diff options
Diffstat (limited to 'AK/FuzzyMatch.cpp')
-rw-r--r-- | AK/FuzzyMatch.cpp | 135 |
1 files changed, 135 insertions, 0 deletions
diff --git a/AK/FuzzyMatch.cpp b/AK/FuzzyMatch.cpp new file mode 100644 index 0000000000..3420e75e8e --- /dev/null +++ b/AK/FuzzyMatch.cpp @@ -0,0 +1,135 @@ +/* + * Copyright (c) 2021, Spencer Dixon <spencercdixon@gmail.com> + * + * SPDX-License-Identifier: BSD-2-Clause + */ + +#include <AK/CharacterTypes.h> +#include <AK/FuzzyMatch.h> + +namespace AK { + +static constexpr int const RECURSION_LIMIT = 10; +static constexpr int const MAX_MATCHES = 256; + +// Bonuses and penalties are used to build up a final score for the match. +static constexpr int const SEQUENTIAL_BONUS = 15; // bonus for adjacent matches (needle: 'ca', haystack: 'cat') +static constexpr int const SEPARATOR_BONUS = 30; // bonus if match occurs after a separator ('_' or ' ') +static constexpr int const CAMEL_BONUS = 30; // bonus if match is uppercase and prev is lower (needle: 'myF' haystack: '/path/to/myFile.txt') +static constexpr int const FIRST_LETTER_BONUS = 20; // bonus if the first letter is matched (needle: 'c' haystack: 'cat') +static constexpr int const LEADING_LETTER_PENALTY = -5; // penalty applied for every letter in str before the first match +static constexpr int const MAX_LEADING_LETTER_PENALTY = -15; // maximum penalty for leading letters +static constexpr int const UNMATCHED_LETTER_PENALTY = -1; // penalty for every letter that doesn't matter + +static int calculate_score(String const& string, u8* index_points, size_t index_points_size) +{ + int out_score = 100; + + int penalty = LEADING_LETTER_PENALTY * index_points[0]; + if (penalty < MAX_LEADING_LETTER_PENALTY) + penalty = MAX_LEADING_LETTER_PENALTY; + out_score += penalty; + + int unmatched = string.length() - index_points_size; + out_score += UNMATCHED_LETTER_PENALTY * unmatched; + + for (size_t i = 0; i < index_points_size; i++) { + u8 current_idx = index_points[i]; + + if (current_idx == 0) + out_score += FIRST_LETTER_BONUS; + + if (i == 0) + continue; + + u8 previous_idx = index_points[i - 1]; + if (current_idx - 1 == previous_idx) + out_score += SEQUENTIAL_BONUS; + + u32 current_character = string[current_idx]; + u32 neighbor_character = string[current_idx - 1]; + + if (neighbor_character != to_ascii_uppercase(neighbor_character) && current_character != to_ascii_lowercase(current_character)) + out_score += CAMEL_BONUS; + + if (neighbor_character == '_' || neighbor_character == ' ') + out_score += SEPARATOR_BONUS; + } + + return out_score; +} + +FuzzyMatchResult fuzzy_match_recursive(String const& needle, String const& haystack, size_t needle_idx, size_t haystack_idx, + u8 const* src_matches, u8* matches, int next_match, int& recursion_count) +{ + int out_score = 0; + + ++recursion_count; + if (recursion_count >= RECURSION_LIMIT) + return { false, out_score }; + + if (needle.length() == needle_idx || haystack.length() == haystack_idx) + return { false, out_score }; + + bool had_recursive_match = false; + constexpr size_t recursive_match_limit = 256; + u8 best_recursive_matches[recursive_match_limit]; + int best_recursive_score = 0; + + bool first_match = true; + while (needle_idx < needle.length() && haystack_idx < haystack.length()) { + + if (to_ascii_lowercase(needle[needle_idx]) == to_ascii_lowercase(haystack[haystack_idx])) { + if (next_match >= MAX_MATCHES) + return { false, out_score }; + + if (first_match && src_matches) { + memcpy(matches, src_matches, next_match); + first_match = false; + } + + u8 recursive_matches[recursive_match_limit] {}; + auto result = fuzzy_match_recursive(needle, haystack, needle_idx, haystack_idx + 1, matches, recursive_matches, next_match, recursion_count); + if (result.matched) { + if (!had_recursive_match || result.score > best_recursive_score) { + memcpy(best_recursive_matches, recursive_matches, recursive_match_limit); + best_recursive_score = result.score; + } + had_recursive_match = true; + } + matches[next_match++] = haystack_idx; + needle_idx++; + } + haystack_idx++; + } + + bool matched = needle_idx == needle.length(); + if (!matched) + return { false, out_score }; + + out_score = calculate_score(haystack, matches, next_match); + + if (had_recursive_match && (best_recursive_score > out_score)) { + memcpy(matches, best_recursive_matches, MAX_MATCHES); + out_score = best_recursive_score; + } + + return { true, out_score }; +} + +// This fuzzy_match algorithm is based off a similar algorithm used by Sublime Text. The key insight is that instead +// of doing a total in the distance between characters (I.E. Levenshtein Distance), we apply some meaningful heuristics +// related to our dataset that we're trying to match to build up a score. Scores can then be sorted and displayed +// with the highest at the top. +// +// Scores are not normalized between any values and have no particular meaning. The starting value is 100 and when we +// detect good indicators of a match we add to the score. When we detect bad indicators, we penalize the match and subtract +// from its score. Therefore, the longer the needle/haystack the greater the range of scores could be. +FuzzyMatchResult fuzzy_match(String const& needle, String const& haystack) +{ + int recursion_count = 0; + u8 matches[MAX_MATCHES] {}; + return fuzzy_match_recursive(needle, haystack, 0, 0, nullptr, matches, 0, recursion_count); +} + +} |