summaryrefslogtreecommitdiff
path: root/util/hbitmap.c
blob: 242c6e519ce1715a54d6183c3648d009fedb9202 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
/*
 * Hierarchical Bitmap Data Type
 *
 * Copyright Red Hat, Inc., 2012
 *
 * Author: Paolo Bonzini <pbonzini@redhat.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or
 * later.  See the COPYING file in the top-level directory.
 */

#include "qemu/osdep.h"
#include "qemu/hbitmap.h"
#include "qemu/host-utils.h"
#include "trace.h"
#include "crypto/hash.h"

/* HBitmaps provides an array of bits.  The bits are stored as usual in an
 * array of unsigned longs, but HBitmap is also optimized to provide fast
 * iteration over set bits; going from one bit to the next is O(logB n)
 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
 * that the number of levels is in fact fixed.
 *
 * In order to do this, it stacks multiple bitmaps with progressively coarser
 * granularity; in all levels except the last, bit N is set iff the N-th
 * unsigned long is nonzero in the immediately next level.  When iteration
 * completes on the last level it can examine the 2nd-last level to quickly
 * skip entire words, and even do so recursively to skip blocks of 64 words or
 * powers thereof (32 on 32-bit machines).
 *
 * Given an index in the bitmap, it can be split in group of bits like
 * this (for the 64-bit case):
 *
 *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
 *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
 *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
 *
 * So it is easy to move up simply by shifting the index right by
 * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
 * similarly, and add the word index within the group.  Iteration uses
 * ffs (find first set bit) to find the next word to examine; this
 * operation can be done in constant time in most current architectures.
 *
 * Setting or clearing a range of m bits on all levels, the work to perform
 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
 *
 * When iterating on a bitmap, each bit (on any level) is only visited
 * once.  Hence, The total cost of visiting a bitmap with m bits in it is
 * the number of bits that are set in all bitmaps.  Unless the bitmap is
 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
 * cost of advancing from one bit to the next is usually constant (worst case
 * O(logB n) as in the non-amortized complexity).
 */

struct HBitmap {
    /*
     * Size of the bitmap, as requested in hbitmap_alloc or in hbitmap_truncate.
     */
    uint64_t orig_size;

    /* Number of total bits in the bottom level.  */
    uint64_t size;

    /* Number of set bits in the bottom level.  */
    uint64_t count;

    /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
     * will actually represent a group of 2^G elements.  Each operation on a
     * range of bits first rounds the bits to determine which group they land
     * in, and then affect the entire page; iteration will only visit the first
     * bit of each group.  Here is an example of operations in a size-16,
     * granularity-1 HBitmap:
     *
     *    initial state            00000000
     *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
     *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
     *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
     *    reset(start=5, count=5)  00000000
     *
     * From an implementation point of view, when setting or resetting bits,
     * the bitmap will scale bit numbers right by this amount of bits.  When
     * iterating, the bitmap will scale bit numbers left by this amount of
     * bits.
     */
    int granularity;

    /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
    HBitmap *meta;

    /* A number of progressively less coarse bitmaps (i.e. level 0 is the
     * coarsest).  Each bit in level N represents a word in level N+1 that
     * has a set bit, except the last level where each bit represents the
     * actual bitmap.
     *
     * Note that all bitmaps have the same number of levels.  Even a 1-bit
     * bitmap will still allocate HBITMAP_LEVELS arrays.
     */
    unsigned long *levels[HBITMAP_LEVELS];

    /* The length of each levels[] array. */
    uint64_t sizes[HBITMAP_LEVELS];
};

/* Advance hbi to the next nonzero word and return it.  hbi->pos
 * is updated.  Returns zero if we reach the end of the bitmap.
 */
unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
{
    size_t pos = hbi->pos;
    const HBitmap *hb = hbi->hb;
    unsigned i = HBITMAP_LEVELS - 1;

    unsigned long cur;
    do {
        i--;
        pos >>= BITS_PER_LEVEL;
        cur = hbi->cur[i] & hb->levels[i][pos];
    } while (cur == 0);

    /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
     * bits in the level 0 bitmap; thus we can repurpose the most significant
     * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
     * that the above loop ends even without an explicit check on i.
     */

    if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
        return 0;
    }
    for (; i < HBITMAP_LEVELS - 1; i++) {
        /* Shift back pos to the left, matching the right shifts above.
         * The index of this word's least significant set bit provides
         * the low-order bits.
         */
        assert(cur);
        pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
        hbi->cur[i] = cur & (cur - 1);

        /* Set up next level for iteration.  */
        cur = hb->levels[i + 1][pos];
    }

    hbi->pos = pos;
    trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);

    assert(cur);
    return cur;
}

int64_t hbitmap_iter_next(HBitmapIter *hbi)
{
    unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
            hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
    int64_t item;

    if (cur == 0) {
        cur = hbitmap_iter_skip_words(hbi);
        if (cur == 0) {
            return -1;
        }
    }

    /* The next call will resume work from the next bit.  */
    hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
    item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);

    return item << hbi->granularity;
}

void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
{
    unsigned i, bit;
    uint64_t pos;

    hbi->hb = hb;
    pos = first >> hb->granularity;
    assert(pos < hb->size);
    hbi->pos = pos >> BITS_PER_LEVEL;
    hbi->granularity = hb->granularity;

    for (i = HBITMAP_LEVELS; i-- > 0; ) {
        bit = pos & (BITS_PER_LONG - 1);
        pos >>= BITS_PER_LEVEL;

        /* Drop bits representing items before first.  */
        hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);

        /* We have already added level i+1, so the lowest set bit has
         * been processed.  Clear it.
         */
        if (i != HBITMAP_LEVELS - 1) {
            hbi->cur[i] &= ~(1UL << bit);
        }
    }
}

int64_t hbitmap_next_zero(const HBitmap *hb, uint64_t start, uint64_t count)
{
    size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL;
    unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1];
    unsigned long cur = last_lev[pos];
    unsigned start_bit_offset;
    uint64_t end_bit, sz;
    int64_t res;

    if (start >= hb->orig_size || count == 0) {
        return -1;
    }

    end_bit = count > hb->orig_size - start ?
                hb->size :
                ((start + count - 1) >> hb->granularity) + 1;
    sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL;

    /* There may be some zero bits in @cur before @start. We are not interested
     * in them, let's set them.
     */
    start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1);
    cur |= (1UL << start_bit_offset) - 1;
    assert((start >> hb->granularity) < hb->size);

    if (cur == (unsigned long)-1) {
        do {
            pos++;
        } while (pos < sz && last_lev[pos] == (unsigned long)-1);

        if (pos >= sz) {
            return -1;
        }

        cur = last_lev[pos];
    }

    res = (pos << BITS_PER_LEVEL) + ctol(cur);
    if (res >= end_bit) {
        return -1;
    }

    res = res << hb->granularity;
    if (res < start) {
        assert(((start - res) >> hb->granularity) == 0);
        return start;
    }

    return res;
}

bool hbitmap_next_dirty_area(const HBitmap *hb, uint64_t *start,
                             uint64_t *count)
{
    HBitmapIter hbi;
    int64_t firt_dirty_off, area_end;
    uint32_t granularity = 1UL << hb->granularity;
    uint64_t end;

    if (*start >= hb->orig_size || *count == 0) {
        return false;
    }

    end = *count > hb->orig_size - *start ? hb->orig_size : *start + *count;

    hbitmap_iter_init(&hbi, hb, *start);
    firt_dirty_off = hbitmap_iter_next(&hbi);

    if (firt_dirty_off < 0 || firt_dirty_off >= end) {
        return false;
    }

    if (firt_dirty_off + granularity >= end) {
        area_end = end;
    } else {
        area_end = hbitmap_next_zero(hb, firt_dirty_off + granularity,
                                     end - firt_dirty_off - granularity);
        if (area_end < 0) {
            area_end = end;
        }
    }

    if (firt_dirty_off > *start) {
        *start = firt_dirty_off;
    }
    *count = area_end - *start;

    return true;
}

bool hbitmap_empty(const HBitmap *hb)
{
    return hb->count == 0;
}

int hbitmap_granularity(const HBitmap *hb)
{
    return hb->granularity;
}

uint64_t hbitmap_count(const HBitmap *hb)
{
    return hb->count << hb->granularity;
}

/* Count the number of set bits between start and end, not accounting for
 * the granularity.  Also an example of how to use hbitmap_iter_next_word.
 */
static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
{
    HBitmapIter hbi;
    uint64_t count = 0;
    uint64_t end = last + 1;
    unsigned long cur;
    size_t pos;

    hbitmap_iter_init(&hbi, hb, start << hb->granularity);
    for (;;) {
        pos = hbitmap_iter_next_word(&hbi, &cur);
        if (pos >= (end >> BITS_PER_LEVEL)) {
            break;
        }
        count += ctpopl(cur);
    }

    if (pos == (end >> BITS_PER_LEVEL)) {
        /* Drop bits representing the END-th and subsequent items.  */
        int bit = end & (BITS_PER_LONG - 1);
        cur &= (1UL << bit) - 1;
        count += ctpopl(cur);
    }

    return count;
}

/* Setting starts at the last layer and propagates up if an element
 * changes.
 */
static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
{
    unsigned long mask;
    unsigned long old;

    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
    assert(start <= last);

    mask = 2UL << (last & (BITS_PER_LONG - 1));
    mask -= 1UL << (start & (BITS_PER_LONG - 1));
    old = *elem;
    *elem |= mask;
    return old != *elem;
}

/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
 * Returns true if at least one bit is changed. */
static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
                           uint64_t last)
{
    size_t pos = start >> BITS_PER_LEVEL;
    size_t lastpos = last >> BITS_PER_LEVEL;
    bool changed = false;
    size_t i;

    i = pos;
    if (i < lastpos) {
        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
        changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
        for (;;) {
            start = next;
            next += BITS_PER_LONG;
            if (++i == lastpos) {
                break;
            }
            changed |= (hb->levels[level][i] == 0);
            hb->levels[level][i] = ~0UL;
        }
    }
    changed |= hb_set_elem(&hb->levels[level][i], start, last);

    /* If there was any change in this layer, we may have to update
     * the one above.
     */
    if (level > 0 && changed) {
        hb_set_between(hb, level - 1, pos, lastpos);
    }
    return changed;
}

void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
{
    /* Compute range in the last layer.  */
    uint64_t first, n;
    uint64_t last = start + count - 1;

    if (count == 0) {
        return;
    }

    trace_hbitmap_set(hb, start, count,
                      start >> hb->granularity, last >> hb->granularity);

    first = start >> hb->granularity;
    last >>= hb->granularity;
    assert(last < hb->size);
    n = last - first + 1;

    hb->count += n - hb_count_between(hb, first, last);
    if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
        hb->meta) {
        hbitmap_set(hb->meta, start, count);
    }
}

/* Resetting works the other way round: propagate up if the new
 * value is zero.
 */
static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
{
    unsigned long mask;
    bool blanked;

    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
    assert(start <= last);

    mask = 2UL << (last & (BITS_PER_LONG - 1));
    mask -= 1UL << (start & (BITS_PER_LONG - 1));
    blanked = *elem != 0 && ((*elem & ~mask) == 0);
    *elem &= ~mask;
    return blanked;
}

/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
 * Returns true if at least one bit is changed. */
static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
                             uint64_t last)
{
    size_t pos = start >> BITS_PER_LEVEL;
    size_t lastpos = last >> BITS_PER_LEVEL;
    bool changed = false;
    size_t i;

    i = pos;
    if (i < lastpos) {
        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;

        /* Here we need a more complex test than when setting bits.  Even if
         * something was changed, we must not blank bits in the upper level
         * unless the lower-level word became entirely zero.  So, remove pos
         * from the upper-level range if bits remain set.
         */
        if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
            changed = true;
        } else {
            pos++;
        }

        for (;;) {
            start = next;
            next += BITS_PER_LONG;
            if (++i == lastpos) {
                break;
            }
            changed |= (hb->levels[level][i] != 0);
            hb->levels[level][i] = 0UL;
        }
    }

    /* Same as above, this time for lastpos.  */
    if (hb_reset_elem(&hb->levels[level][i], start, last)) {
        changed = true;
    } else {
        lastpos--;
    }

    if (level > 0 && changed) {
        hb_reset_between(hb, level - 1, pos, lastpos);
    }

    return changed;

}

void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
{
    /* Compute range in the last layer.  */
    uint64_t first;
    uint64_t last = start + count - 1;
    uint64_t gran = 1ULL << hb->granularity;

    if (count == 0) {
        return;
    }

    assert(QEMU_IS_ALIGNED(start, gran));
    assert(QEMU_IS_ALIGNED(count, gran) || (start + count == hb->orig_size));

    trace_hbitmap_reset(hb, start, count,
                        start >> hb->granularity, last >> hb->granularity);

    first = start >> hb->granularity;
    last >>= hb->granularity;
    assert(last < hb->size);

    hb->count -= hb_count_between(hb, first, last);
    if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
        hb->meta) {
        hbitmap_set(hb->meta, start, count);
    }
}

void hbitmap_reset_all(HBitmap *hb)
{
    unsigned int i;

    /* Same as hbitmap_alloc() except for memset() instead of malloc() */
    for (i = HBITMAP_LEVELS; --i >= 1; ) {
        memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
    }

    hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
    hb->count = 0;
}

bool hbitmap_is_serializable(const HBitmap *hb)
{
    /* Every serialized chunk must be aligned to 64 bits so that endianness
     * requirements can be fulfilled on both 64 bit and 32 bit hosts.
     * We have hbitmap_serialization_align() which converts this
     * alignment requirement from bitmap bits to items covered (e.g. sectors).
     * That value is:
     *    64 << hb->granularity
     * Since this value must not exceed UINT64_MAX, hb->granularity must be
     * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
     *
     * In order for hbitmap_serialization_align() to always return a
     * meaningful value, bitmaps that are to be serialized must have a
     * granularity of less than 58. */

    return hb->granularity < 58;
}

bool hbitmap_get(const HBitmap *hb, uint64_t item)
{
    /* Compute position and bit in the last layer.  */
    uint64_t pos = item >> hb->granularity;
    unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
    assert(pos < hb->size);

    return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
}

uint64_t hbitmap_serialization_align(const HBitmap *hb)
{
    assert(hbitmap_is_serializable(hb));

    /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
     * hosts. */
    return UINT64_C(64) << hb->granularity;
}

/* Start should be aligned to serialization granularity, chunk size should be
 * aligned to serialization granularity too, except for last chunk.
 */
static void serialization_chunk(const HBitmap *hb,
                                uint64_t start, uint64_t count,
                                unsigned long **first_el, uint64_t *el_count)
{
    uint64_t last = start + count - 1;
    uint64_t gran = hbitmap_serialization_align(hb);

    assert((start & (gran - 1)) == 0);
    assert((last >> hb->granularity) < hb->size);
    if ((last >> hb->granularity) != hb->size - 1) {
        assert((count & (gran - 1)) == 0);
    }

    start = (start >> hb->granularity) >> BITS_PER_LEVEL;
    last = (last >> hb->granularity) >> BITS_PER_LEVEL;

    *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
    *el_count = last - start + 1;
}

uint64_t hbitmap_serialization_size(const HBitmap *hb,
                                    uint64_t start, uint64_t count)
{
    uint64_t el_count;
    unsigned long *cur;

    if (!count) {
        return 0;
    }
    serialization_chunk(hb, start, count, &cur, &el_count);

    return el_count * sizeof(unsigned long);
}

void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
                            uint64_t start, uint64_t count)
{
    uint64_t el_count;
    unsigned long *cur, *end;

    if (!count) {
        return;
    }
    serialization_chunk(hb, start, count, &cur, &el_count);
    end = cur + el_count;

    while (cur != end) {
        unsigned long el =
            (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));

        memcpy(buf, &el, sizeof(el));
        buf += sizeof(el);
        cur++;
    }
}

void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
                              uint64_t start, uint64_t count,
                              bool finish)
{
    uint64_t el_count;
    unsigned long *cur, *end;

    if (!count) {
        return;
    }
    serialization_chunk(hb, start, count, &cur, &el_count);
    end = cur + el_count;

    while (cur != end) {
        memcpy(cur, buf, sizeof(*cur));

        if (BITS_PER_LONG == 32) {
            le32_to_cpus((uint32_t *)cur);
        } else {
            le64_to_cpus((uint64_t *)cur);
        }

        buf += sizeof(unsigned long);
        cur++;
    }
    if (finish) {
        hbitmap_deserialize_finish(hb);
    }
}

void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
                                bool finish)
{
    uint64_t el_count;
    unsigned long *first;

    if (!count) {
        return;
    }
    serialization_chunk(hb, start, count, &first, &el_count);

    memset(first, 0, el_count * sizeof(unsigned long));
    if (finish) {
        hbitmap_deserialize_finish(hb);
    }
}

void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
                              bool finish)
{
    uint64_t el_count;
    unsigned long *first;

    if (!count) {
        return;
    }
    serialization_chunk(hb, start, count, &first, &el_count);

    memset(first, 0xff, el_count * sizeof(unsigned long));
    if (finish) {
        hbitmap_deserialize_finish(hb);
    }
}

void hbitmap_deserialize_finish(HBitmap *bitmap)
{
    int64_t i, size, prev_size;
    int lev;

    /* restore levels starting from penultimate to zero level, assuming
     * that the last level is ok */
    size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
    for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
        prev_size = size;
        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
        memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));

        for (i = 0; i < prev_size; ++i) {
            if (bitmap->levels[lev + 1][i]) {
                bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
                    1UL << (i & (BITS_PER_LONG - 1));
            }
        }
    }

    bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
    bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1);
}

void hbitmap_free(HBitmap *hb)
{
    unsigned i;
    assert(!hb->meta);
    for (i = HBITMAP_LEVELS; i-- > 0; ) {
        g_free(hb->levels[i]);
    }
    g_free(hb);
}

HBitmap *hbitmap_alloc(uint64_t size, int granularity)
{
    HBitmap *hb = g_new0(struct HBitmap, 1);
    unsigned i;

    hb->orig_size = size;

    assert(granularity >= 0 && granularity < 64);
    size = (size + (1ULL << granularity) - 1) >> granularity;
    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));

    hb->size = size;
    hb->granularity = granularity;
    for (i = HBITMAP_LEVELS; i-- > 0; ) {
        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
        hb->sizes[i] = size;
        hb->levels[i] = g_new0(unsigned long, size);
    }

    /* We necessarily have free bits in level 0 due to the definition
     * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
     * hbitmap_iter_skip_words.
     */
    assert(size == 1);
    hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
    return hb;
}

void hbitmap_truncate(HBitmap *hb, uint64_t size)
{
    bool shrink;
    unsigned i;
    uint64_t num_elements = size;
    uint64_t old;

    hb->orig_size = size;

    /* Size comes in as logical elements, adjust for granularity. */
    size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
    shrink = size < hb->size;

    /* bit sizes are identical; nothing to do. */
    if (size == hb->size) {
        return;
    }

    /* If we're losing bits, let's clear those bits before we invalidate all of
     * our invariants. This helps keep the bitcount consistent, and will prevent
     * us from carrying around garbage bits beyond the end of the map.
     */
    if (shrink) {
        /* Don't clear partial granularity groups;
         * start at the first full one. */
        uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
        uint64_t fix_count = (hb->size << hb->granularity) - start;

        assert(fix_count);
        hbitmap_reset(hb, start, fix_count);
    }

    hb->size = size;
    for (i = HBITMAP_LEVELS; i-- > 0; ) {
        size = MAX(BITS_TO_LONGS(size), 1);
        if (hb->sizes[i] == size) {
            break;
        }
        old = hb->sizes[i];
        hb->sizes[i] = size;
        hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
        if (!shrink) {
            memset(&hb->levels[i][old], 0x00,
                   (size - old) * sizeof(*hb->levels[i]));
        }
    }
    if (hb->meta) {
        hbitmap_truncate(hb->meta, hb->size << hb->granularity);
    }
}

bool hbitmap_can_merge(const HBitmap *a, const HBitmap *b)
{
    return (a->orig_size == b->orig_size);
}

/**
 * hbitmap_sparse_merge: performs dst = dst | src
 * works with differing granularities.
 * best used when src is sparsely populated.
 */
static void hbitmap_sparse_merge(HBitmap *dst, const HBitmap *src)
{
    uint64_t offset = 0;
    uint64_t count = src->orig_size;

    while (hbitmap_next_dirty_area(src, &offset, &count)) {
        hbitmap_set(dst, offset, count);
        offset += count;
        if (offset >= src->orig_size) {
            break;
        }
        count = src->orig_size - offset;
    }
}

/**
 * Given HBitmaps A and B, let R := A (BITOR) B.
 * Bitmaps A and B will not be modified,
 *     except when bitmap R is an alias of A or B.
 *
 * @return true if the merge was successful,
 *         false if it was not attempted.
 */
bool hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result)
{
    int i;
    uint64_t j;

    if (!hbitmap_can_merge(a, b) || !hbitmap_can_merge(a, result)) {
        return false;
    }
    assert(hbitmap_can_merge(b, result));

    if ((!hbitmap_count(a) && result == b) ||
        (!hbitmap_count(b) && result == a)) {
        return true;
    }

    if (!hbitmap_count(a) && !hbitmap_count(b)) {
        hbitmap_reset_all(result);
        return true;
    }

    if (a->granularity != b->granularity) {
        if ((a != result) && (b != result)) {
            hbitmap_reset_all(result);
        }
        if (a != result) {
            hbitmap_sparse_merge(result, a);
        }
        if (b != result) {
            hbitmap_sparse_merge(result, b);
        }
        return true;
    }

    /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
     * It may be possible to improve running times for sparsely populated maps
     * by using hbitmap_iter_next, but this is suboptimal for dense maps.
     */
    assert(a->size == b->size);
    for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
        for (j = 0; j < a->sizes[i]; j++) {
            result->levels[i][j] = a->levels[i][j] | b->levels[i][j];
        }
    }

    /* Recompute the dirty count */
    result->count = hb_count_between(result, 0, result->size - 1);

    return true;
}

HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size)
{
    assert(!(chunk_size & (chunk_size - 1)));
    assert(!hb->meta);
    hb->meta = hbitmap_alloc(hb->size << hb->granularity,
                             hb->granularity + ctz32(chunk_size));
    return hb->meta;
}

void hbitmap_free_meta(HBitmap *hb)
{
    assert(hb->meta);
    hbitmap_free(hb->meta);
    hb->meta = NULL;
}

char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
{
    size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
    char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
    char *hash = NULL;
    qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);

    return hash;
}