diff options
-rw-r--r-- | Tests/LibCrypto/TestCurves.cpp | 86 | ||||
-rw-r--r-- | Userland/Libraries/LibCrypto/CMakeLists.txt | 1 | ||||
-rw-r--r-- | Userland/Libraries/LibCrypto/Curves/X448.cpp | 356 | ||||
-rw-r--r-- | Userland/Libraries/LibCrypto/Curves/X448.h | 40 |
4 files changed, 483 insertions, 0 deletions
diff --git a/Tests/LibCrypto/TestCurves.cpp b/Tests/LibCrypto/TestCurves.cpp index 6356f3f0e7..4017bba52b 100644 --- a/Tests/LibCrypto/TestCurves.cpp +++ b/Tests/LibCrypto/TestCurves.cpp @@ -6,6 +6,7 @@ #include <AK/ByteBuffer.h> #include <LibCrypto/Curves/X25519.h> +#include <LibCrypto/Curves/X448.h> #include <LibTest/TestCase.h> TEST_CASE(test_x25519) @@ -74,3 +75,88 @@ TEST_CASE(test_x25519) EXPECT_EQ(shared_alice, shared_bob); } + +TEST_CASE(test_x448) +{ + // https://datatracker.ietf.org/doc/html/rfc7748#section-6.1 + u8 alice_private_key_data[56] { + 0x9a, 0x8f, 0x49, 0x25, 0xd1, 0x51, 0x9f, 0x57, + 0x75, 0xcf, 0x46, 0xb0, 0x4b, 0x58, 0x00, 0xd4, + 0xee, 0x9e, 0xe8, 0xba, 0xe8, 0xbc, 0x55, 0x65, + 0xd4, 0x98, 0xc2, 0x8d, 0xd9, 0xc9, 0xba, 0xf5, + 0x74, 0xa9, 0x41, 0x97, 0x44, 0x89, 0x73, 0x91, + 0x00, 0x63, 0x82, 0xa6, 0xf1, 0x27, 0xab, 0x1d, + 0x9a, 0xc2, 0xd8, 0xc0, 0xa5, 0x98, 0x72, 0x6b + }; + + u8 alice_public_key_data[56] { + 0x9b, 0x08, 0xf7, 0xcc, 0x31, 0xb7, 0xe3, 0xe6, + 0x7d, 0x22, 0xd5, 0xae, 0xa1, 0x21, 0x07, 0x4a, + 0x27, 0x3b, 0xd2, 0xb8, 0x3d, 0xe0, 0x9c, 0x63, + 0xfa, 0xa7, 0x3d, 0x2c, 0x22, 0xc5, 0xd9, 0xbb, + 0xc8, 0x36, 0x64, 0x72, 0x41, 0xd9, 0x53, 0xd4, + 0x0c, 0x5b, 0x12, 0xda, 0x88, 0x12, 0x0d, 0x53, + 0x17, 0x7f, 0x80, 0xe5, 0x32, 0xc4, 0x1f, 0xa0 + }; + + u8 bob_private_key_data[56] { + 0x1c, 0x30, 0x6a, 0x7a, 0xc2, 0xa0, 0xe2, 0xe0, + 0x99, 0x0b, 0x29, 0x44, 0x70, 0xcb, 0xa3, 0x39, + 0xe6, 0x45, 0x37, 0x72, 0xb0, 0x75, 0x81, 0x1d, + 0x8f, 0xad, 0x0d, 0x1d, 0x69, 0x27, 0xc1, 0x20, + 0xbb, 0x5e, 0xe8, 0x97, 0x2b, 0x0d, 0x3e, 0x21, + 0x37, 0x4c, 0x9c, 0x92, 0x1b, 0x09, 0xd1, 0xb0, + 0x36, 0x6f, 0x10, 0xb6, 0x51, 0x73, 0x99, 0x2d + }; + + u8 bob_public_key_data[56] { + 0x3e, 0xb7, 0xa8, 0x29, 0xb0, 0xcd, 0x20, 0xf5, + 0xbc, 0xfc, 0x0b, 0x59, 0x9b, 0x6f, 0xec, 0xcf, + 0x6d, 0xa4, 0x62, 0x71, 0x07, 0xbd, 0xb0, 0xd4, + 0xf3, 0x45, 0xb4, 0x30, 0x27, 0xd8, 0xb9, 0x72, + 0xfc, 0x3e, 0x34, 0xfb, 0x42, 0x32, 0xa1, 0x3c, + 0xa7, 0x06, 0xdc, 0xb5, 0x7a, 0xec, 0x3d, 0xae, + 0x07, 0xbd, 0xc1, 0xc6, 0x7b, 0xf3, 0x36, 0x09 + }; + + u8 shared_secret_data[56] { + 0x07, 0xff, 0xf4, 0x18, 0x1a, 0xc6, 0xcc, 0x95, + 0xec, 0x1c, 0x16, 0xa9, 0x4a, 0x0f, 0x74, 0xd1, + 0x2d, 0xa2, 0x32, 0xce, 0x40, 0xa7, 0x75, 0x52, + 0x28, 0x1d, 0x28, 0x2b, 0xb6, 0x0c, 0x0b, 0x56, + 0xfd, 0x24, 0x64, 0xc3, 0x35, 0x54, 0x39, 0x36, + 0x52, 0x1c, 0x24, 0x40, 0x30, 0x85, 0xd5, 0x9a, + 0x44, 0x9a, 0x50, 0x37, 0x51, 0x4a, 0x87, 0x9d + }; + + u8 coordinate_data[56] { + 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 + }; + + ReadonlyBytes coordinate { coordinate_data, 56 }; + ReadonlyBytes alice_public_key { alice_public_key_data, 56 }; + ReadonlyBytes alice_private_key { alice_private_key_data, 56 }; + ReadonlyBytes bob_public_key { bob_public_key_data, 56 }; + ReadonlyBytes bob_private_key { bob_private_key_data, 56 }; + ReadonlyBytes shared_secret { shared_secret_data, 56 }; + + auto generated_alice_public = MUST(Crypto::Curves::X448::compute_coordinate(alice_private_key, coordinate)); + EXPECT_EQ(alice_public_key, generated_alice_public); + + auto generated_bob_public = MUST(Crypto::Curves::X448::compute_coordinate(bob_private_key, coordinate)); + EXPECT_EQ(bob_public_key, generated_bob_public); + + auto shared_alice = MUST(Crypto::Curves::X448::compute_coordinate(alice_private_key, bob_public_key)); + EXPECT_EQ(shared_alice, shared_secret); + + auto shared_bob = MUST(Crypto::Curves::X448::compute_coordinate(bob_private_key, alice_public_key)); + EXPECT_EQ(shared_bob, shared_secret); + + EXPECT_EQ(shared_alice, shared_bob); +} diff --git a/Userland/Libraries/LibCrypto/CMakeLists.txt b/Userland/Libraries/LibCrypto/CMakeLists.txt index e40e8b3dd4..ec703e4623 100644 --- a/Userland/Libraries/LibCrypto/CMakeLists.txt +++ b/Userland/Libraries/LibCrypto/CMakeLists.txt @@ -18,6 +18,7 @@ set(SOURCES Checksum/CRC32.cpp Cipher/AES.cpp Curves/X25519.cpp + Curves/X448.cpp Hash/MD5.cpp Hash/SHA1.cpp Hash/SHA2.cpp diff --git a/Userland/Libraries/LibCrypto/Curves/X448.cpp b/Userland/Libraries/LibCrypto/Curves/X448.cpp new file mode 100644 index 0000000000..a590141bfa --- /dev/null +++ b/Userland/Libraries/LibCrypto/Curves/X448.cpp @@ -0,0 +1,356 @@ +/* + * Copyright (c) 2022, stelar7 <dudedbz@gmail.com> + * + * SPDX-License-Identifier: BSD-2-Clause + */ + +#include <AK/ByteReader.h> +#include <AK/Endian.h> +#include <LibCrypto/Curves/X448.h> + +namespace Crypto::Curves { + +void X448::import_state(u32* state, ReadonlyBytes data) +{ + for (auto i = 0; i < X448::WORDS; i++) { + u32 value = ByteReader::load32(data.offset_pointer(sizeof(u32) * i)); + state[i] = AK::convert_between_host_and_little_endian(value); + } +} + +ErrorOr<ByteBuffer> X448::export_state(u32* data) +{ + auto buffer = TRY(ByteBuffer::create_uninitialized(X448::BYTES)); + + for (auto i = 0; i < X448::WORDS; i++) { + u32 value = AK::convert_between_host_and_little_endian(data[i]); + ByteReader::store(buffer.offset_pointer(sizeof(u32) * i), value); + } + + return buffer; +} + +void X448::select(u32* state, u32* a, u32* b, u32 condition) +{ + // If B < (2^448 - 2^224 + 1) then R = B, else R = A + u32 mask = condition - 1; + + for (auto i = 0; i < X448::WORDS; i++) { + state[i] = (a[i] & mask) | (b[i] & ~mask); + } +} + +void X448::set(u32* state, u32 value) +{ + state[0] = value; + + for (auto i = 1; i < X448::WORDS; i++) { + state[i] = 0; + } +} + +void X448::copy(u32* state, u32* value) +{ + for (auto i = 0; i < X448::WORDS; i++) { + state[i] = value[i]; + } +} + +void X448::conditional_swap(u32* first, u32* second, u32 condition) +{ + u32 mask = ~condition + 1; + for (auto i = 0; i < X448::WORDS; i++) { + u32 temp = mask & (first[i] ^ second[i]); + first[i] ^= temp; + second[i] ^= temp; + } +} + +void X448::modular_multiply_single(u32* state, u32* first, u32 second) +{ + // Compute R = (A * B) mod p + u64 temp = 0; + u64 carry = 0; + u32 output[X448::WORDS]; + + for (auto i = 0; i < X448::WORDS; i++) { + temp += (u64)first[i] * second; + output[i] = temp & 0xFFFFFFFF; + temp >>= 32; + } + + // Fast modular reduction + carry = temp; + for (auto i = 0; i < X448::WORDS / 2; i++) { + temp += output[i]; + output[i] = temp & 0xFFFFFFFF; + temp >>= 32; + } + + temp += carry; + for (auto i = X448::WORDS / 2; i < X448::WORDS; i++) { + temp += output[i]; + output[i] = temp & 0xFFFFFFFF; + temp >>= 32; + } + + modular_reduce(state, output, (u32)temp); +} + +void X448::modular_square(u32* state, u32* value) +{ + // Compute R = (A ^ 2) mod p + modular_multiply(state, value, value); +} + +void X448::modular_multiply(u32* state, u32* first, u32* second) +{ + // Compute R = (A * B) mod p + + u64 temp = 0; + u64 carry = 0; + u32 output[X448::WORDS * 2]; + + // Comba's method + for (auto i = 0; i < X448::WORDS * 2; i++) { + if (i < 14) { + for (auto j = 0; j <= i; j++) { + temp += (u64)first[j] * second[i - j]; + carry += temp >> 32; + temp &= 0xFFFFFFFF; + } + } else { + for (auto j = i - 13; j < X448::WORDS; j++) { + temp += (u64)first[j] * second[i - j]; + carry += temp >> 32; + temp &= 0xFFFFFFFF; + } + } + + output[i] = temp & 0xFFFFFFFF; + temp = carry & 0xFFFFFFFF; + carry >>= 32; + } + + // Fast modular reduction (first pass) + temp = 0; + for (auto i = 0; i < X448::WORDS / 2; i++) { + temp += output[i]; + temp += output[i + 14]; + temp += output[i + 21]; + output[i] = temp & 0xFFFFFFFF; + temp >>= 32; + } + + for (auto i = X448::WORDS / 2; i < X448::WORDS; i++) { + temp += output[i]; + temp += output[i + 7]; + temp += output[i + 14]; + temp += output[i + 14]; + output[i] = temp & 0xFFFFFFFF; + temp >>= 32; + } + + // Fast modular reduction (second pass) + carry = temp; + for (auto i = 0; i < X448::WORDS / 2; i++) { + temp += output[i]; + output[i] = temp & 0xFFFFFFFF; + temp >>= 32; + } + + temp += carry; + for (auto i = X448::WORDS / 2; i < X448::WORDS; i++) { + temp += output[i]; + output[i] = temp & 0xFFFFFFFF; + temp >>= 32; + } + + modular_reduce(state, output, (u32)temp); +} + +void X448::modular_add(u32* state, u32* first, u32* second) +{ + u64 temp = 0; + + // Compute R = A + B + for (auto i = 0; i < X448::WORDS; i++) { + temp += first[i]; + temp += second[i]; + state[i] = temp & 0xFFFFFFFF; + temp >>= 32; + } + + modular_reduce(state, state, (u32)temp); +} + +void X448::modular_subtract(u32* state, u32* first, u32* second) +{ + i64 temp = -1; + + // Compute R = A + (2^448 - 2^224 - 1) - B + for (auto i = 0; i < 7; i++) { + temp += first[i]; + temp -= second[i]; + state[i] = temp & 0xFFFFFFFF; + temp >>= 32; + } + + temp -= 1; + + for (auto i = 7; i < 14; i++) { + temp += first[i]; + temp -= second[i]; + state[i] = temp & 0xFFFFFFFF; + temp >>= 32; + } + + temp += 1; + + modular_reduce(state, state, (u32)temp); +} + +void X448::modular_reduce(u32* state, u32* data, u32 a_high) +{ + u64 temp = 1; + u32 other[X448::WORDS]; + + // Compute B = A - (2^448 - 2^224 - 1) + for (auto i = 0; i < X448::WORDS / 2; i++) { + temp += data[i]; + other[i] = temp & 0xFFFFFFFF; + temp >>= 32; + } + + temp += 1; + + for (auto i = 7; i < X448::WORDS; i++) { + temp += data[i]; + other[i] = temp & 0xFFFFFFFF; + temp >>= 32; + } + + auto condition = (a_high + (u32)temp - 1) & 1; + select(state, other, data, condition); +} + +void X448::to_power_of_2n(u32* state, u32* value, u8 n) +{ + // Compute R = (A ^ (2^n)) mod p + modular_square(state, value); + for (auto i = 1; i < n; i++) { + modular_square(state, state); + } +} + +void X448::modular_multiply_inverse(u32* state, u32* value) +{ + // Compute R = A^-1 mod p + u32 u[X448::WORDS]; + u32 v[X448::WORDS]; + + modular_square(u, value); + modular_multiply(u, u, value); + modular_square(u, u); + modular_multiply(v, u, value); + to_power_of_2n(u, v, 3); + modular_multiply(v, u, v); + to_power_of_2n(u, v, 6); + modular_multiply(u, u, v); + modular_square(u, u); + modular_multiply(v, u, value); + to_power_of_2n(u, v, 13); + modular_multiply(u, u, v); + modular_square(u, u); + modular_multiply(v, u, value); + to_power_of_2n(u, v, 27); + modular_multiply(u, u, v); + modular_square(u, u); + modular_multiply(v, u, value); + to_power_of_2n(u, v, 55); + modular_multiply(u, u, v); + modular_square(u, u); + modular_multiply(v, u, value); + to_power_of_2n(u, v, 111); + modular_multiply(v, u, v); + modular_square(u, v); + modular_multiply(u, u, value); + to_power_of_2n(u, u, 223); + modular_multiply(u, u, v); + modular_square(u, u); + modular_square(u, u); + modular_multiply(state, u, value); +} + +// https://datatracker.ietf.org/doc/html/rfc7748#section-5 +ErrorOr<ByteBuffer> X448::compute_coordinate(ReadonlyBytes input_k, ReadonlyBytes input_u) +{ + u32 k[X448::WORDS] {}; + u32 u[X448::WORDS] {}; + u32 x1[X448::WORDS] {}; + u32 x2[X448::WORDS] {}; + u32 z1[X448::WORDS] {}; + u32 z2[X448::WORDS] {}; + u32 t1[X448::WORDS] {}; + u32 t2[X448::WORDS] {}; + + // Copy input to internal state + import_state(k, input_k); + + // Set the two least significant bits of the first byte to 0, and the most significant bit of the last byte to 1 + k[0] &= 0xFFFFFFFC; + k[13] |= 0x80000000; + + // Copy coordinate to internal state + import_state(u, input_u); + + // Implementations MUST accept non-canonical values and process them as + // if they had been reduced modulo the field prime. + modular_reduce(u, u, 0); + + set(x1, 1); + set(z1, 0); + copy(x2, u); + set(z2, 1); + + // Montgomery ladder + u32 swap = 0; + for (auto i = X448::BITS - 1; i >= 0; i--) { + u32 b = (k[i / 32] >> (i % 32)) & 1; + + conditional_swap(x1, x2, swap ^ b); + conditional_swap(z1, z2, swap ^ b); + + swap = b; + + modular_add(t1, x2, z2); + modular_subtract(x2, x2, z2); + modular_add(z2, x1, z1); + modular_subtract(x1, x1, z1); + modular_multiply(t1, t1, x1); + modular_multiply(x2, x2, z2); + modular_square(z2, z2); + modular_square(x1, x1); + modular_subtract(t2, z2, x1); + modular_multiply_single(z1, t2, A24); + modular_add(z1, z1, x1); + modular_multiply(z1, z1, t2); + modular_multiply(x1, x1, z2); + modular_subtract(z2, t1, x2); + modular_square(z2, z2); + modular_multiply(z2, z2, u); + modular_add(x2, x2, t1); + modular_square(x2, x2); + } + + conditional_swap(x1, x2, swap); + conditional_swap(z1, z2, swap); + + // Retrieve affine representation + modular_multiply_inverse(u, z1); + modular_multiply(u, u, x1); + + // Encode state for export + return export_state(u); +} +} diff --git a/Userland/Libraries/LibCrypto/Curves/X448.h b/Userland/Libraries/LibCrypto/Curves/X448.h new file mode 100644 index 0000000000..b2c9a1f8ac --- /dev/null +++ b/Userland/Libraries/LibCrypto/Curves/X448.h @@ -0,0 +1,40 @@ +/* + * Copyright (c) 2022, stelar7 <dudedbz@gmail.com> + * + * SPDX-License-Identifier: BSD-2-Clause + */ + +#pragma once + +#include <AK/ByteBuffer.h> + +namespace Crypto::Curves { + +class X448 { + + static constexpr u16 BITS = 448; + static constexpr u8 BYTES = 56; + static constexpr u8 WORDS = 14; + static constexpr u32 A24 = 39082; + +public: + static ErrorOr<ByteBuffer> compute_coordinate(ReadonlyBytes a, ReadonlyBytes b); + +private: + static void import_state(u32* state, ReadonlyBytes data); + static ErrorOr<ByteBuffer> export_state(u32* data); + static void select(u32* state, u32* a, u32* b, u32 condition); + static void set(u32* state, u32 value); + static void copy(u32* state, u32* value); + static void conditional_swap(u32* first, u32* second, u32 condition); + static void modular_multiply_single(u32* state, u32* first, u32 second); + static void modular_square(u32* state, u32* value); + static void modular_multiply(u32* state, u32* first, u32* second); + static void modular_add(u32* state, u32* first, u32* second); + static void modular_subtract(u32* state, u32* first, u32* second); + static void modular_reduce(u32* state, u32* data, u32 data_high); + static void to_power_of_2n(u32* state, u32* value, u8 n); + static void modular_multiply_inverse(u32* state, u32* value); +}; + +} |