summaryrefslogtreecommitdiff
path: root/util/lockcnt.c
blob: 4f88dcf8b898e15d1ec8d9e7c544a7ece910245f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/*
 * QemuLockCnt implementation
 *
 * Copyright Red Hat, Inc. 2017
 *
 * Author:
 *   Paolo Bonzini <pbonzini@redhat.com>
 */
#include "qemu/osdep.h"
#include "qemu/thread.h"
#include "qemu/atomic.h"
#include "trace.h"

#ifdef CONFIG_LINUX
#include "qemu/futex.h"

/* On Linux, bits 0-1 are a futex-based lock, bits 2-31 are the counter.
 * For the mutex algorithm see Ulrich Drepper's "Futexes Are Tricky" (ok,
 * this is not the most relaxing citation I could make...).  It is similar
 * to mutex2 in the paper.
 */

#define QEMU_LOCKCNT_STATE_MASK    3
#define QEMU_LOCKCNT_STATE_FREE    0   /* free, uncontended */
#define QEMU_LOCKCNT_STATE_LOCKED  1   /* locked, uncontended */
#define QEMU_LOCKCNT_STATE_WAITING 2   /* locked, contended */

#define QEMU_LOCKCNT_COUNT_STEP    4
#define QEMU_LOCKCNT_COUNT_SHIFT   2

void qemu_lockcnt_init(QemuLockCnt *lockcnt)
{
    lockcnt->count = 0;
}

void qemu_lockcnt_destroy(QemuLockCnt *lockcnt)
{
}

/* *val is the current value of lockcnt->count.
 *
 * If the lock is free, try a cmpxchg from *val to new_if_free; return
 * true and set *val to the old value found by the cmpxchg in
 * lockcnt->count.
 *
 * If the lock is taken, wait for it to be released and return false
 * *without trying again to take the lock*.  Again, set *val to the
 * new value of lockcnt->count.
 *
 * If *waited is true on return, new_if_free's bottom two bits must not
 * be QEMU_LOCKCNT_STATE_LOCKED on subsequent calls, because the caller
 * does not know if there are other waiters.  Furthermore, after *waited
 * is set the caller has effectively acquired the lock.  If it returns
 * with the lock not taken, it must wake another futex waiter.
 */
static bool qemu_lockcnt_cmpxchg_or_wait(QemuLockCnt *lockcnt, int *val,
                                         int new_if_free, bool *waited)
{
    /* Fast path for when the lock is free.  */
    if ((*val & QEMU_LOCKCNT_STATE_MASK) == QEMU_LOCKCNT_STATE_FREE) {
        int expected = *val;

        trace_lockcnt_fast_path_attempt(lockcnt, expected, new_if_free);
        *val = atomic_cmpxchg(&lockcnt->count, expected, new_if_free);
        if (*val == expected) {
            trace_lockcnt_fast_path_success(lockcnt, expected, new_if_free);
            *val = new_if_free;
            return true;
        }
    }

    /* The slow path moves from locked to waiting if necessary, then
     * does a futex wait.  Both steps can be repeated ad nauseam,
     * only getting out of the loop if we can have another shot at the
     * fast path.  Once we can, get out to compute the new destination
     * value for the fast path.
     */
    while ((*val & QEMU_LOCKCNT_STATE_MASK) != QEMU_LOCKCNT_STATE_FREE) {
        if ((*val & QEMU_LOCKCNT_STATE_MASK) == QEMU_LOCKCNT_STATE_LOCKED) {
            int expected = *val;
            int new = expected - QEMU_LOCKCNT_STATE_LOCKED + QEMU_LOCKCNT_STATE_WAITING;

            trace_lockcnt_futex_wait_prepare(lockcnt, expected, new);
            *val = atomic_cmpxchg(&lockcnt->count, expected, new);
            if (*val == expected) {
                *val = new;
            }
            continue;
        }

        if ((*val & QEMU_LOCKCNT_STATE_MASK) == QEMU_LOCKCNT_STATE_WAITING) {
            *waited = true;
            trace_lockcnt_futex_wait(lockcnt, *val);
            qemu_futex_wait(&lockcnt->count, *val);
            *val = atomic_read(&lockcnt->count);
            trace_lockcnt_futex_wait_resume(lockcnt, *val);
            continue;
        }

        abort();
    }
    return false;
}

static void lockcnt_wake(QemuLockCnt *lockcnt)
{
    trace_lockcnt_futex_wake(lockcnt);
    qemu_futex_wake(&lockcnt->count, 1);
}

void qemu_lockcnt_inc(QemuLockCnt *lockcnt)
{
    int val = atomic_read(&lockcnt->count);
    bool waited = false;

    for (;;) {
        if (val >= QEMU_LOCKCNT_COUNT_STEP) {
            int expected = val;
            val = atomic_cmpxchg(&lockcnt->count, val, val + QEMU_LOCKCNT_COUNT_STEP);
            if (val == expected) {
                break;
            }
        } else {
            /* The fast path is (0, unlocked)->(1, unlocked).  */
            if (qemu_lockcnt_cmpxchg_or_wait(lockcnt, &val, QEMU_LOCKCNT_COUNT_STEP,
                                             &waited)) {
                break;
            }
        }
    }

    /* If we were woken by another thread, we should also wake one because
     * we are effectively releasing the lock that was given to us.  This is
     * the case where qemu_lockcnt_lock would leave QEMU_LOCKCNT_STATE_WAITING
     * in the low bits, and qemu_lockcnt_inc_and_unlock would find it and
     * wake someone.
     */
    if (waited) {
        lockcnt_wake(lockcnt);
    }
}

void qemu_lockcnt_dec(QemuLockCnt *lockcnt)
{
    atomic_sub(&lockcnt->count, QEMU_LOCKCNT_COUNT_STEP);
}

/* Decrement a counter, and return locked if it is decremented to zero.
 * If the function returns true, it is impossible for the counter to
 * become nonzero until the next qemu_lockcnt_unlock.
 */
bool qemu_lockcnt_dec_and_lock(QemuLockCnt *lockcnt)
{
    int val = atomic_read(&lockcnt->count);
    int locked_state = QEMU_LOCKCNT_STATE_LOCKED;
    bool waited = false;

    for (;;) {
        if (val >= 2 * QEMU_LOCKCNT_COUNT_STEP) {
            int expected = val;
            val = atomic_cmpxchg(&lockcnt->count, val, val - QEMU_LOCKCNT_COUNT_STEP);
            if (val == expected) {
                break;
            }
        } else {
            /* If count is going 1->0, take the lock. The fast path is
             * (1, unlocked)->(0, locked) or (1, unlocked)->(0, waiting).
             */
            if (qemu_lockcnt_cmpxchg_or_wait(lockcnt, &val, locked_state, &waited)) {
                return true;
            }

            if (waited) {
                /* At this point we do not know if there are more waiters.  Assume
                 * there are.
                 */
                locked_state = QEMU_LOCKCNT_STATE_WAITING;
            }
        }
    }

    /* If we were woken by another thread, but we're returning in unlocked
     * state, we should also wake a thread because we are effectively
     * releasing the lock that was given to us.  This is the case where
     * qemu_lockcnt_lock would leave QEMU_LOCKCNT_STATE_WAITING in the low
     * bits, and qemu_lockcnt_unlock would find it and wake someone.
     */
    if (waited) {
        lockcnt_wake(lockcnt);
    }
    return false;
}

/* If the counter is one, decrement it and return locked.  Otherwise do
 * nothing.
 *
 * If the function returns true, it is impossible for the counter to
 * become nonzero until the next qemu_lockcnt_unlock.
 */
bool qemu_lockcnt_dec_if_lock(QemuLockCnt *lockcnt)
{
    int val = atomic_read(&lockcnt->count);
    int locked_state = QEMU_LOCKCNT_STATE_LOCKED;
    bool waited = false;

    while (val < 2 * QEMU_LOCKCNT_COUNT_STEP) {
        /* If count is going 1->0, take the lock. The fast path is
         * (1, unlocked)->(0, locked) or (1, unlocked)->(0, waiting).
         */
        if (qemu_lockcnt_cmpxchg_or_wait(lockcnt, &val, locked_state, &waited)) {
            return true;
        }

        if (waited) {
            /* At this point we do not know if there are more waiters.  Assume
             * there are.
             */
            locked_state = QEMU_LOCKCNT_STATE_WAITING;
        }
    }

    /* If we were woken by another thread, but we're returning in unlocked
     * state, we should also wake a thread because we are effectively
     * releasing the lock that was given to us.  This is the case where
     * qemu_lockcnt_lock would leave QEMU_LOCKCNT_STATE_WAITING in the low
     * bits, and qemu_lockcnt_inc_and_unlock would find it and wake someone.
     */
    if (waited) {
        lockcnt_wake(lockcnt);
    }
    return false;
}

void qemu_lockcnt_lock(QemuLockCnt *lockcnt)
{
    int val = atomic_read(&lockcnt->count);
    int step = QEMU_LOCKCNT_STATE_LOCKED;
    bool waited = false;

    /* The third argument is only used if the low bits of val are 0
     * (QEMU_LOCKCNT_STATE_FREE), so just blindly mix in the desired
     * state.
     */
    while (!qemu_lockcnt_cmpxchg_or_wait(lockcnt, &val, val + step, &waited)) {
        if (waited) {
            /* At this point we do not know if there are more waiters.  Assume
             * there are.
             */
            step = QEMU_LOCKCNT_STATE_WAITING;
        }
    }
}

void qemu_lockcnt_inc_and_unlock(QemuLockCnt *lockcnt)
{
    int expected, new, val;

    val = atomic_read(&lockcnt->count);
    do {
        expected = val;
        new = (val + QEMU_LOCKCNT_COUNT_STEP) & ~QEMU_LOCKCNT_STATE_MASK;
        trace_lockcnt_unlock_attempt(lockcnt, val, new);
        val = atomic_cmpxchg(&lockcnt->count, val, new);
    } while (val != expected);

    trace_lockcnt_unlock_success(lockcnt, val, new);
    if (val & QEMU_LOCKCNT_STATE_WAITING) {
        lockcnt_wake(lockcnt);
    }
}

void qemu_lockcnt_unlock(QemuLockCnt *lockcnt)
{
    int expected, new, val;

    val = atomic_read(&lockcnt->count);
    do {
        expected = val;
        new = val & ~QEMU_LOCKCNT_STATE_MASK;
        trace_lockcnt_unlock_attempt(lockcnt, val, new);
        val = atomic_cmpxchg(&lockcnt->count, val, new);
    } while (val != expected);

    trace_lockcnt_unlock_success(lockcnt, val, new);
    if (val & QEMU_LOCKCNT_STATE_WAITING) {
        lockcnt_wake(lockcnt);
    }
}

unsigned qemu_lockcnt_count(QemuLockCnt *lockcnt)
{
    return atomic_read(&lockcnt->count) >> QEMU_LOCKCNT_COUNT_SHIFT;
}
#else
void qemu_lockcnt_init(QemuLockCnt *lockcnt)
{
    qemu_mutex_init(&lockcnt->mutex);
    lockcnt->count = 0;
}

void qemu_lockcnt_destroy(QemuLockCnt *lockcnt)
{
    qemu_mutex_destroy(&lockcnt->mutex);
}

void qemu_lockcnt_inc(QemuLockCnt *lockcnt)
{
    int old;
    for (;;) {
        old = atomic_read(&lockcnt->count);
        if (old == 0) {
            qemu_lockcnt_lock(lockcnt);
            qemu_lockcnt_inc_and_unlock(lockcnt);
            return;
        } else {
            if (atomic_cmpxchg(&lockcnt->count, old, old + 1) == old) {
                return;
            }
        }
    }
}

void qemu_lockcnt_dec(QemuLockCnt *lockcnt)
{
    atomic_dec(&lockcnt->count);
}

/* Decrement a counter, and return locked if it is decremented to zero.
 * It is impossible for the counter to become nonzero while the mutex
 * is taken.
 */
bool qemu_lockcnt_dec_and_lock(QemuLockCnt *lockcnt)
{
    int val = atomic_read(&lockcnt->count);
    while (val > 1) {
        int old = atomic_cmpxchg(&lockcnt->count, val, val - 1);
        if (old != val) {
            val = old;
            continue;
        }

        return false;
    }

    qemu_lockcnt_lock(lockcnt);
    if (atomic_fetch_dec(&lockcnt->count) == 1) {
        return true;
    }

    qemu_lockcnt_unlock(lockcnt);
    return false;
}

/* Decrement a counter and return locked if it is decremented to zero.
 * Otherwise do nothing.
 *
 * It is impossible for the counter to become nonzero while the mutex
 * is taken.
 */
bool qemu_lockcnt_dec_if_lock(QemuLockCnt *lockcnt)
{
    /* No need for acquire semantics if we return false.  */
    int val = atomic_read(&lockcnt->count);
    if (val > 1) {
        return false;
    }

    qemu_lockcnt_lock(lockcnt);
    if (atomic_fetch_dec(&lockcnt->count) == 1) {
        return true;
    }

    qemu_lockcnt_inc_and_unlock(lockcnt);
    return false;
}

void qemu_lockcnt_lock(QemuLockCnt *lockcnt)
{
    qemu_mutex_lock(&lockcnt->mutex);
}

void qemu_lockcnt_inc_and_unlock(QemuLockCnt *lockcnt)
{
    atomic_inc(&lockcnt->count);
    qemu_mutex_unlock(&lockcnt->mutex);
}

void qemu_lockcnt_unlock(QemuLockCnt *lockcnt)
{
    qemu_mutex_unlock(&lockcnt->mutex);
}

unsigned qemu_lockcnt_count(QemuLockCnt *lockcnt)
{
    return atomic_read(&lockcnt->count);
}
#endif