/* This file was taken from the Linux kernel and is * Copyright (C) 2003 Linus Torvalds * * Modified by Shawn Betts. Portions created by Shawn Betts are * Copyright (C) 2003, 2004 Shawn Betts * * This file is part of ratpoison. * * ratpoison is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * ratpoison is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, MA 02111-1307 USA */ #include "linkedlist.h" /* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */ void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next) { next->prev = new; new->next = next; new->prev = prev; prev->next = new; } /** * list_add - add a new entry * @new: new entry to be added * @head: list head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ void list_add(struct list_head *new, struct list_head *head) { __list_add(new, head, head->next); } /** * list_add_tail - add a new entry * @new: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. */ void list_add_tail(struct list_head *new, struct list_head *head) { __list_add(new, head->prev, head); } /* * Delete a list entry by making the prev/next entries * point to each other. * * This is only for internal list manipulation where we know * the prev/next entries already! */ void __list_del(struct list_head * prev, struct list_head * next) { next->prev = prev; prev->next = next; } /** * list_del - deletes entry from list. * @entry: the element to delete from the list. * Note: list_empty on entry does not return true after this, the entry is * in an undefined state. */ void list_del(struct list_head *entry) { __list_del(entry->prev, entry->next); } /** * list_del_init - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. */ void list_del_init(struct list_head *entry) { __list_del(entry->prev, entry->next); INIT_LIST_HEAD(entry); } /** * list_move - delete from one list and add as another's head * @list: the entry to move * @head: the head that will precede our entry */ void list_move(struct list_head *list, struct list_head *head) { __list_del(list->prev, list->next); list_add(list, head); } /** * list_move_tail - delete from one list and add as another's tail * @list: the entry to move * @head: the head that will follow our entry */ void list_move_tail(struct list_head *list, struct list_head *head) { __list_del(list->prev, list->next); list_add_tail(list, head); } /** * list_empty - tests whether a list is empty * @head: the list to test. */ int list_empty(struct list_head *head) { return head->next == head; } void __list_splice(struct list_head *list, struct list_head *head) { struct list_head *first = list->next; struct list_head *last = list->prev; struct list_head *at = head->next; first->prev = head; head->next = first; last->next = at; at->prev = last; } /** * list_splice - join two lists * @list: the new list to add. * @head: the place to add it in the first list. */ void list_splice(struct list_head *list, struct list_head *head) { if (!list_empty(list)) __list_splice(list, head); } /** * list_splice_init - join two lists and reinitialise the emptied list. * @list: the new list to add. * @head: the place to add it in the first list. * * The list at @list is reinitialised */ void list_splice_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head); INIT_LIST_HEAD(list); } } int list_size (struct list_head *list) { struct list_head *cur; int i = 0; list_for_each (cur, list) i++; return i; } #define MAX_LIST_LENGTH_BITS 20 #define ARRAY_SIZE(x) (sizeof(x) / sizeof(*(x))) /* * Returns a list organized in an intermediate format suited * to chaining of merge() calls: null-terminated, no reserved or * sentinel head node, "prev" links not maintained. */ static struct list_head * merge(void *priv, int (*cmp)(void *priv, struct list_head *a, struct list_head *b), struct list_head *a, struct list_head *b) { struct list_head head, *tail = &head; while (a && b) { /* if equal, take 'a' -- important for sort stability */ if ((*cmp) (priv, a, b) <= 0) { tail->next = a; a = a->next; } else { tail->next = b; b = b->next; } tail = tail->next; } tail->next = a?:b; return head.next; } /* * Combine final list merge with restoration of standard doubly-linked * list structure. This approach duplicates code from merge(), but * runs faster than the tidier alternatives of either a separate final * prev-link restoration pass, or maintaining the prev links * throughout. */ static void merge_and_restore_back_links(void *priv, int (*cmp)(void *priv, struct list_head *a, struct list_head *b), struct list_head *head, struct list_head *a, struct list_head *b) { struct list_head *tail = head; unsigned int count = 0; while (a && b) { /* if equal, take 'a' -- important for sort stability */ if ((*cmp) (priv, a, b) <= 0) { tail->next = a; a->prev = tail; a = a->next; } else { tail->next = b; b->prev = tail; b = b->next; } tail = tail->next; } tail->next = a ? : b; do { /* * In worst cases this loop may run many iterations. * Continue callbacks to the client even though no * element comparison is needed, so the client's cmp() * routine can invoke cond_resched() periodically. */ if (!(++count)) (*cmp) (priv, tail->next, tail->next); tail->next->prev = tail; tail = tail->next; } while (tail->next); tail->next = head; head->prev = tail; } /** * list_sort - sort a list * @priv: private data, opaque to list_sort(), passed to @cmp * @head: the list to sort * @cmp: the elements comparison function * * This function implements "merge sort", which has O(nlog(n)) * complexity. * * The comparison function @cmp must return a negative value if @a * should sort before @b, and a positive value if @a should sort after * @b. If @a and @b are equivalent, and their original relative * ordering is to be preserved, @cmp must return 0. */ void list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv, struct list_head *a, struct list_head *b)) { struct list_head *part[MAX_LIST_LENGTH_BITS+1]; /* sorted partial lists -- last slot is a sentinel */ int lev; /* index into part[] */ int max_lev = 0; struct list_head *list; if (list_empty (head)) return; memset(part, 0, sizeof(part)); head->prev->next = NULL; list = head->next; while (list) { struct list_head *cur = list; list = list->next; cur->next = NULL; for (lev = 0; part[lev]; lev++) { cur = merge (priv, cmp, part[lev], cur); part[lev] = NULL; } if (lev > max_lev) { if (lev >= ARRAY_SIZE(part)-1) { lev--; } max_lev = lev; } part[lev] = cur; } for (lev = 0; lev < max_lev; lev++) if (part[lev]) list = merge (priv, cmp, part[lev], list); merge_and_restore_back_links (priv, cmp, head, part[max_lev], list); }