summaryrefslogtreecommitdiff
path: root/Userland
diff options
context:
space:
mode:
authorstelar7 <dudedbz@gmail.com>2022-04-16 20:47:38 +0200
committerAli Mohammad Pur <Ali.mpfard@gmail.com>2022-05-12 23:47:13 +0430
commit7d6b26e6132663256fec4b57138bb831baa63390 (patch)
tree5b9665a08d1ad4804cfd93bcd59304b8007e77ab /Userland
parent9aaeaf8a22947c0991daab344bae14f06e84aa36 (diff)
downloadserenity-7d6b26e6132663256fec4b57138bb831baa63390.zip
LibCrypto: Add Ed25519
Diffstat (limited to 'Userland')
-rw-r--r--Userland/Libraries/LibCrypto/CMakeLists.txt1
-rw-r--r--Userland/Libraries/LibCrypto/Curves/Ed25519.cpp433
-rw-r--r--Userland/Libraries/LibCrypto/Curves/Ed25519.h75
3 files changed, 509 insertions, 0 deletions
diff --git a/Userland/Libraries/LibCrypto/CMakeLists.txt b/Userland/Libraries/LibCrypto/CMakeLists.txt
index a119f4474f..b9b3312d30 100644
--- a/Userland/Libraries/LibCrypto/CMakeLists.txt
+++ b/Userland/Libraries/LibCrypto/CMakeLists.txt
@@ -20,6 +20,7 @@ set(SOURCES
Cipher/AES.cpp
Cipher/ChaCha20.cpp
Curves/Curve25519.cpp
+ Curves/Ed25519.cpp
Curves/SECP256r1.cpp
Curves/X25519.cpp
Curves/X448.cpp
diff --git a/Userland/Libraries/LibCrypto/Curves/Ed25519.cpp b/Userland/Libraries/LibCrypto/Curves/Ed25519.cpp
new file mode 100644
index 0000000000..79a743bed6
--- /dev/null
+++ b/Userland/Libraries/LibCrypto/Curves/Ed25519.cpp
@@ -0,0 +1,433 @@
+/*
+ * Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
+ *
+ * SPDX-License-Identifier: BSD-2-Clause
+ */
+
+#include <AK/Random.h>
+#include <LibCrypto/Curves/Curve25519.h>
+#include <LibCrypto/Curves/Ed25519.h>
+#include <LibCrypto/Hash/SHA2.h>
+
+namespace Crypto::Curves {
+
+// https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5
+ErrorOr<ByteBuffer> Ed25519::generate_private_key()
+{
+ // The private key is 32 octets (256 bits, corresponding to b) of
+ // cryptographically secure random data. See [RFC4086] for a discussion
+ // about randomness.
+
+ auto buffer = TRY(ByteBuffer::create_uninitialized(key_size()));
+ fill_with_random(buffer.data(), buffer.size());
+ return buffer;
+};
+
+// https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5
+ErrorOr<ByteBuffer> Ed25519::generate_public_key(ReadonlyBytes private_key)
+{
+ // The 32-byte public key is generated by the following steps.
+
+ // 1. Hash the 32-byte private key using SHA-512, storing the digest in a 64-octet large buffer, denoted h.
+ // Only the lower 32 bytes are used for generating the public key.
+ auto digest = Crypto::Hash::SHA512::hash(private_key);
+
+ // NOTE: we do these steps in the opposite order (since its easier to modify s)
+ // 3. Interpret the buffer as the little-endian integer, forming a secret scalar s.
+ memcpy(s, digest.data, 32);
+
+ // 2. Prune the buffer:
+ // The lowest three bits of the first octet are cleared,
+ s[0] &= 0xF8;
+ // the highest bit of the last octet is cleared,
+ s[31] &= 0x7F;
+ // and the second highest bit of the last octet is set.
+ s[31] |= 0x40;
+
+ // Perform a fixed-base scalar multiplication [s]B.
+ point_multiply_scalar(&sb, s, &BASE_POINT);
+
+ // 4. The public key A is the encoding of the point [s]B.
+ // First, encode the y-coordinate (in the range 0 <= y < p) as a little-endian string of 32 octets.
+ // The most significant bit of the final octet is always zero.
+ // To form the encoding of the point [s]B, copy the least significant bit of the x coordinate
+ // to the most significant bit of the final octet. The result is the public key.
+ auto public_key = TRY(ByteBuffer::create_uninitialized(key_size()));
+ encode_point(&sb, public_key.data());
+
+ return public_key;
+}
+
+// https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.6
+ErrorOr<ByteBuffer> Ed25519::sign(ReadonlyBytes public_key, ReadonlyBytes private_key, ReadonlyBytes message)
+{
+ // 1. Hash the private key, 32 octets, using SHA-512.
+ // Let h denote the resulting digest.
+ auto h = Crypto::Hash::SHA512::hash(private_key);
+
+ // Construct the secret scalar s from the first half of the digest,
+ memcpy(s, h.data, 32);
+ // NOTE: This is done later in step 4, but we can also do it here.
+ s[0] &= 0xF8;
+ s[31] &= 0x7F;
+ s[31] |= 0x40;
+
+ // and the corresponding public key A, as described in the previous section.
+ // NOTE: The public key A is taken as input to this function.
+
+ // Let prefix denote the second half of the hash digest, h[32],...,h[63].
+ memcpy(p, h.data + 32, 32);
+
+ // 2. Compute SHA-512(dom2(F, C) || p || PH(M)), where M is the message to be signed.
+ Crypto::Hash::SHA512 hash;
+ // NOTE: dom2(F, C) is a blank octet string when signing or verifying Ed25519
+ hash.update(p, 32);
+ // NOTE: PH(M) = M
+ hash.update(message.data(), message.size());
+
+ // Interpret the 64-octet digest as a little-endian integer r.
+ // For efficiency, do this by first reducing r modulo L, the group order of B.
+ auto digest = hash.digest();
+ barrett_reduce(r, digest.data);
+
+ // 3. Compute the point [r]B.
+ point_multiply_scalar(&rb, r, &BASE_POINT);
+
+ auto R = TRY(ByteBuffer::create_uninitialized(32));
+ // Let the string R be the encoding of this point
+ encode_point(&rb, R.data());
+
+ // 4. Compute SHA512(dom2(F, C) || R || A || PH(M)),
+ // NOTE: We can reuse hash here, since digest() calls reset()
+ // NOTE: dom2(F, C) is a blank octet string when signing or verifying Ed25519
+ hash.update(R.data(), R.size());
+ // NOTE: A == public_key
+ hash.update(public_key.data(), public_key.size());
+ // NOTE: PH(M) = M
+ hash.update(message.data(), message.size());
+
+ digest = hash.digest();
+ // and interpret the 64-octet digest as a little-endian integer k.
+ memcpy(k, digest.data, 64);
+
+ // 5. Compute S = (r + k * s) mod L. For efficiency, again reduce k modulo L first.
+ barrett_reduce(p, k);
+ multiply(k, k + 32, p, s, 32);
+ barrett_reduce(p, k);
+ add(s, p, r, 32);
+
+ // modular reduction
+ auto reduced_s = TRY(ByteBuffer::create_uninitialized(32));
+ auto is_negative = subtract(p, s, Curve25519::BASE_POINT_L_ORDER, 32);
+ select(reduced_s.data(), p, s, is_negative, 32);
+
+ // 6. Form the signature of the concatenation of R (32 octets) and the little-endian encoding of S
+ // (32 octets; the three most significant bits of the final octet are always zero).
+ auto signature = TRY(ByteBuffer::copy(R));
+ signature.append(reduced_s);
+
+ return signature;
+}
+
+// https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.7
+bool Ed25519::verify(ReadonlyBytes public_key, ReadonlyBytes signature, ReadonlyBytes message)
+{
+ auto not_valid = false;
+
+ // 1. To verify a signature on a message M using public key A,
+ // with F being 0 for Ed25519ctx, 1 for Ed25519ph, and if Ed25519ctx or Ed25519ph is being used, C being the context
+ // first split the signature into two 32-octet halves.
+ // If any of the decodings fail (including S being out of range), the signature is invalid.
+
+ // NOTE: We dont care about F, since we dont implement Ed25519ctx or Ed25519PH
+ // NOTE: C is the internal state, so its not a parameter
+
+ auto half_signature_size = signature_size() / 2;
+
+ // Decode the first half as a point R
+ memcpy(r, signature.data(), half_signature_size);
+
+ // and the second half as an integer S, in the range 0 <= s < L.
+ memcpy(s, signature.data() + half_signature_size, half_signature_size);
+
+ // NOTE: Ed25519 and Ed448 signatures are not malleable due to the verification check that decoded S is smaller than l.
+ // Without this check, one can add a multiple of l into a scalar part and still pass signature verification,
+ // resulting in malleable signatures.
+ auto is_negative = subtract(p, s, Curve25519::BASE_POINT_L_ORDER, half_signature_size);
+ not_valid |= 1 ^ is_negative;
+
+ // Decode the public key A as point A'.
+ not_valid |= decode_point(&ka, public_key.data());
+
+ // 2. Compute SHA512(dom2(F, C) || R || A || PH(M)), and interpret the 64-octet digest as a little-endian integer k.
+ Crypto::Hash::SHA512 hash;
+ // NOTE: dom2(F, C) is a blank octet string when signing or verifying Ed25519
+ hash.update(r, half_signature_size);
+ // NOTE: A == public_key
+ hash.update(public_key.data(), key_size());
+ // NOTE: PH(M) = M
+ hash.update(message.data(), message.size());
+
+ auto digest = hash.digest();
+ auto k = digest.data;
+
+ // 3. Check the group equation [8][S]B = [8]R + [8][k]A'.
+ // It's sufficient, but not required, to instead check [S]B = R + [k]A'.
+ // NOTE: For efficiency, do this by first reducing k modulo L.
+ barrett_reduce(k, k);
+
+ // NOTE: We check [S]B - [k]A' == R
+ Curve25519::modular_subtract(ka.x, Curve25519::ZERO, ka.x);
+ Curve25519::modular_subtract(ka.t, Curve25519::ZERO, ka.t);
+ point_multiply_scalar(&sb, s, &BASE_POINT);
+ point_multiply_scalar(&ka, k, &ka);
+ point_add(&ka, &sb, &ka);
+ encode_point(&ka, p);
+
+ not_valid |= compare(p, r, half_signature_size);
+
+ return !not_valid;
+}
+
+void Ed25519::point_double(Ed25519Point* result, Ed25519Point const* point)
+{
+ Curve25519::modular_square(a, point->x);
+ Curve25519::modular_square(b, point->y);
+ Curve25519::modular_square(c, point->z);
+ Curve25519::modular_add(c, c, c);
+ Curve25519::modular_add(e, a, b);
+ Curve25519::modular_add(f, point->x, point->y);
+ Curve25519::modular_square(f, f);
+ Curve25519::modular_subtract(f, e, f);
+ Curve25519::modular_subtract(g, a, b);
+ Curve25519::modular_add(h, c, g);
+ Curve25519::modular_multiply(result->x, f, h);
+ Curve25519::modular_multiply(result->y, e, g);
+ Curve25519::modular_multiply(result->z, g, h);
+ Curve25519::modular_multiply(result->t, e, f);
+}
+
+void Ed25519::point_multiply_scalar(Ed25519Point* result, u8 const* scalar, Ed25519Point const* point)
+{
+ // Set U to the neutral element (0, 1, 1, 0)
+ Curve25519::set(u.x, 0);
+ Curve25519::set(u.y, 1);
+ Curve25519::set(u.z, 1);
+ Curve25519::set(u.t, 0);
+
+ for (i32 i = Curve25519::BITS - 1; i >= 0; i--) {
+ u8 b = (scalar[i / 8] >> (i % 8)) & 1;
+
+ // Compute U = 2 * U
+ point_double(&u, &u);
+ // Compute V = U + P
+ point_add(&v, &u, point);
+
+ // If b is set, then U = V
+ Curve25519::select(u.x, u.x, v.x, b);
+ Curve25519::select(u.y, u.y, v.y, b);
+ Curve25519::select(u.z, u.z, v.z, b);
+ Curve25519::select(u.t, u.t, v.t, b);
+ }
+
+ Curve25519::copy(result->x, u.x);
+ Curve25519::copy(result->y, u.y);
+ Curve25519::copy(result->z, u.z);
+ Curve25519::copy(result->t, u.t);
+}
+
+// https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.2
+void Ed25519::encode_point(Ed25519Point* point, u8* data)
+{
+ // Retrieve affine representation
+ Curve25519::modular_multiply_inverse(point->z, point->z);
+ Curve25519::modular_multiply(point->x, point->x, point->z);
+ Curve25519::modular_multiply(point->y, point->y, point->z);
+ Curve25519::set(point->z, 1);
+ Curve25519::modular_multiply(point->t, point->x, point->y);
+
+ // First, encode the y-coordinate (in the range 0 <= y < p) as a little-endian string of 32 octets.
+ // The most significant bit of the final octet is always zero.
+ Curve25519::export_state(point->y, data);
+
+ // To form the encoding of the point [s]B,
+ // copy the least significant bit of the x coordinate to the most significant bit of the final octet.
+ data[31] |= (point->x[0] & 1) << 7;
+}
+
+void Ed25519::barrett_reduce(u8* result, u8 const* input)
+{
+ // Barrett reduction b = 2^8 && k = 32
+ u8 is_negative;
+ u8 u[33];
+ u8 v[33];
+
+ multiply(NULL, u, input + 31, Curve25519::BARRETT_REDUCTION_QUOTIENT, 33);
+ multiply(v, NULL, u, Curve25519::BASE_POINT_L_ORDER, 33);
+
+ subtract(u, input, v, 33);
+
+ is_negative = subtract(v, u, Curve25519::BASE_POINT_L_ORDER, 33);
+ select(u, v, u, is_negative, 33);
+ is_negative = subtract(v, u, Curve25519::BASE_POINT_L_ORDER, 33);
+ select(u, v, u, is_negative, 33);
+
+ copy(result, u, 32);
+}
+
+void Ed25519::multiply(u8* result_low, u8* result_high, u8 const* a, u8 const* b, u8 n)
+{
+ // Comba's algorithm
+ u32 temp = 0;
+ for (u32 i = 0; i < n; i++) {
+ for (u32 j = 0; j <= i; j++) {
+ temp += (uint16_t)a[j] * b[i - j];
+ }
+
+ if (result_low != NULL) {
+ result_low[i] = temp & 0xFF;
+ }
+
+ temp >>= 8;
+ }
+
+ if (result_high != NULL) {
+ for (u32 i = n; i < (2 * n); i++) {
+ for (u32 j = i + 1 - n; j < n; j++) {
+ temp += (uint16_t)a[j] * b[i - j];
+ }
+
+ result_high[i - n] = temp & 0xFF;
+ temp >>= 8;
+ }
+ }
+}
+
+void Ed25519::add(u8* result, u8 const* a, u8 const* b, u8 n)
+{
+ // Compute R = A + B
+ u16 temp = 0;
+ for (u8 i = 0; i < n; i++) {
+ temp += a[i];
+ temp += b[i];
+ result[i] = temp & 0xFF;
+ temp >>= 8;
+ }
+}
+
+u8 Ed25519::subtract(u8* result, u8 const* a, u8 const* b, u8 n)
+{
+ i16 temp = 0;
+
+ // Compute R = A - B
+ for (i8 i = 0; i < n; i++) {
+ temp += a[i];
+ temp -= b[i];
+ result[i] = temp & 0xFF;
+ temp >>= 8;
+ }
+
+ // Return 1 if the result of the subtraction is negative
+ return temp & 1;
+}
+
+void Ed25519::select(u8* r, u8 const* a, u8 const* b, u8 c, u8 n)
+{
+ u8 mask = c - 1;
+ for (u8 i = 0; i < n; i++) {
+ r[i] = (a[i] & mask) | (b[i] & ~mask);
+ }
+}
+
+// https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.3
+u32 Ed25519::decode_point(Ed25519Point* point, u8 const* data)
+{
+ u32 u[8];
+ u32 v[8];
+ u32 ret;
+ u64 temp = 19;
+
+ // 1. First, interpret the string as an integer in little-endian representation.
+ // Bit 255 of this number is the least significant bit of the x-coordinate and denote this value x_0.
+ u8 x0 = data[31] >> 7;
+
+ // The y-coordinate is recovered simply by clearing this bit.
+ Curve25519::import_state(point->y, data);
+ point->y[7] &= 0x7FFFFFFF;
+
+ // Compute U = Y + 19
+ for (u32 i = 0; i < 8; i++) {
+ temp += point->y[i];
+ u[i] = temp & 0xFFFFFFFF;
+ temp >>= 32;
+ }
+
+ // If the resulting value is >= p, decoding fails.
+ ret = (u[7] >> 31) & 1;
+
+ // 2. To recover the x-coordinate, the curve equation implies x^2 = (y^2 - 1) / (d y^2 + 1) (mod p).
+ // The denominator is always non-zero mod p.
+ // Let u = y^2 - 1 and v = d * y^2 + 1
+ Curve25519::modular_square(v, point->y);
+ Curve25519::modular_subtract_single(u, v, 1);
+ Curve25519::modular_multiply(v, v, Curve25519::CURVE_D);
+ Curve25519::modular_add_single(v, v, 1);
+
+ // 3. Compute u = sqrt(u / v)
+ ret |= Curve25519::modular_square_root(u, u, v);
+
+ // If x = 0, and x_0 = 1, decoding fails.
+ ret |= (Curve25519::compare(u, Curve25519::ZERO) ^ 1) & x0;
+
+ // 4. Finally, use the x_0 bit to select the right square root.
+ Curve25519::modular_subtract(v, Curve25519::ZERO, u);
+ Curve25519::select(point->x, u, v, (x0 ^ u[0]) & 1);
+ Curve25519::set(point->z, 1);
+ Curve25519::modular_multiply(point->t, point->x, point->y);
+
+ // Return 0 if the point has been successfully decoded, else 1
+ return ret;
+}
+
+void Ed25519::point_add(Ed25519Point* result, Ed25519Point const* p, Ed25519Point const* q)
+{
+ // Compute R = P + Q
+ Curve25519::modular_add(c, p->y, p->x);
+ Curve25519::modular_add(d, q->y, q->x);
+ Curve25519::modular_multiply(a, c, d);
+ Curve25519::modular_subtract(c, p->y, p->x);
+ Curve25519::modular_subtract(d, q->y, q->x);
+ Curve25519::modular_multiply(b, c, d);
+ Curve25519::modular_multiply(c, p->z, q->z);
+ Curve25519::modular_add(c, c, c);
+ Curve25519::modular_multiply(d, p->t, q->t);
+ Curve25519::modular_multiply(d, d, Curve25519::CURVE_D_2);
+ Curve25519::modular_add(e, a, b);
+ Curve25519::modular_subtract(f, a, b);
+ Curve25519::modular_add(g, c, d);
+ Curve25519::modular_subtract(h, c, d);
+ Curve25519::modular_multiply(result->x, f, h);
+ Curve25519::modular_multiply(result->y, e, g);
+ Curve25519::modular_multiply(result->z, g, h);
+ Curve25519::modular_multiply(result->t, e, f);
+}
+
+u8 Ed25519::compare(u8 const* a, u8 const* b, u8 n)
+{
+ u8 mask = 0;
+ for (u32 i = 0; i < n; i++) {
+ mask |= a[i] ^ b[i];
+ }
+
+ // Return 0 if A = B, else 1
+ return ((u8)(mask | (~mask + 1))) >> 7;
+}
+
+void Ed25519::copy(u8* a, u8 const* b, u32 n)
+{
+ for (u32 i = 0; i < n; i++) {
+ a[i] = b[i];
+ }
+}
+
+}
diff --git a/Userland/Libraries/LibCrypto/Curves/Ed25519.h b/Userland/Libraries/LibCrypto/Curves/Ed25519.h
new file mode 100644
index 0000000000..81b1a42b59
--- /dev/null
+++ b/Userland/Libraries/LibCrypto/Curves/Ed25519.h
@@ -0,0 +1,75 @@
+/*
+ * Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
+ *
+ * SPDX-License-Identifier: BSD-2-Clause
+ */
+
+#pragma once
+
+#include <AK/ByteBuffer.h>
+#include <LibCrypto/Curves/EllipticCurve.h>
+
+namespace Crypto::Curves {
+
+struct Ed25519Point {
+ u32 x[8] {};
+ u32 y[8] {};
+ u32 z[8] {};
+ u32 t[8] {};
+};
+
+class Ed25519 {
+public:
+ static constexpr Ed25519Point BASE_POINT = {
+ { 0x8F25D51A, 0xC9562D60, 0x9525A7B2, 0x692CC760, 0xFDD6DC5C, 0xC0A4E231, 0xCD6E53FE, 0x216936D3 },
+ { 0x66666658, 0x66666666, 0x66666666, 0x66666666, 0x66666666, 0x66666666, 0x66666666, 0x66666666 },
+ { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },
+ { 0xA5B7DDA3, 0x6DDE8AB3, 0x775152F5, 0x20F09F80, 0x64ABE37D, 0x66EA4E8E, 0xD78B7665, 0x67875F0F }
+ };
+
+ size_t key_size() { return 32; }
+ size_t signature_size() { return 64; }
+ ErrorOr<ByteBuffer> generate_private_key();
+ ErrorOr<ByteBuffer> generate_public_key(ReadonlyBytes private_key);
+
+ ErrorOr<ByteBuffer> sign(ReadonlyBytes public_key, ReadonlyBytes private_key, ReadonlyBytes message);
+ bool verify(ReadonlyBytes public_key, ReadonlyBytes signature, ReadonlyBytes message);
+
+private:
+ void encode_point(Ed25519Point* point, u8* data);
+ u32 decode_point(Ed25519Point* point, u8 const* data);
+
+ void point_add(Ed25519Point* result, Ed25519Point const* p, Ed25519Point const* q);
+ void point_double(Ed25519Point* result, Ed25519Point const* point);
+ void point_multiply_scalar(Ed25519Point* result, u8 const* scalar, Ed25519Point const* point);
+
+ void barrett_reduce(u8* result, u8 const* input);
+
+ void add(u8* result, u8 const* a, u8 const* b, u8 n);
+ u8 subtract(u8* result, u8 const* a, u8 const* b, u8 n);
+ void multiply(u8* result_low, u8* result_high, u8 const* a, u8 const* b, u8 n);
+
+ void select(u8* result, u8 const* a, u8 const* b, u8 c, u8 n);
+ u8 compare(u8 const* a, u8 const* b, u8 n);
+ void copy(u8* a, u8 const* b, u32 n);
+
+ u8 k[64] {};
+ u8 p[32] {};
+ u8 r[32] {};
+ u8 s[32] {};
+ Ed25519Point ka {};
+ Ed25519Point rb {};
+ Ed25519Point sb {};
+ Ed25519Point u {};
+ Ed25519Point v {};
+ u32 a[8] {};
+ u32 b[8] {};
+ u32 c[8] {};
+ u32 d[8] {};
+ u32 e[8] {};
+ u32 f[8] {};
+ u32 g[8] {};
+ u32 h[8] {};
+};
+
+}