summaryrefslogtreecommitdiff
path: root/Kernel/VM/AnonymousVMObject.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Kernel/VM/AnonymousVMObject.cpp')
-rw-r--r--Kernel/VM/AnonymousVMObject.cpp442
1 files changed, 424 insertions, 18 deletions
diff --git a/Kernel/VM/AnonymousVMObject.cpp b/Kernel/VM/AnonymousVMObject.cpp
index 2a2a49c542..692d71956b 100644
--- a/Kernel/VM/AnonymousVMObject.cpp
+++ b/Kernel/VM/AnonymousVMObject.cpp
@@ -24,15 +24,67 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
+#include <Kernel/Process.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PhysicalPage.h>
+//#define COMMIT_DEBUG
+//#define PAGE_FAULT_DEBUG
+
namespace Kernel {
-NonnullRefPtr<AnonymousVMObject> AnonymousVMObject::create_with_size(size_t size)
+RefPtr<VMObject> AnonymousVMObject::clone()
+{
+ // We need to acquire our lock so we copy a sane state
+ ScopedSpinLock lock(m_lock);
+
+ // We're the parent. Since we're about to become COW we need to
+ // commit the number of pages that we need to potentially allocate
+ // so that the parent is still guaranteed to be able to have all
+ // non-volatile memory available.
+ size_t need_cow_pages = 0;
+ {
+ // We definitely need to commit non-volatile areas
+ for_each_nonvolatile_range([&](const VolatilePageRange& nonvolatile_range) {
+ need_cow_pages += nonvolatile_range.count;
+ return IterationDecision::Continue;
+ });
+ }
+
+#ifdef COMMIT_DEBUG
+ klog() << "Cloning " << this << ", need " << need_cow_pages << " committed cow pages";
+#endif
+ if (!MM.commit_user_physical_pages(need_cow_pages))
+ return {};
+ // Create or replace the committed cow pages. When cloning a previously
+ // cloned vmobject, we want to essentially "fork", leaving us and the
+ // new clone with one set of shared committed cow pages, and the original
+ // one would keep the one it still has. This ensures that the original
+ // one and this one, as well as the clone have sufficient resources
+ // to cow all pages as needed
+ m_shared_committed_cow_pages = adopt(*new CommittedCowPages(need_cow_pages));
+
+ // Both original and clone become COW. So create a COW map for ourselves
+ // or reset all pages to be copied again if we were previously cloned
+ ensure_or_reset_cow_map();
+
+ return adopt(*new AnonymousVMObject(*this));
+}
+
+RefPtr<AnonymousVMObject> AnonymousVMObject::create_with_size(size_t size, AllocationStrategy commit)
+{
+ if (commit == AllocationStrategy::Reserve || commit == AllocationStrategy::AllocateNow) {
+ // We need to attempt to commit before actually creating the object
+ if (!MM.commit_user_physical_pages(ceil_div(size, PAGE_SIZE)))
+ return {};
+ }
+ return adopt(*new AnonymousVMObject(size, commit));
+}
+
+NonnullRefPtr<AnonymousVMObject> AnonymousVMObject::create_with_physical_page(PhysicalPage& page)
{
- return adopt(*new AnonymousVMObject(size));
+ return adopt(*new AnonymousVMObject(page));
}
RefPtr<AnonymousVMObject> AnonymousVMObject::create_for_physical_range(PhysicalAddress paddr, size_t size)
@@ -44,49 +96,403 @@ RefPtr<AnonymousVMObject> AnonymousVMObject::create_for_physical_range(PhysicalA
return adopt(*new AnonymousVMObject(paddr, size));
}
-NonnullRefPtr<AnonymousVMObject> AnonymousVMObject::create_with_physical_page(PhysicalPage& page)
-{
- auto vmobject = create_with_size(PAGE_SIZE);
- vmobject->m_physical_pages[0] = page;
- return vmobject;
-}
-
-AnonymousVMObject::AnonymousVMObject(size_t size, bool initialize_pages)
+AnonymousVMObject::AnonymousVMObject(size_t size, AllocationStrategy strategy)
: VMObject(size)
+ , m_volatile_ranges_cache({ 0, page_count() })
+ , m_unused_committed_pages(strategy == AllocationStrategy::Reserve ? page_count() : 0)
{
- if (initialize_pages) {
-#ifndef MAP_SHARED_ZERO_PAGE_LAZILY
+ if (strategy == AllocationStrategy::AllocateNow) {
+ // Allocate all pages right now. We know we can get all because we committed the amount needed
for (size_t i = 0; i < page_count(); ++i)
- physical_pages()[i] = MM.shared_zero_page();
-#endif
+ physical_pages()[i] = MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
+ } else {
+ auto& initial_page = (strategy == AllocationStrategy::Reserve) ? MM.lazy_committed_page() : MM.shared_zero_page();
+ for (size_t i = 0; i < page_count(); ++i)
+ physical_pages()[i] = initial_page;
}
}
AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, size_t size)
: VMObject(size)
+ , m_volatile_ranges_cache({ 0, page_count() })
{
ASSERT(paddr.page_base() == paddr);
for (size_t i = 0; i < page_count(); ++i)
physical_pages()[i] = PhysicalPage::create(paddr.offset(i * PAGE_SIZE), false, false);
}
+AnonymousVMObject::AnonymousVMObject(PhysicalPage& page)
+ : VMObject(PAGE_SIZE)
+ , m_volatile_ranges_cache({ 0, page_count() })
+{
+ physical_pages()[0] = page;
+}
+
AnonymousVMObject::AnonymousVMObject(const AnonymousVMObject& other)
: VMObject(other)
+ , m_volatile_ranges_cache({ 0, page_count() }) // do *not* clone this
+ , m_volatile_ranges_cache_dirty(true) // do *not* clone this
+ , m_purgeable_ranges() // do *not* clone this
+ , m_unused_committed_pages(other.m_unused_committed_pages)
+ , m_cow_map() // do *not* clone this
+ , m_shared_committed_cow_pages(other.m_shared_committed_cow_pages) // share the pool
{
+ // We can't really "copy" a spinlock. But we're holding it. Clear in the clone
+ ASSERT(other.m_lock.is_locked());
+ m_lock.initialize();
+
+ // The clone also becomes COW
+ ensure_or_reset_cow_map();
+
+ if (m_unused_committed_pages > 0) {
+ // The original vmobject didn't use up all commited pages. When
+ // cloning (fork) we will overcommit. For this purpose we drop all
+ // lazy-commit references and replace them with shared zero pages.
+ for (size_t i = 0; i < page_count(); i++) {
+ auto& phys_page = m_physical_pages[i];
+ if (phys_page && phys_page->is_lazy_committed_page()) {
+ phys_page = MM.shared_zero_page();
+ if (--m_unused_committed_pages == 0)
+ break;
+ }
+ }
+ ASSERT(m_unused_committed_pages == 0);
+ }
}
AnonymousVMObject::~AnonymousVMObject()
{
+ // Return any unused committed pages
+ if (m_unused_committed_pages > 0)
+ MM.uncommit_user_physical_pages(m_unused_committed_pages);
}
-RefPtr<VMObject> AnonymousVMObject::clone()
+int AnonymousVMObject::purge()
{
- return adopt(*new AnonymousVMObject(*this));
+ LOCKER(m_paging_lock);
+ return purge_impl();
+}
+
+int AnonymousVMObject::purge_with_interrupts_disabled(Badge<MemoryManager>)
+{
+ ASSERT_INTERRUPTS_DISABLED();
+ if (m_paging_lock.is_locked())
+ return 0;
+ return purge_impl();
+}
+
+void AnonymousVMObject::set_was_purged(const VolatilePageRange& range)
+{
+ ASSERT(m_lock.is_locked());
+ for (auto* purgeable_ranges : m_purgeable_ranges)
+ purgeable_ranges->set_was_purged(range);
+}
+
+int AnonymousVMObject::purge_impl()
+{
+ int purged_page_count = 0;
+ ScopedSpinLock lock(m_lock);
+ for_each_volatile_range([&](const auto& range) {
+ int purged_in_range = 0;
+ auto range_end = range.base + range.count;
+ for (size_t i = range.base; i < range_end; i++) {
+ auto& phys_page = m_physical_pages[i];
+ if (phys_page && !phys_page->is_shared_zero_page()) {
+ ASSERT(!phys_page->is_lazy_committed_page());
+ ++purged_in_range;
+ }
+ phys_page = MM.shared_zero_page();
+ }
+
+ if (purged_in_range > 0) {
+ purged_page_count += purged_in_range;
+ set_was_purged(range);
+ for_each_region([&](auto& region) {
+ if (&region.vmobject() == this) {
+ if (auto owner = region.get_owner()) {
+ // we need to hold a reference the process here (if there is one) as we may not own this region
+ klog() << "Purged " << purged_in_range << " pages from region " << region.name() << " owned by " << *owner << " at " << region.vaddr_from_page_index(range.base) << " - " << region.vaddr_from_page_index(range.base + range.count);
+ } else {
+ klog() << "Purged " << purged_in_range << " pages from region " << region.name() << " (no ownership) at " << region.vaddr_from_page_index(range.base) << " - " << region.vaddr_from_page_index(range.base + range.count);
+ }
+ region.remap_page_range(range.base, range.count);
+ }
+ });
+ }
+ return IterationDecision::Continue;
+ });
+ return purged_page_count;
+}
+
+void AnonymousVMObject::register_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges)
+{
+ ScopedSpinLock lock(m_lock);
+ purgeable_page_ranges.set_vmobject(this);
+ ASSERT(!m_purgeable_ranges.contains_slow(&purgeable_page_ranges));
+ m_purgeable_ranges.append(&purgeable_page_ranges);
+}
+
+void AnonymousVMObject::unregister_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges)
+{
+ ScopedSpinLock lock(m_lock);
+ for (size_t i = 0; i < m_purgeable_ranges.size(); i++) {
+ if (m_purgeable_ranges[i] != &purgeable_page_ranges)
+ continue;
+ purgeable_page_ranges.set_vmobject(nullptr);
+ m_purgeable_ranges.remove(i);
+ return;
+ }
+ ASSERT_NOT_REACHED();
+}
+
+bool AnonymousVMObject::is_any_volatile() const
+{
+ ScopedSpinLock lock(m_lock);
+ for (auto& volatile_ranges : m_purgeable_ranges) {
+ ScopedSpinLock lock(volatile_ranges->m_volatile_ranges_lock);
+ if (!volatile_ranges->is_empty())
+ return true;
+ }
+ return false;
+}
+
+size_t AnonymousVMObject::remove_lazy_commit_pages(const VolatilePageRange& range)
+{
+ ASSERT(m_lock.is_locked());
+
+ size_t removed_count = 0;
+ auto range_end = range.base + range.count;
+ for (size_t i = range.base; i < range_end; i++) {
+ auto& phys_page = m_physical_pages[i];
+ if (phys_page && phys_page->is_lazy_committed_page()) {
+ phys_page = MM.shared_zero_page();
+ removed_count++;
+ ASSERT(m_unused_committed_pages > 0);
+ if (--m_unused_committed_pages == 0)
+ break;
+ }
+ }
+ return removed_count;
+}
+
+void AnonymousVMObject::update_volatile_cache()
+{
+ ASSERT(m_lock.is_locked());
+ ASSERT(m_volatile_ranges_cache_dirty);
+
+ m_volatile_ranges_cache.clear();
+ for_each_nonvolatile_range([&](const VolatilePageRange& range) {
+ m_volatile_ranges_cache.add_unchecked(range);
+ return IterationDecision::Continue;
+ });
+
+ m_volatile_ranges_cache_dirty = false;
+}
+
+void AnonymousVMObject::range_made_volatile(const VolatilePageRange& range)
+{
+ ASSERT(m_lock.is_locked());
+
+ if (m_unused_committed_pages == 0)
+ return;
+
+ // We need to check this range for any pages that are marked for
+ // lazy committed allocation and turn them into shared zero pages
+ // and also adjust the m_unused_committed_pages for each such page.
+ // Take into account all the other views as well.
+ size_t uncommit_page_count = 0;
+ for_each_volatile_range([&](const auto& r) {
+ auto intersected = range.intersected(r);
+ if (!intersected.is_empty()) {
+ uncommit_page_count += remove_lazy_commit_pages(intersected);
+ if (m_unused_committed_pages == 0)
+ return IterationDecision::Break;
+ }
+ return IterationDecision::Continue;
+ });
+
+ // Return those committed pages back to the system
+ if (uncommit_page_count > 0) {
+#ifdef COMMIT_DEBUG
+ klog() << "Uncommit " << uncommit_page_count << " lazy-commit pages from " << this;
+#endif
+ MM.uncommit_user_physical_pages(uncommit_page_count);
+ }
+
+ m_volatile_ranges_cache_dirty = true;
+}
+
+void AnonymousVMObject::range_made_nonvolatile(const VolatilePageRange&)
+{
+ ASSERT(m_lock.is_locked());
+ m_volatile_ranges_cache_dirty = true;
+}
+
+size_t AnonymousVMObject::count_needed_commit_pages_for_nonvolatile_range(const VolatilePageRange& range)
+{
+ ASSERT(m_lock.is_locked());
+ ASSERT(!range.is_empty());
+
+ size_t need_commit_pages = 0;
+ auto range_end = range.base + range.count;
+ for (size_t page_index = range.base; page_index < range_end; page_index++) {
+ // COW pages are accounted for in m_shared_committed_cow_pages
+ if (m_cow_map && m_cow_map->get(page_index))
+ continue;
+ auto& phys_page = m_physical_pages[page_index];
+ if (phys_page && phys_page->is_shared_zero_page())
+ need_commit_pages++;
+ }
+ return need_commit_pages;
+}
+
+size_t AnonymousVMObject::mark_committed_pages_for_nonvolatile_range(const VolatilePageRange& range, size_t mark_total)
+{
+ ASSERT(m_lock.is_locked());
+ ASSERT(!range.is_empty());
+ ASSERT(mark_total > 0);
+
+ size_t pages_updated = 0;
+ auto range_end = range.base + range.count;
+ for (size_t page_index = range.base; page_index < range_end; page_index++) {
+ // COW pages are accounted for in m_shared_committed_cow_pages
+ if (m_cow_map && m_cow_map->get(page_index))
+ continue;
+ auto& phys_page = m_physical_pages[page_index];
+ if (phys_page && phys_page->is_shared_zero_page()) {
+ phys_page = MM.lazy_committed_page();
+ if (++pages_updated == mark_total)
+ break;
+ }
+ }
+
+#ifdef COMMIT_DEBUG
+ klog() << "Added " << pages_updated << " lazy-commit pages to " << this;
+#endif
+ m_unused_committed_pages += pages_updated;
+ return pages_updated;
+}
+
+RefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(size_t page_index)
+{
+ {
+ ScopedSpinLock lock(m_lock);
+
+ ASSERT(m_unused_committed_pages > 0);
+
+ // We should't have any committed page tags in volatile regions
+ ASSERT([&]() {
+ for (auto* purgeable_ranges : m_purgeable_ranges) {
+ if (purgeable_ranges->is_volatile(page_index))
+ return false;
+ }
+ return true;
+ }());
+
+ m_unused_committed_pages--;
+ }
+ return MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
+}
+
+Bitmap& AnonymousVMObject::ensure_cow_map()
+{
+ if (!m_cow_map)
+ m_cow_map = make<Bitmap>(page_count(), true);
+ return *m_cow_map;
+}
+
+void AnonymousVMObject::ensure_or_reset_cow_map()
+{
+ if (!m_cow_map)
+ m_cow_map = make<Bitmap>(page_count(), true);
+ else
+ m_cow_map->fill(true);
+}
+
+bool AnonymousVMObject::should_cow(size_t page_index, bool is_shared) const
+{
+ auto& page = physical_pages()[page_index];
+ if (page && (page->is_shared_zero_page() || page->is_lazy_committed_page()))
+ return true;
+ if (is_shared)
+ return false;
+ return m_cow_map && m_cow_map->get(page_index);
+}
+
+void AnonymousVMObject::set_should_cow(size_t page_index, bool cow)
+{
+ ensure_cow_map().set(page_index, cow);
}
-RefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(size_t)
+size_t AnonymousVMObject::cow_pages() const
{
- return {};
+ if (!m_cow_map)
+ return 0;
+ return m_cow_map->count_slow(true);
+}
+
+bool AnonymousVMObject::is_nonvolatile(size_t page_index)
+{
+ if (m_volatile_ranges_cache_dirty)
+ update_volatile_cache();
+ return !m_volatile_ranges_cache.contains(page_index);
+}
+
+PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr)
+{
+ ASSERT_INTERRUPTS_DISABLED();
+ ScopedSpinLock lock(m_lock);
+ auto& page_slot = physical_pages()[page_index];
+ bool have_committed = m_shared_committed_cow_pages && is_nonvolatile(page_index);
+ if (page_slot->ref_count() == 1) {
+#ifdef PAGE_FAULT_DEBUG
+ dbg() << " >> It's a COW page but nobody is sharing it anymore. Remap r/w";
+#endif
+ set_should_cow(page_index, false);
+ if (have_committed) {
+ if (m_shared_committed_cow_pages->return_one())
+ m_shared_committed_cow_pages = nullptr;
+ }
+ return PageFaultResponse::Continue;
+ }
+
+ RefPtr<PhysicalPage> page;
+ if (have_committed) {
+#ifdef PAGE_FAULT_DEBUG
+ dbg() << " >> It's a committed COW page and it's time to COW!";
+#endif
+ page = m_shared_committed_cow_pages->allocate_one();
+ } else {
+#ifdef PAGE_FAULT_DEBUG
+ dbg() << " >> It's a COW page and it's time to COW!";
+#endif
+ page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
+ if (page.is_null()) {
+ klog() << "MM: handle_cow_fault was unable to allocate a physical page";
+ return PageFaultResponse::OutOfMemory;
+ }
+ }
+
+ u8* dest_ptr = MM.quickmap_page(*page);
+#ifdef PAGE_FAULT_DEBUG
+ dbg() << " >> COW " << page->paddr() << " <- " << page_slot->paddr();
+#endif
+ {
+ SmapDisabler disabler;
+ void* fault_at;
+ if (!safe_memcpy(dest_ptr, vaddr.as_ptr(), PAGE_SIZE, fault_at)) {
+ if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
+ dbg() << " >> COW: error copying page " << page_slot->paddr() << "/" << vaddr << " to " << page->paddr() << "/" << VirtualAddress(dest_ptr) << ": failed to write to page at " << VirtualAddress(fault_at);
+ else if ((u8*)fault_at >= vaddr.as_ptr() && (u8*)fault_at <= vaddr.as_ptr() + PAGE_SIZE)
+ dbg() << " >> COW: error copying page " << page_slot->paddr() << "/" << vaddr << " to " << page->paddr() << "/" << VirtualAddress(dest_ptr) << ": failed to read from page at " << VirtualAddress(fault_at);
+ else
+ ASSERT_NOT_REACHED();
+ }
+ }
+ page_slot = move(page);
+ MM.unquickmap_page();
+ set_should_cow(page_index, false);
+ return PageFaultResponse::Continue;
}
}