1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
/*
* Support for RAM backed by mmaped host memory.
*
* Copyright (c) 2015 Red Hat, Inc.
*
* Authors:
* Michael S. Tsirkin <mst@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or
* later. See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/mmap-alloc.h"
#include "qemu/host-utils.h"
#define HUGETLBFS_MAGIC 0x958458f6
#ifdef CONFIG_LINUX
#include <sys/vfs.h>
#endif
size_t qemu_fd_getpagesize(int fd)
{
#ifdef CONFIG_LINUX
struct statfs fs;
int ret;
if (fd != -1) {
do {
ret = fstatfs(fd, &fs);
} while (ret != 0 && errno == EINTR);
if (ret == 0 && fs.f_type == HUGETLBFS_MAGIC) {
return fs.f_bsize;
}
}
#endif
return getpagesize();
}
size_t qemu_mempath_getpagesize(const char *mem_path)
{
#ifdef CONFIG_LINUX
struct statfs fs;
int ret;
do {
ret = statfs(mem_path, &fs);
} while (ret != 0 && errno == EINTR);
if (ret != 0) {
fprintf(stderr, "Couldn't statfs() memory path: %s\n",
strerror(errno));
exit(1);
}
if (fs.f_type == HUGETLBFS_MAGIC) {
/* It's hugepage, return the huge page size */
return fs.f_bsize;
}
#endif
return getpagesize();
}
void *qemu_ram_mmap(int fd, size_t size, size_t align, bool shared)
{
/*
* Note: this always allocates at least one extra page of virtual address
* space, even if size is already aligned.
*/
size_t total = size + align;
#if defined(__powerpc64__) && defined(__linux__)
/* On ppc64 mappings in the same segment (aka slice) must share the same
* page size. Since we will be re-allocating part of this segment
* from the supplied fd, we should make sure to use the same page size, to
* this end we mmap the supplied fd. In this case, set MAP_NORESERVE to
* avoid allocating backing store memory.
* We do this unless we are using the system page size, in which case
* anonymous memory is OK.
*/
int anonfd = fd == -1 || qemu_fd_getpagesize(fd) == getpagesize() ? -1 : fd;
int flags = anonfd == -1 ? MAP_ANONYMOUS : MAP_NORESERVE;
void *ptr = mmap(0, total, PROT_NONE, flags | MAP_PRIVATE, anonfd, 0);
#else
void *ptr = mmap(0, total, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
#endif
size_t offset;
void *ptr1;
if (ptr == MAP_FAILED) {
return MAP_FAILED;
}
assert(is_power_of_2(align));
/* Always align to host page size */
assert(align >= getpagesize());
offset = QEMU_ALIGN_UP((uintptr_t)ptr, align) - (uintptr_t)ptr;
ptr1 = mmap(ptr + offset, size, PROT_READ | PROT_WRITE,
MAP_FIXED |
(fd == -1 ? MAP_ANONYMOUS : 0) |
(shared ? MAP_SHARED : MAP_PRIVATE),
fd, 0);
if (ptr1 == MAP_FAILED) {
munmap(ptr, total);
return MAP_FAILED;
}
if (offset > 0) {
munmap(ptr, offset);
}
/*
* Leave a single PROT_NONE page allocated after the RAM block, to serve as
* a guard page guarding against potential buffer overflows.
*/
total -= offset;
if (total > size + getpagesize()) {
munmap(ptr1 + size + getpagesize(), total - size - getpagesize());
}
return ptr1;
}
void qemu_ram_munmap(void *ptr, size_t size)
{
if (ptr) {
/* Unmap both the RAM block and the guard page */
munmap(ptr, size + getpagesize());
}
}
|