diff options
author | Shannon Booth <shannon.ml.booth@gmail.com> | 2023-05-28 23:32:33 +1200 |
---|---|---|
committer | Andreas Kling <kling@serenityos.org> | 2023-05-30 06:16:20 +0200 |
commit | 979973ca0e75e5ab70e208eef0fd298634faa81a (patch) | |
tree | a6ccc14b0e16f8551c3cfd68b371929813708a7d | |
parent | b7e31ba19499f7be8f89fb0d2a4b5adb7b30d8a1 (diff) | |
download | serenity-979973ca0e75e5ab70e208eef0fd298634faa81a.zip |
LibJS: Add spec comments to MathObject::atan
-rw-r--r-- | Userland/Libraries/LibJS/Runtime/MathObject.cpp | 73 |
1 files changed, 59 insertions, 14 deletions
diff --git a/Userland/Libraries/LibJS/Runtime/MathObject.cpp b/Userland/Libraries/LibJS/Runtime/MathObject.cpp index 5f4435fc04..4e984f643c 100644 --- a/Userland/Libraries/LibJS/Runtime/MathObject.cpp +++ b/Userland/Libraries/LibJS/Runtime/MathObject.cpp @@ -2,6 +2,7 @@ * Copyright (c) 2020, Andreas Kling <kling@serenityos.org> * Copyright (c) 2020-2023, Linus Groh <linusg@serenityos.org> * Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org> + * Copyright (c) 2023, Shannon Booth <shannon.ml.booth@gmail.com> * * SPDX-License-Identifier: BSD-2-Clause */ @@ -225,57 +226,101 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2) { auto constexpr three_quarters_pi = M_PI_4 + M_PI_2; + // 1. Let ny be ? ToNumber(y). auto y = TRY(vm.argument(0).to_number(vm)); + + // 2. Let nx be ? ToNumber(x). auto x = TRY(vm.argument(1).to_number(vm)); + // 3. If ny is NaN or nx is NaN, return NaN. if (y.is_nan() || x.is_nan()) return js_nan(); + + // 4. If ny is +∞𝔽, then if (y.is_positive_infinity()) { + // a. If nx is +∞𝔽, return an implementation-approximated Number value representing π / 4. if (x.is_positive_infinity()) return Value(M_PI_4); - else if (x.is_negative_infinity()) + + // b. If nx is -∞𝔽, return an implementation-approximated Number value representing 3π / 4. + if (x.is_negative_infinity()) return Value(three_quarters_pi); - else - return Value(M_PI_2); + + // c. Return an implementation-approximated Number value representing π / 2. + return Value(M_PI_2); } + + // 5. If ny is -∞𝔽, then if (y.is_negative_infinity()) { + // a. If nx is +∞𝔽, return an implementation-approximated Number value representing -π / 4. if (x.is_positive_infinity()) return Value(-M_PI_4); - else if (x.is_negative_infinity()) + + // b. If nx is -∞𝔽, return an implementation-approximated Number value representing -3π / 4. + if (x.is_negative_infinity()) return Value(-three_quarters_pi); - else - return Value(-M_PI_2); + + // c. Return an implementation-approximated Number value representing -π / 2. + return Value(-M_PI_2); } + + // 6. If ny is +0𝔽, then if (y.is_positive_zero()) { + // a. If nx > +0𝔽 or nx is +0𝔽, return +0𝔽. if (x.as_double() > 0 || x.is_positive_zero()) return Value(0.0); - else - return Value(M_PI); + + // b. Return an implementation-approximated Number value representing π. + return Value(M_PI); } + + // 7. If ny is -0𝔽, then if (y.is_negative_zero()) { + // a. If nx > +0𝔽 or nx is +0𝔽, return -0𝔽 if (x.as_double() > 0 || x.is_positive_zero()) return Value(-0.0); - else - return Value(-M_PI); + + // b. Return an implementation-approximated Number value representing -π. + return Value(-M_PI); } + + // 8. Assert: ny is finite and is neither +0𝔽 nor -0𝔽. VERIFY(y.is_finite_number() && !y.is_positive_zero() && !y.is_negative_zero()); + + // 9. If ny > +0𝔽, then if (y.as_double() > 0) { + // a. If nx is +∞𝔽, return +0𝔽. if (x.is_positive_infinity()) return Value(0); - else if (x.is_negative_infinity()) + + // b. If nx is -∞𝔽, return an implementation-approximated Number value representing π. + if (x.is_negative_infinity()) return Value(M_PI); - else if (x.is_positive_zero() || x.is_negative_zero()) + + // c. If nx is either +0𝔽 or -0𝔽, return an implementation-approximated Number value representing π / 2. + if (x.is_positive_zero() || x.is_negative_zero()) return Value(M_PI_2); } + + // 10. If ny < -0𝔽, then if (y.as_double() < 0) { + // a. If nx is +∞𝔽, return -0𝔽. if (x.is_positive_infinity()) return Value(-0.0); - else if (x.is_negative_infinity()) + + // b. If nx is -∞𝔽, return an implementation-approximated Number value representing -π. + if (x.is_negative_infinity()) return Value(-M_PI); - else if (x.is_positive_zero() || x.is_negative_zero()) + + // c. If nx is either +0𝔽 or -0𝔽, return an implementation-approximated Number value representing -π / 2. + if (x.is_positive_zero() || x.is_negative_zero()) return Value(-M_PI_2); } + + // 11. Assert: nx is finite and is neither +0𝔽 nor -0𝔽. VERIFY(x.is_finite_number() && !x.is_positive_zero() && !x.is_negative_zero()); + + // 12. Return an implementation-approximated Number value representing the result of the inverse tangent of the quotient ℝ(ny) / ℝ(nx). return Value(::atan2(y.as_double(), x.as_double())); } |