use libc::c_int; use std::ptr; use crate::cvt; use crate::error::ErrorStack; use crate::hash::MessageDigest; use crate::symm::Cipher; #[derive(Clone, Eq, PartialEq, Hash, Debug)] pub struct KeyIvPair { pub key: Vec, pub iv: Option>, } /// Derives a key and an IV from various parameters. /// /// If specified, `salt` must be 8 bytes in length. /// /// If the total key and IV length is less than 16 bytes and MD5 is used then /// the algorithm is compatible with the key derivation algorithm from PKCS#5 /// v1.5 or PBKDF1 from PKCS#5 v2.0. /// /// New applications should not use this and instead use /// `pbkdf2_hmac` or another more modern key derivation algorithm. #[allow(clippy::useless_conversion)] pub fn bytes_to_key( cipher: Cipher, digest: MessageDigest, data: &[u8], salt: Option<&[u8]>, count: i32, ) -> Result { unsafe { assert!(data.len() <= c_int::max_value() as usize); let salt_ptr = match salt { Some(salt) => { assert_eq!(salt.len(), ffi::PKCS5_SALT_LEN as usize); salt.as_ptr() } None => ptr::null(), }; ffi::init(); let mut iv = cipher.iv_len().map(|l| vec![0; l]); let cipher = cipher.as_ptr(); let digest = digest.as_ptr(); let len = cvt(ffi::EVP_BytesToKey( cipher, digest, salt_ptr, ptr::null(), data.len() as c_int, count.into(), ptr::null_mut(), ptr::null_mut(), ))?; let mut key = vec![0; len as usize]; let iv_ptr = iv .as_mut() .map(|v| v.as_mut_ptr()) .unwrap_or(ptr::null_mut()); cvt(ffi::EVP_BytesToKey( cipher, digest, salt_ptr, data.as_ptr(), data.len() as c_int, count as c_int, key.as_mut_ptr(), iv_ptr, ))?; Ok(KeyIvPair { key, iv }) } } /// Derives a key from a password and salt using the PBKDF2-HMAC algorithm with a digest function. pub fn pbkdf2_hmac( pass: &[u8], salt: &[u8], iter: usize, hash: MessageDigest, key: &mut [u8], ) -> Result<(), ErrorStack> { unsafe { assert!(pass.len() <= c_int::max_value() as usize); assert!(salt.len() <= c_int::max_value() as usize); assert!(key.len() <= c_int::max_value() as usize); ffi::init(); cvt(ffi::PKCS5_PBKDF2_HMAC( pass.as_ptr() as *const _, pass.len() as c_int, salt.as_ptr(), salt.len() as c_int, iter as c_int, hash.as_ptr(), key.len() as c_int, key.as_mut_ptr(), )) .map(|_| ()) } } /// Derives a key from a password and salt using the scrypt algorithm. /// /// Requires OpenSSL 1.1.0 or newer. #[cfg(any(ossl110))] pub fn scrypt( pass: &[u8], salt: &[u8], n: u64, r: u64, p: u64, maxmem: u64, key: &mut [u8], ) -> Result<(), ErrorStack> { unsafe { ffi::init(); cvt(ffi::EVP_PBE_scrypt( pass.as_ptr() as *const _, pass.len(), salt.as_ptr() as *const _, salt.len(), n, r, p, maxmem, key.as_mut_ptr() as *mut _, key.len(), )) .map(|_| ()) } } #[cfg(test)] mod tests { use crate::hash::MessageDigest; use crate::symm::Cipher; // Test vectors from // https://git.lysator.liu.se/nettle/nettle/blob/nettle_3.1.1_release_20150424/testsuite/pbkdf2-test.c #[test] fn pbkdf2_hmac_sha256() { let mut buf = [0; 16]; super::pbkdf2_hmac(b"passwd", b"salt", 1, MessageDigest::sha256(), &mut buf).unwrap(); assert_eq!( buf, &[ 0x55_u8, 0xac_u8, 0x04_u8, 0x6e_u8, 0x56_u8, 0xe3_u8, 0x08_u8, 0x9f_u8, 0xec_u8, 0x16_u8, 0x91_u8, 0xc2_u8, 0x25_u8, 0x44_u8, 0xb6_u8, 0x05_u8, ][..] ); super::pbkdf2_hmac( b"Password", b"NaCl", 80000, MessageDigest::sha256(), &mut buf, ) .unwrap(); assert_eq!( buf, &[ 0x4d_u8, 0xdc_u8, 0xd8_u8, 0xf6_u8, 0x0b_u8, 0x98_u8, 0xbe_u8, 0x21_u8, 0x83_u8, 0x0c_u8, 0xee_u8, 0x5e_u8, 0xf2_u8, 0x27_u8, 0x01_u8, 0xf9_u8, ][..] ); } // Test vectors from // https://git.lysator.liu.se/nettle/nettle/blob/nettle_3.1.1_release_20150424/testsuite/pbkdf2-test.c #[test] fn pbkdf2_hmac_sha512() { let mut buf = [0; 64]; super::pbkdf2_hmac(b"password", b"NaCL", 1, MessageDigest::sha512(), &mut buf).unwrap(); assert_eq!( &buf[..], &[ 0x73_u8, 0xde_u8, 0xcf_u8, 0xa5_u8, 0x8a_u8, 0xa2_u8, 0xe8_u8, 0x4f_u8, 0x94_u8, 0x77_u8, 0x1a_u8, 0x75_u8, 0x73_u8, 0x6b_u8, 0xb8_u8, 0x8b_u8, 0xd3_u8, 0xc7_u8, 0xb3_u8, 0x82_u8, 0x70_u8, 0xcf_u8, 0xb5_u8, 0x0c_u8, 0xb3_u8, 0x90_u8, 0xed_u8, 0x78_u8, 0xb3_u8, 0x05_u8, 0x65_u8, 0x6a_u8, 0xf8_u8, 0x14_u8, 0x8e_u8, 0x52_u8, 0x45_u8, 0x2b_u8, 0x22_u8, 0x16_u8, 0xb2_u8, 0xb8_u8, 0x09_u8, 0x8b_u8, 0x76_u8, 0x1f_u8, 0xc6_u8, 0x33_u8, 0x60_u8, 0x60_u8, 0xa0_u8, 0x9f_u8, 0x76_u8, 0x41_u8, 0x5e_u8, 0x9f_u8, 0x71_u8, 0xea_u8, 0x47_u8, 0xf9_u8, 0xe9_u8, 0x06_u8, 0x43_u8, 0x06_u8, ][..] ); super::pbkdf2_hmac( b"pass\0word", b"sa\0lt", 1, MessageDigest::sha512(), &mut buf, ) .unwrap(); assert_eq!( &buf[..], &[ 0x71_u8, 0xa0_u8, 0xec_u8, 0x84_u8, 0x2a_u8, 0xbd_u8, 0x5c_u8, 0x67_u8, 0x8b_u8, 0xcf_u8, 0xd1_u8, 0x45_u8, 0xf0_u8, 0x9d_u8, 0x83_u8, 0x52_u8, 0x2f_u8, 0x93_u8, 0x36_u8, 0x15_u8, 0x60_u8, 0x56_u8, 0x3c_u8, 0x4d_u8, 0x0d_u8, 0x63_u8, 0xb8_u8, 0x83_u8, 0x29_u8, 0x87_u8, 0x10_u8, 0x90_u8, 0xe7_u8, 0x66_u8, 0x04_u8, 0xa4_u8, 0x9a_u8, 0xf0_u8, 0x8f_u8, 0xe7_u8, 0xc9_u8, 0xf5_u8, 0x71_u8, 0x56_u8, 0xc8_u8, 0x79_u8, 0x09_u8, 0x96_u8, 0xb2_u8, 0x0f_u8, 0x06_u8, 0xbc_u8, 0x53_u8, 0x5e_u8, 0x5a_u8, 0xb5_u8, 0x44_u8, 0x0d_u8, 0xf7_u8, 0xe8_u8, 0x78_u8, 0x29_u8, 0x6f_u8, 0xa7_u8, ][..] ); super::pbkdf2_hmac( b"passwordPASSWORDpassword", b"salt\0\0\0", 50, MessageDigest::sha512(), &mut buf, ) .unwrap(); assert_eq!( &buf[..], &[ 0x01_u8, 0x68_u8, 0x71_u8, 0xa4_u8, 0xc4_u8, 0xb7_u8, 0x5f_u8, 0x96_u8, 0x85_u8, 0x7f_u8, 0xd2_u8, 0xb9_u8, 0xf8_u8, 0xca_u8, 0x28_u8, 0x02_u8, 0x3b_u8, 0x30_u8, 0xee_u8, 0x2a_u8, 0x39_u8, 0xf5_u8, 0xad_u8, 0xca_u8, 0xc8_u8, 0xc9_u8, 0x37_u8, 0x5f_u8, 0x9b_u8, 0xda_u8, 0x1c_u8, 0xcd_u8, 0x1b_u8, 0x6f_u8, 0x0b_u8, 0x2f_u8, 0xc3_u8, 0xad_u8, 0xda_u8, 0x50_u8, 0x54_u8, 0x12_u8, 0xe7_u8, 0x9d_u8, 0x89_u8, 0x00_u8, 0x56_u8, 0xc6_u8, 0x2e_u8, 0x52_u8, 0x4c_u8, 0x7d_u8, 0x51_u8, 0x15_u8, 0x4b_u8, 0x1a_u8, 0x85_u8, 0x34_u8, 0x57_u8, 0x5b_u8, 0xd0_u8, 0x2d_u8, 0xee_u8, 0x39_u8, ][..] ); } #[test] fn bytes_to_key() { let salt = [16_u8, 34_u8, 19_u8, 23_u8, 141_u8, 4_u8, 207_u8, 221_u8]; let data = [ 143_u8, 210_u8, 75_u8, 63_u8, 214_u8, 179_u8, 155_u8, 241_u8, 242_u8, 31_u8, 154_u8, 56_u8, 198_u8, 145_u8, 192_u8, 64_u8, 2_u8, 245_u8, 167_u8, 220_u8, 55_u8, 119_u8, 233_u8, 136_u8, 139_u8, 27_u8, 71_u8, 242_u8, 119_u8, 175_u8, 65_u8, 207_u8, ]; let expected_key = vec![ 249_u8, 115_u8, 114_u8, 97_u8, 32_u8, 213_u8, 165_u8, 146_u8, 58_u8, 87_u8, 234_u8, 3_u8, 43_u8, 250_u8, 97_u8, 114_u8, 26_u8, 98_u8, 245_u8, 246_u8, 238_u8, 177_u8, 229_u8, 161_u8, 183_u8, 224_u8, 174_u8, 3_u8, 6_u8, 244_u8, 236_u8, 255_u8, ]; let expected_iv = vec![ 4_u8, 223_u8, 153_u8, 219_u8, 28_u8, 142_u8, 234_u8, 68_u8, 227_u8, 69_u8, 98_u8, 107_u8, 208_u8, 14_u8, 236_u8, 60_u8, ]; assert_eq!( super::bytes_to_key( Cipher::aes_256_cbc(), MessageDigest::sha1(), &data, Some(&salt), 1, ) .unwrap(), super::KeyIvPair { key: expected_key, iv: Some(expected_iv), } ); } #[test] #[cfg(any(ossl110))] fn scrypt() { let pass = "pleaseletmein"; let salt = "SodiumChloride"; let expected = "7023bdcb3afd7348461c06cd81fd38ebfda8fbba904f8e3ea9b543f6545da1f2d5432955613\ f0fcf62d49705242a9af9e61e85dc0d651e40dfcf017b45575887"; let mut actual = [0; 64]; super::scrypt( pass.as_bytes(), salt.as_bytes(), 16384, 8, 1, 0, &mut actual, ) .unwrap(); assert_eq!(hex::encode(&actual[..]), expected); } }