//! BigNum implementation //! //! Large numbers are important for a cryptographic library. OpenSSL implementation //! of BigNum uses dynamically assigned memory to store an array of bit chunks. This //! allows numbers of any size to be compared and mathematical functions performed. //! //! OpenSSL wiki describes the [`BIGNUM`] data structure. //! //! # Examples //! //! ``` //! use openssl::bn::BigNum; //! use openssl::error::ErrorStack; //! //! fn main() -> Result<(), ErrorStack> { //! let a = BigNum::new()?; // a = 0 //! let b = BigNum::from_dec_str("1234567890123456789012345")?; //! let c = &a * &b; //! assert_eq!(a, c); //! Ok(()) //! } //! ``` //! //! [`BIGNUM`]: https://wiki.openssl.org/index.php/Manual:Bn_internal(3) use ffi; use foreign_types::{ForeignType, ForeignTypeRef}; use libc::c_int; use std::cmp::Ordering; use std::ffi::CString; use std::ops::{Add, Deref, Div, Mul, Neg, Rem, Shl, Shr, Sub}; use std::{fmt, ptr}; use crate::asn1::Asn1Integer; use crate::error::ErrorStack; use crate::string::OpensslString; use crate::{cvt, cvt_n, cvt_p}; cfg_if! { if #[cfg(ossl110)] { use ffi::{ BN_get_rfc2409_prime_1024, BN_get_rfc2409_prime_768, BN_get_rfc3526_prime_1536, BN_get_rfc3526_prime_2048, BN_get_rfc3526_prime_3072, BN_get_rfc3526_prime_4096, BN_get_rfc3526_prime_6144, BN_get_rfc3526_prime_8192, BN_is_negative, }; } else { use ffi::{ get_rfc2409_prime_1024 as BN_get_rfc2409_prime_1024, get_rfc2409_prime_768 as BN_get_rfc2409_prime_768, get_rfc3526_prime_1536 as BN_get_rfc3526_prime_1536, get_rfc3526_prime_2048 as BN_get_rfc3526_prime_2048, get_rfc3526_prime_3072 as BN_get_rfc3526_prime_3072, get_rfc3526_prime_4096 as BN_get_rfc3526_prime_4096, get_rfc3526_prime_6144 as BN_get_rfc3526_prime_6144, get_rfc3526_prime_8192 as BN_get_rfc3526_prime_8192, }; #[allow(bad_style)] unsafe fn BN_is_negative(bn: *const ffi::BIGNUM) -> c_int { (*bn).neg } } } /// Options for the most significant bits of a randomly generated `BigNum`. pub struct MsbOption(c_int); impl MsbOption { /// The most significant bit of the number may be 0. pub const MAYBE_ZERO: MsbOption = MsbOption(-1); /// The most significant bit of the number must be 1. pub const ONE: MsbOption = MsbOption(0); /// The most significant two bits of the number must be 1. /// /// The number of bits in the product of two such numbers will always be exactly twice the /// number of bits in the original numbers. pub const TWO_ONES: MsbOption = MsbOption(1); } foreign_type_and_impl_send_sync! { type CType = ffi::BN_CTX; fn drop = ffi::BN_CTX_free; /// Temporary storage for BigNums on the secure heap /// /// BigNum values are stored dynamically and therefore can be expensive /// to allocate. BigNumContext and the OpenSSL [`BN_CTX`] structure are used /// internally when passing BigNum values between subroutines. /// /// [`BN_CTX`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_CTX_new.html pub struct BigNumContext; /// Reference to [`BigNumContext`] /// /// [`BigNumContext`]: struct.BigNumContext.html pub struct BigNumContextRef; } impl BigNumContext { /// Returns a new `BigNumContext`. /// /// See OpenSSL documentation at [`BN_CTX_new`]. /// /// [`BN_CTX_new`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_CTX_new.html pub fn new() -> Result { unsafe { ffi::init(); cvt_p(ffi::BN_CTX_new()).map(BigNumContext) } } } foreign_type_and_impl_send_sync! { type CType = ffi::BIGNUM; fn drop = ffi::BN_free; /// Dynamically sized large number implementation /// /// Perform large number mathematics. Create a new BigNum /// with [`new`]. Perform standard mathematics on large numbers using /// methods from [`Dref`] /// /// OpenSSL documenation at [`BN_new`]. /// /// [`new`]: struct.BigNum.html#method.new /// [`Dref`]: struct.BigNum.html#deref-methods /// [`BN_new`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_new.html /// /// # Examples /// ``` /// use openssl::bn::BigNum; /// # use openssl::error::ErrorStack; /// # fn bignums() -> Result< (), ErrorStack > { /// let little_big = BigNum::from_u32(std::u32::MAX)?; /// assert_eq!(*&little_big.num_bytes(), 4); /// # Ok(()) /// # } /// # fn main () { bignums(); } /// ``` pub struct BigNum; /// Reference to a [`BigNum`] /// /// [`BigNum`]: struct.BigNum.html pub struct BigNumRef; } impl BigNumRef { /// Erases the memory used by this `BigNum`, resetting its value to 0. /// /// This can be used to destroy sensitive data such as keys when they are no longer needed. /// /// OpenSSL documentation at [`BN_clear`] /// /// [`BN_clear`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_clear.html pub fn clear(&mut self) { unsafe { ffi::BN_clear(self.as_ptr()) } } /// Adds a `u32` to `self`. /// /// OpenSSL documentation at [`BN_add_word`] /// /// [`BN_add_word`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_add_word.html pub fn add_word(&mut self, w: u32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_add_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) } } /// Subtracts a `u32` from `self`. /// /// OpenSSL documentation at [`BN_sub_word`] /// /// [`BN_sub_word`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_sub_word.html pub fn sub_word(&mut self, w: u32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_sub_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) } } /// Multiplies a `u32` by `self`. /// /// OpenSSL documentation at [`BN_mul_word`] /// /// [`BN_mul_word`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_mul_word.html pub fn mul_word(&mut self, w: u32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mul_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) } } /// Divides `self` by a `u32`, returning the remainder. /// /// OpenSSL documentation at [`BN_div_word`] /// /// [`BN_div_word`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_div_word.html #[allow(clippy::useless_conversion)] pub fn div_word(&mut self, w: u32) -> Result { unsafe { let r = ffi::BN_div_word(self.as_ptr(), w.into()); if r == ffi::BN_ULONG::max_value() { Err(ErrorStack::get()) } else { Ok(r.into()) } } } /// Returns the result of `self` modulo `w`. /// /// OpenSSL documentation at [`BN_mod_word`] /// /// [`BN_mod_word`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_mod_word.html #[allow(clippy::useless_conversion)] pub fn mod_word(&self, w: u32) -> Result { unsafe { let r = ffi::BN_mod_word(self.as_ptr(), w.into()); if r == ffi::BN_ULONG::max_value() { Err(ErrorStack::get()) } else { Ok(r.into()) } } } /// Places a cryptographically-secure pseudo-random nonnegative /// number less than `self` in `rnd`. /// /// OpenSSL documentation at [`BN_rand_range`] /// /// [`BN_rand_range`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_rand_range.html pub fn rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_rand_range(rnd.as_ptr(), self.as_ptr())).map(|_| ()) } } /// The cryptographically weak counterpart to `rand_in_range`. /// /// OpenSSL documentation at [`BN_pseudo_rand_range`] /// /// [`BN_pseudo_rand_range`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_pseudo_rand_range.html pub fn pseudo_rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_pseudo_rand_range(rnd.as_ptr(), self.as_ptr())).map(|_| ()) } } /// Sets bit `n`. Equivalent to `self |= (1 << n)`. /// /// When setting a bit outside of `self`, it is expanded. /// /// OpenSSL documentation at [`BN_set_bit`] /// /// [`BN_set_bit`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_set_bit.html #[allow(clippy::useless_conversion)] pub fn set_bit(&mut self, n: i32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_set_bit(self.as_ptr(), n.into())).map(|_| ()) } } /// Clears bit `n`, setting it to 0. Equivalent to `self &= ~(1 << n)`. /// /// When clearing a bit outside of `self`, an error is returned. /// /// OpenSSL documentation at [`BN_clear_bit`] /// /// [`BN_clear_bit`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_clear_bit.html #[allow(clippy::useless_conversion)] pub fn clear_bit(&mut self, n: i32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_clear_bit(self.as_ptr(), n.into())).map(|_| ()) } } /// Returns `true` if the `n`th bit of `self` is set to 1, `false` otherwise. /// /// OpenSSL documentation at [`BN_is_bit_set`] /// /// [`BN_is_bit_set`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_is_bit_set.html #[allow(clippy::useless_conversion)] pub fn is_bit_set(&self, n: i32) -> bool { unsafe { ffi::BN_is_bit_set(self.as_ptr(), n.into()) == 1 } } /// Truncates `self` to the lowest `n` bits. /// /// An error occurs if `self` is already shorter than `n` bits. /// /// OpenSSL documentation at [`BN_mask_bits`] /// /// [`BN_mask_bits`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_mask_bits.html #[allow(clippy::useless_conversion)] pub fn mask_bits(&mut self, n: i32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mask_bits(self.as_ptr(), n.into())).map(|_| ()) } } /// Places `a << 1` in `self`. Equivalent to `self * 2`. /// /// OpenSSL documentation at [`BN_lshift1`] /// /// [`BN_lshift1`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_lshift1.html pub fn lshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_lshift1(self.as_ptr(), a.as_ptr())).map(|_| ()) } } /// Places `a >> 1` in `self`. Equivalent to `self / 2`. /// /// OpenSSL documentation at [`BN_rshift1`] /// /// [`BN_rshift1`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_rshift1.html pub fn rshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_rshift1(self.as_ptr(), a.as_ptr())).map(|_| ()) } } /// Places `a + b` in `self`. [`core::ops::Add`] is also implemented for `BigNumRef`. /// /// OpenSSL documentation at [`BN_add`] /// /// [`core::ops::Add`]: struct.BigNumRef.html#method.add /// [`BN_add`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_add.html pub fn checked_add(&mut self, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_add(self.as_ptr(), a.as_ptr(), b.as_ptr())).map(|_| ()) } } /// Places `a - b` in `self`. [`core::ops::Sub`] is also implemented for `BigNumRef`. /// /// OpenSSL documentation at [`BN_sub`] /// /// [`core::ops::Sub`]: struct.BigNumRef.html#method.sub /// [`BN_sub`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_sub.html pub fn checked_sub(&mut self, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_sub(self.as_ptr(), a.as_ptr(), b.as_ptr())).map(|_| ()) } } /// Places `a << n` in `self`. Equivalent to `a * 2 ^ n`. /// /// OpenSSL documentation at [`BN_lshift`] /// /// [`BN_lshift`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_lshift.html #[allow(clippy::useless_conversion)] pub fn lshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_lshift(self.as_ptr(), a.as_ptr(), n.into())).map(|_| ()) } } /// Places `a >> n` in `self`. Equivalent to `a / 2 ^ n`. /// /// OpenSSL documentation at [`BN_rshift`] /// /// [`BN_rshift`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_rshift.html #[allow(clippy::useless_conversion)] pub fn rshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_rshift(self.as_ptr(), a.as_ptr(), n.into())).map(|_| ()) } } /// Creates a new BigNum with the same value. /// /// OpenSSL documentation at [`BN_dup`] /// /// [`BN_dup`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_dup.html pub fn to_owned(&self) -> Result { unsafe { cvt_p(ffi::BN_dup(self.as_ptr())).map(|b| BigNum::from_ptr(b)) } } /// Sets the sign of `self`. Pass true to set `self` to a negative. False sets /// `self` positive. pub fn set_negative(&mut self, negative: bool) { unsafe { ffi::BN_set_negative(self.as_ptr(), negative as c_int) } } /// Compare the absolute values of `self` and `oth`. /// /// OpenSSL documentation at [`BN_ucmp`] /// /// [`BN_ucmp`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_ucmp.html /// /// # Examples /// /// ``` /// # use openssl::bn::BigNum; /// # use std::cmp::Ordering; /// let s = -BigNum::from_u32(8).unwrap(); /// let o = BigNum::from_u32(8).unwrap(); /// /// assert_eq!(s.ucmp(&o), Ordering::Equal); /// ``` pub fn ucmp(&self, oth: &BigNumRef) -> Ordering { unsafe { ffi::BN_ucmp(self.as_ptr(), oth.as_ptr()).cmp(&0) } } /// Returns `true` if `self` is negative. pub fn is_negative(&self) -> bool { unsafe { BN_is_negative(self.as_ptr()) == 1 } } /// Returns the number of significant bits in `self`. /// /// OpenSSL documentation at [`BN_num_bits`] /// /// [`BN_num_bits`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_num_bits.html pub fn num_bits(&self) -> i32 { unsafe { ffi::BN_num_bits(self.as_ptr()) as i32 } } /// Returns the size of `self` in bytes. Implemented natively. pub fn num_bytes(&self) -> i32 { (self.num_bits() + 7) / 8 } /// Generates a cryptographically strong pseudo-random `BigNum`, placing it in `self`. /// /// # Parameters /// /// * `bits`: Length of the number in bits. /// * `msb`: The desired properties of the most significant bit. See [`constants`]. /// * `odd`: If `true`, the generated number will be odd. /// /// # Examples /// /// ``` /// use openssl::bn::{BigNum, MsbOption}; /// use openssl::error::ErrorStack; /// /// fn generate_random() -> Result< BigNum, ErrorStack > { /// let mut big = BigNum::new()?; /// /// // Generates a 128-bit odd random number /// big.rand(128, MsbOption::MAYBE_ZERO, true); /// Ok((big)) /// } /// ``` /// /// OpenSSL documentation at [`BN_rand`] /// /// [`constants`]: index.html#constants /// [`BN_rand`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_rand.html #[allow(clippy::useless_conversion)] pub fn rand(&mut self, bits: i32, msb: MsbOption, odd: bool) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_rand( self.as_ptr(), bits.into(), msb.0, odd as c_int, )) .map(|_| ()) } } /// The cryptographically weak counterpart to `rand`. Not suitable for key generation. /// /// OpenSSL documentation at [`BN_psuedo_rand`] /// /// [`BN_psuedo_rand`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_pseudo_rand.html #[allow(clippy::useless_conversion)] pub fn pseudo_rand(&mut self, bits: i32, msb: MsbOption, odd: bool) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_pseudo_rand( self.as_ptr(), bits.into(), msb.0, odd as c_int, )) .map(|_| ()) } } /// Generates a prime number, placing it in `self`. /// /// # Parameters /// /// * `bits`: The length of the prime in bits (lower bound). /// * `safe`: If true, returns a "safe" prime `p` so that `(p-1)/2` is also prime. /// * `add`/`rem`: If `add` is set to `Some(add)`, `p % add == rem` will hold, where `p` is the /// generated prime and `rem` is `1` if not specified (`None`). /// /// # Examples /// /// ``` /// use openssl::bn::BigNum; /// use openssl::error::ErrorStack; /// /// fn generate_weak_prime() -> Result< BigNum, ErrorStack > { /// let mut big = BigNum::new()?; /// /// // Generates a 128-bit simple prime number /// big.generate_prime(128, false, None, None); /// Ok((big)) /// } /// ``` /// /// OpenSSL documentation at [`BN_generate_prime_ex`] /// /// [`BN_generate_prime_ex`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_generate_prime_ex.html pub fn generate_prime( &mut self, bits: i32, safe: bool, add: Option<&BigNumRef>, rem: Option<&BigNumRef>, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_generate_prime_ex( self.as_ptr(), bits as c_int, safe as c_int, add.map(|n| n.as_ptr()).unwrap_or(ptr::null_mut()), rem.map(|n| n.as_ptr()).unwrap_or(ptr::null_mut()), ptr::null_mut(), )) .map(|_| ()) } } /// Places the result of `a * b` in `self`. /// [`core::ops::Mul`] is also implemented for `BigNumRef`. /// /// OpenSSL documentation at [`BN_mul`] /// /// [`core::ops::Mul`]: struct.BigNumRef.html#method.mul /// [`BN_mul`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_mul.html pub fn checked_mul( &mut self, a: &BigNumRef, b: &BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mul( self.as_ptr(), a.as_ptr(), b.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Places the result of `a / b` in `self`. The remainder is discarded. /// [`core::ops::Div`] is also implemented for `BigNumRef`. /// /// OpenSSL documentation at [`BN_div`] /// /// [`core::ops::Div`]: struct.BigNumRef.html#method.div /// [`BN_div`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_div.html pub fn checked_div( &mut self, a: &BigNumRef, b: &BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_div( self.as_ptr(), ptr::null_mut(), a.as_ptr(), b.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Places the result of `a % b` in `self`. /// /// OpenSSL documentation at [`BN_div`] /// /// [`BN_div`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_div.html pub fn checked_rem( &mut self, a: &BigNumRef, b: &BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_div( ptr::null_mut(), self.as_ptr(), a.as_ptr(), b.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Places the result of `a / b` in `self` and `a % b` in `rem`. /// /// OpenSSL documentation at [`BN_div`] /// /// [`BN_div`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_div.html pub fn div_rem( &mut self, rem: &mut BigNumRef, a: &BigNumRef, b: &BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_div( self.as_ptr(), rem.as_ptr(), a.as_ptr(), b.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Places the result of `a²` in `self`. /// /// OpenSSL documentation at [`BN_sqr`] /// /// [`BN_sqr`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_sqr.html pub fn sqr(&mut self, a: &BigNumRef, ctx: &mut BigNumContextRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_sqr(self.as_ptr(), a.as_ptr(), ctx.as_ptr())).map(|_| ()) } } /// Places the result of `a mod m` in `self`. As opposed to `div_rem` /// the result is non-negative. /// /// OpenSSL documentation at [`BN_nnmod`] /// /// [`BN_nnmod`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_nnmod.html pub fn nnmod( &mut self, a: &BigNumRef, m: &BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_nnmod( self.as_ptr(), a.as_ptr(), m.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Places the result of `(a + b) mod m` in `self`. /// /// OpenSSL documentation at [`BN_mod_add`] /// /// [`BN_mod_add`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_mod_add.html pub fn mod_add( &mut self, a: &BigNumRef, b: &BigNumRef, m: &BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mod_add( self.as_ptr(), a.as_ptr(), b.as_ptr(), m.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Places the result of `(a - b) mod m` in `self`. /// /// OpenSSL documentation at [`BN_mod_sub`] /// /// [`BN_mod_sub`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_mod_sub.html pub fn mod_sub( &mut self, a: &BigNumRef, b: &BigNumRef, m: &BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mod_sub( self.as_ptr(), a.as_ptr(), b.as_ptr(), m.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Places the result of `(a * b) mod m` in `self`. /// /// OpenSSL documentation at [`BN_mod_mul`] /// /// [`BN_mod_mul`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_mod_mul.html pub fn mod_mul( &mut self, a: &BigNumRef, b: &BigNumRef, m: &BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mod_mul( self.as_ptr(), a.as_ptr(), b.as_ptr(), m.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Places the result of `a² mod m` in `self`. /// /// OpenSSL documentation at [`BN_mod_sqr`] /// /// [`BN_mod_sqr`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_mod_sqr.html pub fn mod_sqr( &mut self, a: &BigNumRef, m: &BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mod_sqr( self.as_ptr(), a.as_ptr(), m.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Places the result of `a^p` in `self`. /// /// OpenSSL documentation at [`BN_exp`] /// /// [`BN_exp`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_exp.html pub fn exp( &mut self, a: &BigNumRef, p: &BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_exp( self.as_ptr(), a.as_ptr(), p.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Places the result of `a^p mod m` in `self`. /// /// OpenSSL documentation at [`BN_mod_exp`] /// /// [`BN_mod_exp`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_mod_exp.html pub fn mod_exp( &mut self, a: &BigNumRef, p: &BigNumRef, m: &BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mod_exp( self.as_ptr(), a.as_ptr(), p.as_ptr(), m.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Places the inverse of `a` modulo `n` in `self`. pub fn mod_inverse( &mut self, a: &BigNumRef, n: &BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt_p(ffi::BN_mod_inverse( self.as_ptr(), a.as_ptr(), n.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Places the greatest common denominator of `a` and `b` in `self`. /// /// OpenSSL documentation at [`BN_gcd`] /// /// [`BN_gcd`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_gcd.html pub fn gcd( &mut self, a: &BigNumRef, b: &BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_gcd( self.as_ptr(), a.as_ptr(), b.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Checks whether `self` is prime. /// /// Performs a Miller-Rabin probabilistic primality test with `checks` iterations. /// /// OpenSSL documentation at [`BN_is_prime_ex`] /// /// [`BN_is_prime_ex`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_is_prime_ex.html /// /// # Return Value /// /// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`. #[allow(clippy::useless_conversion)] pub fn is_prime(&self, checks: i32, ctx: &mut BigNumContextRef) -> Result { unsafe { cvt_n(ffi::BN_is_prime_ex( self.as_ptr(), checks.into(), ctx.as_ptr(), ptr::null_mut(), )) .map(|r| r != 0) } } /// Checks whether `self` is prime with optional trial division. /// /// If `do_trial_division` is `true`, first performs trial division by a number of small primes. /// Then, like `is_prime`, performs a Miller-Rabin probabilistic primality test with `checks` /// iterations. /// /// OpenSSL documentation at [`BN_is_prime_fasttest_ex`] /// /// [`BN_is_prime_fasttest_ex`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_is_prime_fasttest_ex.html /// /// # Return Value /// /// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`. #[allow(clippy::useless_conversion)] pub fn is_prime_fasttest( &self, checks: i32, ctx: &mut BigNumContextRef, do_trial_division: bool, ) -> Result { unsafe { cvt_n(ffi::BN_is_prime_fasttest_ex( self.as_ptr(), checks.into(), ctx.as_ptr(), do_trial_division as c_int, ptr::null_mut(), )) .map(|r| r != 0) } } /// Returns a big-endian byte vector representation of the absolute value of `self`. /// /// `self` can be recreated by using `from_slice`. /// /// ``` /// # use openssl::bn::BigNum; /// let s = -BigNum::from_u32(4543).unwrap(); /// let r = BigNum::from_u32(4543).unwrap(); /// /// let s_vec = s.to_vec(); /// assert_eq!(BigNum::from_slice(&s_vec).unwrap(), r); /// ``` pub fn to_vec(&self) -> Vec { let size = self.num_bytes() as usize; let mut v = Vec::with_capacity(size); unsafe { ffi::BN_bn2bin(self.as_ptr(), v.as_mut_ptr()); v.set_len(size); } v } /// Returns a decimal string representation of `self`. /// /// ``` /// # use openssl::bn::BigNum; /// let s = -BigNum::from_u32(12345).unwrap(); /// /// assert_eq!(&**s.to_dec_str().unwrap(), "-12345"); /// ``` pub fn to_dec_str(&self) -> Result { unsafe { let buf = cvt_p(ffi::BN_bn2dec(self.as_ptr()))?; Ok(OpensslString::from_ptr(buf)) } } /// Returns a hexadecimal string representation of `self`. /// /// ``` /// # use openssl::bn::BigNum; /// let s = -BigNum::from_u32(0x99ff).unwrap(); /// /// assert_eq!(&**s.to_hex_str().unwrap(), "-99FF"); /// ``` pub fn to_hex_str(&self) -> Result { unsafe { let buf = cvt_p(ffi::BN_bn2hex(self.as_ptr()))?; Ok(OpensslString::from_ptr(buf)) } } /// Returns an `Asn1Integer` containing the value of `self`. pub fn to_asn1_integer(&self) -> Result { unsafe { cvt_p(ffi::BN_to_ASN1_INTEGER(self.as_ptr(), ptr::null_mut())) .map(|p| Asn1Integer::from_ptr(p)) } } } impl BigNum { /// Creates a new `BigNum` with the value 0. pub fn new() -> Result { unsafe { ffi::init(); let v = cvt_p(ffi::BN_new())?; Ok(BigNum::from_ptr(v)) } } /// Creates a new `BigNum` with the given value. /// /// OpenSSL documentation at [`BN_set_word`] /// /// [`BN_set_word`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_set_word.html pub fn from_u32(n: u32) -> Result { BigNum::new().and_then(|v| unsafe { cvt(ffi::BN_set_word(v.as_ptr(), n as ffi::BN_ULONG)).map(|_| v) }) } /// Creates a `BigNum` from a decimal string. /// /// OpenSSL documentation at [`BN_dec2bn`] /// /// [`BN_dec2bn`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_dec2bn.html pub fn from_dec_str(s: &str) -> Result { unsafe { ffi::init(); let c_str = CString::new(s.as_bytes()).unwrap(); let mut bn = ptr::null_mut(); cvt(ffi::BN_dec2bn(&mut bn, c_str.as_ptr() as *const _))?; Ok(BigNum::from_ptr(bn)) } } /// Creates a `BigNum` from a hexadecimal string. /// /// OpenSSL documentation at [`BN_hex2bn`] /// /// [`BN_hex2bn`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_hex2bn.html pub fn from_hex_str(s: &str) -> Result { unsafe { ffi::init(); let c_str = CString::new(s.as_bytes()).unwrap(); let mut bn = ptr::null_mut(); cvt(ffi::BN_hex2bn(&mut bn, c_str.as_ptr() as *const _))?; Ok(BigNum::from_ptr(bn)) } } /// Returns a constant used in IKE as defined in [`RFC 2409`]. This prime number is in /// the order of magnitude of `2 ^ 768`. This number is used during calculated key /// exchanges such as Diffie-Hellman. This number is labeled Oakley group id 1. /// /// OpenSSL documentation at [`BN_get_rfc2409_prime_768`] /// /// [`RFC 2409`]: https://tools.ietf.org/html/rfc2409#page-21 /// [`BN_get_rfc2409_prime_768`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_get_rfc2409_prime_768.html pub fn get_rfc2409_prime_768() -> Result { unsafe { ffi::init(); cvt_p(BN_get_rfc2409_prime_768(ptr::null_mut())).map(BigNum) } } /// Returns a constant used in IKE as defined in [`RFC 2409`]. This prime number is in /// the order of magnitude of `2 ^ 1024`. This number is used during calculated key /// exchanges such as Diffie-Hellman. This number is labeled Oakly group 2. /// /// OpenSSL documentation at [`BN_get_rfc2409_prime_1024`] /// /// [`RFC 2409`]: https://tools.ietf.org/html/rfc2409#page-21 /// [`BN_get_rfc2409_prime_1024`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_get_rfc2409_prime_1024.html pub fn get_rfc2409_prime_1024() -> Result { unsafe { ffi::init(); cvt_p(BN_get_rfc2409_prime_1024(ptr::null_mut())).map(BigNum) } } /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order /// of magnitude of `2 ^ 1536`. This number is used during calculated key /// exchanges such as Diffie-Hellman. This number is labeled MODP group 5. /// /// OpenSSL documentation at [`BN_get_rfc3526_prime_1536`] /// /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-3 /// [`BN_get_rfc3526_prime_1536`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_get_rfc3526_prime_1536.html pub fn get_rfc3526_prime_1536() -> Result { unsafe { ffi::init(); cvt_p(BN_get_rfc3526_prime_1536(ptr::null_mut())).map(BigNum) } } /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order /// of magnitude of `2 ^ 2048`. This number is used during calculated key /// exchanges such as Diffie-Hellman. This number is labeled MODP group 14. /// /// OpenSSL documentation at [`BN_get_rfc3526_prime_2048`] /// /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-3 /// [`BN_get_rfc3526_prime_2048`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_get_rfc3526_prime_2048.html pub fn get_rfc3526_prime_2048() -> Result { unsafe { ffi::init(); cvt_p(BN_get_rfc3526_prime_2048(ptr::null_mut())).map(BigNum) } } /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order /// of magnitude of `2 ^ 3072`. This number is used during calculated key /// exchanges such as Diffie-Hellman. This number is labeled MODP group 15. /// /// OpenSSL documentation at [`BN_get_rfc3526_prime_3072`] /// /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-4 /// [`BN_get_rfc3526_prime_3072`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_get_rfc3526_prime_3072.html pub fn get_rfc3526_prime_3072() -> Result { unsafe { ffi::init(); cvt_p(BN_get_rfc3526_prime_3072(ptr::null_mut())).map(BigNum) } } /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order /// of magnitude of `2 ^ 4096`. This number is used during calculated key /// exchanges such as Diffie-Hellman. This number is labeled MODP group 16. /// /// OpenSSL documentation at [`BN_get_rfc3526_prime_4096`] /// /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-4 /// [`BN_get_rfc3526_prime_4096`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_get_rfc3526_prime_4096.html pub fn get_rfc3526_prime_4096() -> Result { unsafe { ffi::init(); cvt_p(BN_get_rfc3526_prime_4096(ptr::null_mut())).map(BigNum) } } /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order /// of magnitude of `2 ^ 6144`. This number is used during calculated key /// exchanges such as Diffie-Hellman. This number is labeled MODP group 17. /// /// OpenSSL documentation at [`BN_get_rfc3526_prime_6144`] /// /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-6 /// [`BN_get_rfc3526_prime_6144`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_get_rfc3526_prime_6144.html pub fn get_rfc3526_prime_6144() -> Result { unsafe { ffi::init(); cvt_p(BN_get_rfc3526_prime_6144(ptr::null_mut())).map(BigNum) } } /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order /// of magnitude of `2 ^ 8192`. This number is used during calculated key /// exchanges such as Diffie-Hellman. This number is labeled MODP group 18. /// /// OpenSSL documentation at [`BN_get_rfc3526_prime_8192`] /// /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-6 /// [`BN_get_rfc3526_prime_8192`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_get_rfc3526_prime_8192.html pub fn get_rfc3526_prime_8192() -> Result { unsafe { ffi::init(); cvt_p(BN_get_rfc3526_prime_8192(ptr::null_mut())).map(BigNum) } } /// Creates a new `BigNum` from an unsigned, big-endian encoded number of arbitrary length. /// /// OpenSSL documentation at [`BN_bin2bn`] /// /// [`BN_bin2bn`]: https://www.openssl.org/docs/man1.1.0/crypto/BN_bin2bn.html /// /// ``` /// # use openssl::bn::BigNum; /// let bignum = BigNum::from_slice(&[0x12, 0x00, 0x34]).unwrap(); /// /// assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap()); /// ``` pub fn from_slice(n: &[u8]) -> Result { unsafe { ffi::init(); assert!(n.len() <= c_int::max_value() as usize); cvt_p(ffi::BN_bin2bn( n.as_ptr(), n.len() as c_int, ptr::null_mut(), )) .map(|p| BigNum::from_ptr(p)) } } } impl fmt::Debug for BigNumRef { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.to_dec_str() { Ok(s) => f.write_str(&s), Err(e) => Err(e.into()), } } } impl fmt::Debug for BigNum { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.to_dec_str() { Ok(s) => f.write_str(&s), Err(e) => Err(e.into()), } } } impl fmt::Display for BigNumRef { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.to_dec_str() { Ok(s) => f.write_str(&s), Err(e) => Err(e.into()), } } } impl fmt::Display for BigNum { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.to_dec_str() { Ok(s) => f.write_str(&s), Err(e) => Err(e.into()), } } } impl PartialEq for BigNumRef { fn eq(&self, oth: &BigNumRef) -> bool { self.cmp(oth) == Ordering::Equal } } impl PartialEq for BigNumRef { fn eq(&self, oth: &BigNum) -> bool { self.eq(oth.deref()) } } impl Eq for BigNumRef {} impl PartialEq for BigNum { fn eq(&self, oth: &BigNum) -> bool { self.deref().eq(oth) } } impl PartialEq for BigNum { fn eq(&self, oth: &BigNumRef) -> bool { self.deref().eq(oth) } } impl Eq for BigNum {} impl PartialOrd for BigNumRef { fn partial_cmp(&self, oth: &BigNumRef) -> Option { Some(self.cmp(oth)) } } impl PartialOrd for BigNumRef { fn partial_cmp(&self, oth: &BigNum) -> Option { Some(self.cmp(oth.deref())) } } impl Ord for BigNumRef { fn cmp(&self, oth: &BigNumRef) -> Ordering { unsafe { ffi::BN_cmp(self.as_ptr(), oth.as_ptr()).cmp(&0) } } } impl PartialOrd for BigNum { fn partial_cmp(&self, oth: &BigNum) -> Option { self.deref().partial_cmp(oth.deref()) } } impl PartialOrd for BigNum { fn partial_cmp(&self, oth: &BigNumRef) -> Option { self.deref().partial_cmp(oth) } } impl Ord for BigNum { fn cmp(&self, oth: &BigNum) -> Ordering { self.deref().cmp(oth.deref()) } } macro_rules! delegate { ($t:ident, $m:ident) => { impl<'a, 'b> $t<&'b BigNum> for &'a BigNumRef { type Output = BigNum; fn $m(self, oth: &BigNum) -> BigNum { $t::$m(self, oth.deref()) } } impl<'a, 'b> $t<&'b BigNumRef> for &'a BigNum { type Output = BigNum; fn $m(self, oth: &BigNumRef) -> BigNum { $t::$m(self.deref(), oth) } } impl<'a, 'b> $t<&'b BigNum> for &'a BigNum { type Output = BigNum; fn $m(self, oth: &BigNum) -> BigNum { $t::$m(self.deref(), oth.deref()) } } }; } impl<'a, 'b> Add<&'b BigNumRef> for &'a BigNumRef { type Output = BigNum; fn add(self, oth: &BigNumRef) -> BigNum { let mut r = BigNum::new().unwrap(); r.checked_add(self, oth).unwrap(); r } } delegate!(Add, add); impl<'a, 'b> Sub<&'b BigNumRef> for &'a BigNumRef { type Output = BigNum; fn sub(self, oth: &BigNumRef) -> BigNum { let mut r = BigNum::new().unwrap(); r.checked_sub(self, oth).unwrap(); r } } delegate!(Sub, sub); impl<'a, 'b> Mul<&'b BigNumRef> for &'a BigNumRef { type Output = BigNum; fn mul(self, oth: &BigNumRef) -> BigNum { let mut ctx = BigNumContext::new().unwrap(); let mut r = BigNum::new().unwrap(); r.checked_mul(self, oth, &mut ctx).unwrap(); r } } delegate!(Mul, mul); impl<'a, 'b> Div<&'b BigNumRef> for &'a BigNumRef { type Output = BigNum; fn div(self, oth: &'b BigNumRef) -> BigNum { let mut ctx = BigNumContext::new().unwrap(); let mut r = BigNum::new().unwrap(); r.checked_div(self, oth, &mut ctx).unwrap(); r } } delegate!(Div, div); impl<'a, 'b> Rem<&'b BigNumRef> for &'a BigNumRef { type Output = BigNum; fn rem(self, oth: &'b BigNumRef) -> BigNum { let mut ctx = BigNumContext::new().unwrap(); let mut r = BigNum::new().unwrap(); r.checked_rem(self, oth, &mut ctx).unwrap(); r } } delegate!(Rem, rem); impl<'a> Shl for &'a BigNumRef { type Output = BigNum; fn shl(self, n: i32) -> BigNum { let mut r = BigNum::new().unwrap(); r.lshift(self, n).unwrap(); r } } impl<'a> Shl for &'a BigNum { type Output = BigNum; fn shl(self, n: i32) -> BigNum { self.deref().shl(n) } } impl<'a> Shr for &'a BigNumRef { type Output = BigNum; fn shr(self, n: i32) -> BigNum { let mut r = BigNum::new().unwrap(); r.rshift(self, n).unwrap(); r } } impl<'a> Shr for &'a BigNum { type Output = BigNum; fn shr(self, n: i32) -> BigNum { self.deref().shr(n) } } impl<'a> Neg for &'a BigNumRef { type Output = BigNum; fn neg(self) -> BigNum { self.to_owned().unwrap().neg() } } impl<'a> Neg for &'a BigNum { type Output = BigNum; fn neg(self) -> BigNum { self.deref().neg() } } impl Neg for BigNum { type Output = BigNum; fn neg(mut self) -> BigNum { let negative = self.is_negative(); self.set_negative(!negative); self } } #[cfg(test)] mod tests { use crate::bn::{BigNum, BigNumContext}; #[test] fn test_to_from_slice() { let v0 = BigNum::from_u32(10_203_004).unwrap(); let vec = v0.to_vec(); let v1 = BigNum::from_slice(&vec).unwrap(); assert_eq!(v0, v1); } #[test] fn test_negation() { let a = BigNum::from_u32(909_829_283).unwrap(); assert!(!a.is_negative()); assert!((-a).is_negative()); } #[test] fn test_shift() { let a = BigNum::from_u32(909_829_283).unwrap(); assert_eq!(a, &(&a << 1) >> 1); } #[test] fn test_rand_range() { let range = BigNum::from_u32(909_829_283).unwrap(); let mut result = BigNum::from_dec_str(&range.to_dec_str().unwrap()).unwrap(); range.rand_range(&mut result).unwrap(); assert!(result >= BigNum::from_u32(0).unwrap() && result < range); } #[test] fn test_pseudo_rand_range() { let range = BigNum::from_u32(909_829_283).unwrap(); let mut result = BigNum::from_dec_str(&range.to_dec_str().unwrap()).unwrap(); range.pseudo_rand_range(&mut result).unwrap(); assert!(result >= BigNum::from_u32(0).unwrap() && result < range); } #[test] fn test_prime_numbers() { let a = BigNum::from_u32(19_029_017).unwrap(); let mut p = BigNum::new().unwrap(); p.generate_prime(128, true, None, Some(&a)).unwrap(); let mut ctx = BigNumContext::new().unwrap(); assert!(p.is_prime(100, &mut ctx).unwrap()); assert!(p.is_prime_fasttest(100, &mut ctx, true).unwrap()); } }