_count() }) +{ + physical_pages()[0] = page; +} + AnonymousVMObject::AnonymousVMObject(const AnonymousVMObject& other) : VMObject(other) + , m_volatile_ranges_cache({ 0, page_count() }) // do *not* clone this + , m_volatile_ranges_cache_dirty(true) // do *not* clone this + , m_purgeable_ranges() // do *not* clone this + , m_unused_committed_pages(other.m_unused_committed_pages) + , m_cow_map() // do *not* clone this + , m_shared_committed_cow_pages(other.m_shared_committed_cow_pages) // share the pool { + // We can't really "copy" a spinlock. But we're holding it. Clear in the clone + ASSERT(other.m_lock.is_locked()); + m_lock.initialize(); + + // The clone also becomes COW + ensure_or_reset_cow_map(); + + if (m_unused_committed_pages > 0) { + // The original vmobject didn't use up all commited pages. When + // cloning (fork) we will overcommit. For this purpose we drop all + // lazy-commit references and replace them with shared zero pages. + for (size_t i = 0; i < page_count(); i++) { + auto& phys_page = m_physical_pages[i]; + if (phys_page && phys_page->is_lazy_committed_page()) { + phys_page = MM.shared_zero_page(); + if (--m_unused_committed_pages == 0) + break; + } + } + ASSERT(m_unused_committed_pages == 0); + } } AnonymousVMObject::~AnonymousVMObject() { + // Return any unused committed pages + if (m_unused_committed_pages > 0) + MM.uncommit_user_physical_pages(m_unused_committed_pages); } -RefPtr<VMObject> AnonymousVMObject::clone() +int AnonymousVMObject::purge() { - return adopt(*new AnonymousVMObject(*this)); + LOCKER(m_paging_lock); + return purge_impl(); +} + +int AnonymousVMObject::purge_with_interrupts_disabled(Badge<MemoryManager>) +{ + ASSERT_INTERRUPTS_DISABLED(); + if (m_paging_lock.is_locked()) + return 0; + return purge_impl(); +} + +void AnonymousVMObject::set_was_purged(const VolatilePageRange& range) +{ + ASSERT(m_lock.is_locked()); + for (auto* purgeable_ranges : m_purgeable_ranges) + purgeable_ranges->set_was_purged(range); +} + +int AnonymousVMObject::purge_impl() +{ + int purged_page_count = 0; + ScopedSpinLock lock(m_lock); + for_each_volatile_range([&](const auto& range) { + int purged_in_range = 0; + auto range_end = range.base + range.count; + for (size_t i = range.base; i < range_end; i++) { + auto& phys_page = m_physical_pages[i]; + if (phys_page && !phys_page->is_shared_zero_page()) { + ASSERT(!phys_page->is_lazy_committed_page()); + ++purged_in_range; + } + phys_page = MM.shared_zero_page(); + } + + if (purged_in_range > 0) { + purged_page_count += purged_in_range; + set_was_purged(range); + for_each_region([&](auto& region) { + if (®ion.vmobject() == this) { + if (auto owner = region.get_owner()) { + // we need to hold a reference the process here (if there is one) as we may not own this region + klog() << "Purged " << purged_in_range << " pages from region " << region.name() << " owned by " << *owner << " at " << region.vaddr_from_page_index(range.base) << " - " << region.vaddr_from_page_index(range.base + range.count); + } else { + klog() << "Purged " << purged_in_range << " pages from region " << region.name() << " (no ownership) at " << region.vaddr_from_page_index(range.base) << " - " << region.vaddr_from_page_index(range.base + range.count); + } + region.remap_page_range(range.base, range.count); + } + }); + } + return IterationDecision::Continue; + }); + return purged_page_count; +} + +void AnonymousVMObject::register_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges) +{ + ScopedSpinLock lock(m_lock); + purgeable_page_ranges.set_vmobject(this); + ASSERT(!m_purgeable_ranges.contains_slow(&purgeable_page_ranges)); + m_purgeable_ranges.append(&purgeable_page_ranges); +} + +void AnonymousVMObject::unregister_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges) +{ + ScopedSpinLock lock(m_lock); + for (size_t i = 0; i < m_purgeable_ranges.size(); i++) { + if (m_purgeable_ranges[i] != &purgeable_page_ranges) + continue; + purgeable_page_ranges.set_vmobject(nullptr); + m_purgeable_ranges.remove(i); + return; + } + ASSERT_NOT_REACHED(); +} + +bool AnonymousVMObject::is_any_volatile() const +{ + ScopedSpinLock lock(m_lock); + for (auto& volatile_ranges : m_purgeable_ranges) { + ScopedSpinLock lock(volatile_ranges->m_volatile_ranges_lock); + if (!volatile_ranges->is_empty()) + return true; + } + return false; +} + +size_t AnonymousVMObject::remove_lazy_commit_pages(const VolatilePageRange& range) +{ + ASSERT(m_lock.is_locked()); + + size_t removed_count = 0; + auto range_end = range.base + range.count; + for (size_t i = range.base; i < range_end; i++) { + auto& phys_page = m_physical_pages[i]; + if (phys_page && phys_page->is_lazy_committed_page()) { + phys_page = MM.shared_zero_page(); + removed_count++; + ASSERT(m_unused_committed_pages > 0); + if (--m_unused_committed_pages == 0) + break; + } + } + return removed_count; +} + +void AnonymousVMObject::update_volatile_cache() +{ + ASSERT(m_lock.is_locked()); + ASSERT(m_volatile_ranges_cache_dirty); + + m_volatile_ranges_cache.clear(); + for_each_nonvolatile_range([&](const VolatilePageRange& range) { + m_volatile_ranges_cache.add_unchecked(range); + return IterationDecision::Continue; + }); + + m_volatile_ranges_cache_dirty = false; +} + +void AnonymousVMObject::range_made_volatile(const VolatilePageRange& range) +{ + ASSERT(m_lock.is_locked()); + + if (m_unused_committed_pages == 0) + return; + + // We need to check this range for any pages that are marked for + // lazy committed allocation and turn them into shared zero pages + // and also adjust the m_unused_committed_pages for each such page. + // Take into account all the other views as well. + size_t uncommit_page_count = 0; + for_each_volatile_range([&](const auto& r) { + auto intersected = range.intersected(r); + if (!intersected.is_empty()) { + uncommit_page_count += remove_lazy_commit_pages(intersected); + if (m_unused_committed_pages == 0) + return IterationDecision::Break; + } + return IterationDecision::Continue; + }); + + // Return those committed pages back to the system + if (uncommit_page_count > 0) { +#ifdef COMMIT_DEBUG + klog() << "Uncommit " << uncommit_page_count << " lazy-commit pages from " << this; +#endif + MM.uncommit_user_physical_pages(uncommit_page_count); + } + + m_volatile_ranges_cache_dirty = true; +} + +void AnonymousVMObject::range_made_nonvolatile(const VolatilePageRange&) +{ + ASSERT(m_lock.is_locked()); + m_volatile_ranges_cache_dirty = true; +} + +size_t AnonymousVMObject::count_needed_commit_pages_for_nonvolatile_range(const VolatilePageRange& range) +{ + ASSERT(m_lock.is_locked()); + ASSERT(!range.is_empty()); + + size_t need_commit_pages = 0; + auto range_end = range.base + range.count; + for (size_t page_index = range.base; page_index < range_end; page_index++) { + // COW pages are accounted for in m_shared_committed_cow_pages + if (m_cow_map && m_cow_map->get(page_index)) + continue; + auto& phys_page = m_physical_pages[page_index]; + if (phys_page && phys_page->is_shared_zero_page()) + need_commit_pages++; + } + return need_commit_pages; +} + +size_t AnonymousVMObject::mark_committed_pages_for_nonvolatile_range(const VolatilePageRange& range, size_t mark_total) +{ + ASSERT(m_lock.is_locked()); + ASSERT(!range.is_empty()); + ASSERT(mark_total > 0); + + size_t pages_updated = 0; + auto range_end = range.base + range.count; + for (size_t page_index = range.base; page_index < range_end; page_index++) { + // COW pages are accounted for in m_shared_committed_cow_pages + if (m_cow_map && m_cow_map->get(page_index)) + continue; + auto& phys_page = m_physical_pages[page_index]; + if (phys_page && phys_page->is_shared_zero_page()) { + phys_page = MM.lazy_committed_page(); + if (++pages_updated == mark_total) + break; + } + } + +#ifdef COMMIT_DEBUG + klog() << "Added " << pages_updated << " lazy-commit pages to " << this; +#endif + m_unused_committed_pages += pages_updated; + return pages_updated; +} + +RefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(size_t page_index) +{ + { + ScopedSpinLock lock(m_lock); + + ASSERT(m_unused_committed_pages > 0); + + // We should't have any committed page tags in volatile regions + ASSERT([&]() { + for (auto* purgeable_ranges : m_purgeable_ranges) { + if (purgeable_ranges->is_volatile(page_index)) + return false; + } + return true; + }()); + + m_unused_committed_pages--; + } + return MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes); +} + +Bitmap& AnonymousVMObject::ensure_cow_map() +{ + if (!m_cow_map) + m_cow_map = make<Bitmap>(page_count(), true); + return *m_cow_map; +} + +void AnonymousVMObject::ensure_or_reset_cow_map() +{ + if (!m_cow_map) + m_cow_map = make<Bitmap>(page_count(), true); + else + m_cow_map->fill(true); +} + +bool AnonymousVMObject::should_cow(size_t page_index, bool is_shared) const +{ + auto& page = physical_pages()[page_index]; + if (page && (page->is_shared_zero_page() || page->is_lazy_committed_page())) + return true; + if (is_shared) + return false; + return m_cow_map && m_cow_map->get(page_index); +} + +void AnonymousVMObject::set_should_cow(size_t page_index, bool cow) +{ + ensure_cow_map().set(page_index, cow); } -RefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(size_t) +size_t AnonymousVMObject::cow_pages() const { - return {}; + if (!m_cow_map) + return 0; + return m_cow_map->count_slow(true); +} + +bool AnonymousVMObject::is_nonvolatile(size_t page_index) +{ + if (m_volatile_ranges_cache_dirty) + update_volatile_cache(); + return !m_volatile_ranges_cache.contains(page_index); +} + +PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr) +{ + ASSERT_INTERRUPTS_DISABLED(); + ScopedSpinLock lock(m_lock); + auto& page_slot = physical_pages()[page_index]; + bool have_committed = m_shared_committed_cow_pages && is_nonvolatile(page_index); + if (page_slot->ref_count() == 1) { +#ifdef PAGE_FAULT_DEBUG + dbg() << " >> It's a COW page but nobody is sharing it anymore. Remap r/w"; +#endif + set_should_cow(page_index, false); + if (have_committed) { + if (m_shared_committed_cow_pages->return_one()) + m_shared_committed_cow_pages = nullptr; + } + return PageFaultResponse::Continue; + } + + RefPtr<PhysicalPage> page; + if (have_committed) { +#ifdef PAGE_FAULT_DEBUG + dbg() << " >> It's a committed COW page and it's time to COW!"; +#endif + page = m_shared_committed_cow_pages->allocate_one(); + } else { +#ifdef PAGE_FAULT_DEBUG + dbg() << " >> It's a COW page and it's time to COW!"; +#endif + page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No); + if (page.is_null()) { + klog() << "MM: handle_cow_fault was unable to allocate a physical page"; + return PageFaultResponse::OutOfMemory; + } + } + + u8* dest_ptr = MM.quickmap_page(*page); +#ifdef PAGE_FAULT_DEBUG + dbg() << " >> COW " << page->paddr() << " <- " << page_slot->paddr(); +#endif + { + SmapDisabler disabler; + void* fault_at; + if (!safe_memcpy(dest_ptr, vaddr.as_ptr(), PAGE_SIZE, fault_at)) { + if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE) + dbg() << " >> COW: error copying page " << page_slot->paddr() << "/" << vaddr << " to " << page->paddr() << "/" << VirtualAddress(dest_ptr) << ": failed to write to page at " << VirtualAddress(fault_at); + else if ((u8*)fault_at >= vaddr.as_ptr() && (u8*)fault_at <= vaddr.as_ptr() + PAGE_SIZE) + dbg() << " >> COW: error copying page " << page_slot->paddr() << "/" << vaddr << " to " << page->paddr() << "/" << VirtualAddress(dest_ptr) << ": failed to read from page at " << VirtualAddress(fault_at); + else + ASSERT_NOT_REACHED(); + } + } + page_slot = move(page); + MM.unquickmap_page(); + set_should_cow(page_index, false); + return PageFaultResponse::Continue; } } |