summaryrefslogtreecommitdiff
path: root/tests/pflash-cfi02-test.c
blob: d3b23f4f66191a8ea90cf2060f80939778c599ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/*
 * QTest testcase for parallel flash with AMD command set
 *
 * Copyright (c) 2019 Stephen Checkoway
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 */

#include "qemu/osdep.h"
#include "libqtest.h"

/*
 * To test the pflash_cfi02 device, we run QEMU with the musicpal machine with
 * a pflash drive. This enables us to test some flash configurations, but not
 * all. In particular, we're limited to a 16-bit wide flash device.
 */

#define MP_FLASH_SIZE_MAX (32 * 1024 * 1024)
#define BASE_ADDR (0x100000000ULL - MP_FLASH_SIZE_MAX)

#define UNIFORM_FLASH_SIZE (8 * 1024 * 1024)
#define UNIFORM_FLASH_SECTOR_SIZE (64 * 1024)

/* Use a newtype to keep flash addresses separate from byte addresses. */
typedef struct {
    uint64_t addr;
} faddr;
#define FLASH_ADDR(x) ((faddr) { .addr = (x) })

#define CFI_ADDR FLASH_ADDR(0x55)
#define UNLOCK0_ADDR FLASH_ADDR(0x555)
#define UNLOCK1_ADDR FLASH_ADDR(0x2AA)

#define CFI_CMD 0x98
#define UNLOCK0_CMD 0xAA
#define UNLOCK1_CMD 0x55
#define SECOND_UNLOCK_CMD 0x80
#define AUTOSELECT_CMD 0x90
#define RESET_CMD 0xF0
#define PROGRAM_CMD 0xA0
#define SECTOR_ERASE_CMD 0x30
#define CHIP_ERASE_CMD 0x10
#define UNLOCK_BYPASS_CMD 0x20
#define UNLOCK_BYPASS_RESET_CMD 0x00
#define ERASE_SUSPEND_CMD 0xB0
#define ERASE_RESUME_CMD SECTOR_ERASE_CMD

typedef struct {
    int bank_width;

    /* Nonuniform block size. */
    int nb_blocs[4];
    int sector_len[4];

    QTestState *qtest;
} FlashConfig;

static char image_path[] = "/tmp/qtest.XXXXXX";

/*
 * The pflash implementation allows some parameters to be unspecified. We want
 * to test those configurations but we also need to know the real values in
 * our testing code. So after we launch qemu, we'll need a new FlashConfig
 * with the correct values filled in.
 */
static FlashConfig expand_config_defaults(const FlashConfig *c)
{
    FlashConfig ret = *c;

    if (ret.bank_width == 0) {
        ret.bank_width = 2;
    }
    if (ret.nb_blocs[0] == 0 && ret.sector_len[0] == 0) {
        ret.sector_len[0] = UNIFORM_FLASH_SECTOR_SIZE;
        ret.nb_blocs[0] = UNIFORM_FLASH_SIZE / UNIFORM_FLASH_SECTOR_SIZE;
    }

    /* XXX: Limitations of test harness. */
    assert(ret.bank_width == 2);
    return ret;
}

/*
 * Return a bit mask suitable for extracting the least significant
 * status/query response from an interleaved response.
 */
static inline uint64_t device_mask(const FlashConfig *c)
{
    return (uint64_t)-1;
}

/*
 * Return a bit mask exactly as long as the bank_width.
 */
static inline uint64_t bank_mask(const FlashConfig *c)
{
    if (c->bank_width == 8) {
        return (uint64_t)-1;
    }
    return (1ULL << (c->bank_width * 8)) - 1ULL;
}

static inline void flash_write(const FlashConfig *c, uint64_t byte_addr,
                               uint64_t data)
{
    /* Sanity check our tests. */
    assert((data & ~bank_mask(c)) == 0);
    uint64_t addr = BASE_ADDR + byte_addr;
    switch (c->bank_width) {
    case 1:
        qtest_writeb(c->qtest, addr, data);
        break;
    case 2:
        qtest_writew(c->qtest, addr, data);
        break;
    case 4:
        qtest_writel(c->qtest, addr, data);
        break;
    case 8:
        qtest_writeq(c->qtest, addr, data);
        break;
    default:
        abort();
    }
}

static inline uint64_t flash_read(const FlashConfig *c, uint64_t byte_addr)
{
    uint64_t addr = BASE_ADDR + byte_addr;
    switch (c->bank_width) {
    case 1:
        return qtest_readb(c->qtest, addr);
    case 2:
        return qtest_readw(c->qtest, addr);
    case 4:
        return qtest_readl(c->qtest, addr);
    case 8:
        return qtest_readq(c->qtest, addr);
    default:
        abort();
    }
}

/*
 * Convert a flash address expressed in the maximum width of the device as a
 * byte address.
 */
static inline uint64_t as_byte_addr(const FlashConfig *c, faddr flash_addr)
{
    /*
     * Command addresses are always given as addresses in the maximum
     * supported bus size for the flash chip. So an x8/x16 chip in x8 mode
     * uses addresses 0xAAA and 0x555 to unlock because the least significant
     * bit is ignored. (0x555 rather than 0x554 is traditional.)
     *
     * In general we need to multiply by the maximum device width.
     */
    return flash_addr.addr * c->bank_width;
}

/*
 * Return the command value or expected status replicated across all devices.
 */
static inline uint64_t replicate(const FlashConfig *c, uint64_t data)
{
    /* Sanity check our tests. */
    assert((data & ~device_mask(c)) == 0);
    return data;
}

static inline void flash_cmd(const FlashConfig *c, faddr cmd_addr,
                             uint8_t cmd)
{
    flash_write(c, as_byte_addr(c, cmd_addr), replicate(c, cmd));
}

static inline uint64_t flash_query(const FlashConfig *c, faddr query_addr)
{
    return flash_read(c, as_byte_addr(c, query_addr));
}

static inline uint64_t flash_query_1(const FlashConfig *c, faddr query_addr)
{
    return flash_query(c, query_addr) & device_mask(c);
}

static void unlock(const FlashConfig *c)
{
    flash_cmd(c, UNLOCK0_ADDR, UNLOCK0_CMD);
    flash_cmd(c, UNLOCK1_ADDR, UNLOCK1_CMD);
}

static void reset(const FlashConfig *c)
{
    flash_cmd(c, FLASH_ADDR(0), RESET_CMD);
}

static void sector_erase(const FlashConfig *c, uint64_t byte_addr)
{
    unlock(c);
    flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
    unlock(c);
    flash_write(c, byte_addr, replicate(c, SECTOR_ERASE_CMD));
}

static void wait_for_completion(const FlashConfig *c, uint64_t byte_addr)
{
    /* If DQ6 is toggling, step the clock and ensure the toggle stops. */
    const uint64_t dq6 = replicate(c, 0x40);
    if ((flash_read(c, byte_addr) & dq6) ^ (flash_read(c, byte_addr) & dq6)) {
        /* Wait for erase or program to finish. */
        qtest_clock_step_next(c->qtest);
        /* Ensure that DQ6 has stopped toggling. */
        g_assert_cmphex(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
    }
}

static void bypass_program(const FlashConfig *c, uint64_t byte_addr,
                           uint16_t data)
{
    flash_cmd(c, UNLOCK0_ADDR, PROGRAM_CMD);
    flash_write(c, byte_addr, data);
    /*
     * Data isn't valid until DQ6 stops toggling. We don't model this as
     * writes are immediate, but if this changes in the future, we can wait
     * until the program is complete.
     */
    wait_for_completion(c, byte_addr);
}

static void program(const FlashConfig *c, uint64_t byte_addr, uint16_t data)
{
    unlock(c);
    bypass_program(c, byte_addr, data);
}

static void chip_erase(const FlashConfig *c)
{
    unlock(c);
    flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
    unlock(c);
    flash_cmd(c, UNLOCK0_ADDR, CHIP_ERASE_CMD);
}

static void erase_suspend(const FlashConfig *c)
{
    flash_cmd(c, FLASH_ADDR(0), ERASE_SUSPEND_CMD);
}

static void erase_resume(const FlashConfig *c)
{
    flash_cmd(c, FLASH_ADDR(0), ERASE_RESUME_CMD);
}

/*
 * Test flash commands with a variety of device geometry.
 */
static void test_geometry(const void *opaque)
{
    const FlashConfig *config = opaque;
    QTestState *qtest;
    qtest = qtest_initf("-M musicpal,accel=qtest"
                        " -drive if=pflash,file=%s,format=raw,copy-on-read"
                        /* Device geometry properties. */
                        " -global driver=cfi.pflash02,"
                        "property=num-blocks0,value=%d"
                        " -global driver=cfi.pflash02,"
                        "property=sector-length0,value=%d"
                        " -global driver=cfi.pflash02,"
                        "property=num-blocks1,value=%d"
                        " -global driver=cfi.pflash02,"
                        "property=sector-length1,value=%d"
                        " -global driver=cfi.pflash02,"
                        "property=num-blocks2,value=%d"
                        " -global driver=cfi.pflash02,"
                        "property=sector-length2,value=%d"
                        " -global driver=cfi.pflash02,"
                        "property=num-blocks3,value=%d"
                        " -global driver=cfi.pflash02,"
                        "property=sector-length3,value=%d",
                        image_path,
                        config->nb_blocs[0],
                        config->sector_len[0],
                        config->nb_blocs[1],
                        config->sector_len[1],
                        config->nb_blocs[2],
                        config->sector_len[2],
                        config->nb_blocs[3],
                        config->sector_len[3]);
    FlashConfig explicit_config = expand_config_defaults(config);
    explicit_config.qtest = qtest;
    const FlashConfig *c = &explicit_config;

    /* Check the IDs. */
    unlock(c);
    flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
    g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
    if (c->bank_width >= 2) {
        /*
         * XXX: The ID returned by the musicpal flash chip is 16 bits which
         * wouldn't happen with an 8-bit device. It would probably be best to
         * prohibit addresses larger than the device width in pflash_cfi02.c,
         * but then we couldn't test smaller device widths at all.
         */
        g_assert_cmphex(flash_query(c, FLASH_ADDR(1)), ==,
                        replicate(c, 0x236D));
    }
    reset(c);

    /* Check the erase blocks. */
    flash_cmd(c, CFI_ADDR, CFI_CMD);
    g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
    g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
    g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));

    /* Num erase regions. */
    int nb_erase_regions = flash_query_1(c, FLASH_ADDR(0x2C));
    g_assert_cmphex(nb_erase_regions, ==,
                    !!c->nb_blocs[0] + !!c->nb_blocs[1] + !!c->nb_blocs[2] +
                    !!c->nb_blocs[3]);

    /* Check device length. */
    uint32_t device_len = 1 << flash_query_1(c, FLASH_ADDR(0x27));
    g_assert_cmphex(device_len, ==, UNIFORM_FLASH_SIZE);

    /* Check that erase suspend to read/write is supported. */
    uint16_t pri = flash_query_1(c, FLASH_ADDR(0x15)) +
                   (flash_query_1(c, FLASH_ADDR(0x16)) << 8);
    g_assert_cmpint(pri, >=, 0x2D + 4 * nb_erase_regions);
    g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 0)), ==, replicate(c, 'P'));
    g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 1)), ==, replicate(c, 'R'));
    g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 2)), ==, replicate(c, 'I'));
    g_assert_cmpint(flash_query_1(c, FLASH_ADDR(pri + 6)), ==, 2); /* R/W */
    reset(c);

    const uint64_t dq7 = replicate(c, 0x80);
    const uint64_t dq6 = replicate(c, 0x40);
    const uint64_t dq3 = replicate(c, 0x08);
    const uint64_t dq2 = replicate(c, 0x04);

    uint64_t byte_addr = 0;
    for (int region = 0; region < nb_erase_regions; ++region) {
        uint64_t base = 0x2D + 4 * region;
        flash_cmd(c, CFI_ADDR, CFI_CMD);
        uint32_t nb_sectors = flash_query_1(c, FLASH_ADDR(base + 0)) +
                              (flash_query_1(c, FLASH_ADDR(base + 1)) << 8) + 1;
        uint32_t sector_len = (flash_query_1(c, FLASH_ADDR(base + 2)) << 8) +
                              (flash_query_1(c, FLASH_ADDR(base + 3)) << 16);
        g_assert_cmphex(nb_sectors, ==, c->nb_blocs[region]);
        g_assert_cmphex(sector_len, ==, c->sector_len[region]);
        reset(c);

        /* Erase and program sector. */
        for (uint32_t i = 0; i < nb_sectors; ++i) {
            sector_erase(c, byte_addr);

            /* Check that DQ3 is 0. */
            g_assert_cmphex(flash_read(c, byte_addr) & dq3, ==, 0);
            qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */

            /* Check that DQ3 is 1. */
            uint64_t status0 = flash_read(c, byte_addr);
            g_assert_cmphex(status0 & dq3, ==, dq3);

            /* DQ7 is 0 during an erase. */
            g_assert_cmphex(status0 & dq7, ==, 0);
            uint64_t status1 = flash_read(c, byte_addr);

            /* DQ6 toggles during an erase. */
            g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);

            /* Wait for erase to complete. */
            wait_for_completion(c, byte_addr);

            /* Ensure DQ6 has stopped toggling. */
            g_assert_cmphex(flash_read(c, byte_addr), ==,
                            flash_read(c, byte_addr));

            /* Now the data should be valid. */
            g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));

            /* Program a bit pattern. */
            program(c, byte_addr, 0x55);
            g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x55);
            program(c, byte_addr, 0xA5);
            g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x05);
            byte_addr += sector_len;
        }
    }

    /* Erase the chip. */
    chip_erase(c);
    /* Read toggle. */
    uint64_t status0 = flash_read(c, 0);
    /* DQ7 is 0 during an erase. */
    g_assert_cmphex(status0 & dq7, ==, 0);
    uint64_t status1 = flash_read(c, 0);
    /* DQ6 toggles during an erase. */
    g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
    /* Wait for erase to complete. */
    qtest_clock_step_next(c->qtest);
    /* Ensure DQ6 has stopped toggling. */
    g_assert_cmphex(flash_read(c, 0), ==, flash_read(c, 0));
    /* Now the data should be valid. */

    for (int region = 0; region < nb_erase_regions; ++region) {
        for (uint32_t i = 0; i < c->nb_blocs[region]; ++i) {
            uint64_t byte_addr = i * c->sector_len[region];
            g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
        }
    }

    /* Unlock bypass */
    unlock(c);
    flash_cmd(c, UNLOCK0_ADDR, UNLOCK_BYPASS_CMD);
    bypass_program(c, 0 * c->bank_width, 0x01);
    bypass_program(c, 1 * c->bank_width, 0x23);
    bypass_program(c, 2 * c->bank_width, 0x45);
    /*
     * Test that bypass programming, unlike normal programming can use any
     * address for the PROGRAM_CMD.
     */
    flash_cmd(c, FLASH_ADDR(3 * c->bank_width), PROGRAM_CMD);
    flash_write(c, 3 * c->bank_width, 0x67);
    wait_for_completion(c, 3 * c->bank_width);
    flash_cmd(c, FLASH_ADDR(0), UNLOCK_BYPASS_RESET_CMD);
    bypass_program(c, 4 * c->bank_width, 0x89); /* Should fail. */
    g_assert_cmphex(flash_read(c, 0 * c->bank_width), ==, 0x01);
    g_assert_cmphex(flash_read(c, 1 * c->bank_width), ==, 0x23);
    g_assert_cmphex(flash_read(c, 2 * c->bank_width), ==, 0x45);
    g_assert_cmphex(flash_read(c, 3 * c->bank_width), ==, 0x67);
    g_assert_cmphex(flash_read(c, 4 * c->bank_width), ==, bank_mask(c));

    /* Test ignored high order bits of address. */
    flash_cmd(c, FLASH_ADDR(0x5555), UNLOCK0_CMD);
    flash_cmd(c, FLASH_ADDR(0x2AAA), UNLOCK1_CMD);
    flash_cmd(c, FLASH_ADDR(0x5555), AUTOSELECT_CMD);
    g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
    reset(c);

    /*
     * Program a word on each sector, erase one or two sectors per region, and
     * verify that all of those, and only those, are erased.
     */
    byte_addr = 0;
    for (int region = 0; region < nb_erase_regions; ++region) {
        for (int i = 0; i < config->nb_blocs[region]; ++i) {
            program(c, byte_addr, 0);
            byte_addr += config->sector_len[region];
        }
    }
    unlock(c);
    flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
    unlock(c);
    byte_addr = 0;
    const uint64_t erase_cmd = replicate(c, SECTOR_ERASE_CMD);
    for (int region = 0; region < nb_erase_regions; ++region) {
        flash_write(c, byte_addr, erase_cmd);
        if (c->nb_blocs[region] > 1) {
            flash_write(c, byte_addr + c->sector_len[region], erase_cmd);
        }
        byte_addr += c->sector_len[region] * c->nb_blocs[region];
    }

    qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */
    wait_for_completion(c, 0);
    byte_addr = 0;
    for (int region = 0; region < nb_erase_regions; ++region) {
        for (int i = 0; i < config->nb_blocs[region]; ++i) {
            if (i < 2) {
                g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
            } else {
                g_assert_cmphex(flash_read(c, byte_addr), ==, 0);
            }
            byte_addr += config->sector_len[region];
        }
    }

    /* Test erase suspend/resume during erase timeout. */
    sector_erase(c, 0);
    /*
     * Check that DQ 3 is 0 and DQ6 and DQ2 are toggling in the sector being
     * erased as well as in a sector not being erased.
     */
    byte_addr = c->sector_len[0];
    status0 = flash_read(c, 0);
    status1 = flash_read(c, 0);
    g_assert_cmpint(status0 & dq3, ==, 0);
    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
    status0 = flash_read(c, byte_addr);
    status1 = flash_read(c, byte_addr);
    g_assert_cmpint(status0 & dq3, ==, 0);
    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);

    /*
     * Check that after suspending, DQ6 does not toggle but DQ2 does toggle in
     * an erase suspended sector but that neither toggle (we should be
     * getting data) in a sector not being erased.
     */
    erase_suspend(c);
    status0 = flash_read(c, 0);
    status1 = flash_read(c, 0);
    g_assert_cmpint(status0 & dq6, ==, status1 & dq6);
    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
    g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));

    /* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */
    erase_resume(c);
    status0 = flash_read(c, 0);
    status1 = flash_read(c, 0);
    g_assert_cmpint(status0 & dq3, ==, dq3);
    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
    status0 = flash_read(c, byte_addr);
    status1 = flash_read(c, byte_addr);
    g_assert_cmpint(status0 & dq3, ==, dq3);
    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
    wait_for_completion(c, 0);

    /* Repeat this process but this time suspend after the timeout. */
    sector_erase(c, 0);
    qtest_clock_step_next(c->qtest);
    /*
     * Check that DQ 3 is 1 and DQ6 and DQ2 are toggling in the sector being
     * erased as well as in a sector not being erased.
     */
    byte_addr = c->sector_len[0];
    status0 = flash_read(c, 0);
    status1 = flash_read(c, 0);
    g_assert_cmpint(status0 & dq3, ==, dq3);
    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
    status0 = flash_read(c, byte_addr);
    status1 = flash_read(c, byte_addr);
    g_assert_cmpint(status0 & dq3, ==, dq3);
    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);

    /*
     * Check that after suspending, DQ6 does not toggle but DQ2 does toggle in
     * an erase suspended sector but that neither toggle (we should be
     * getting data) in a sector not being erased.
     */
    erase_suspend(c);
    status0 = flash_read(c, 0);
    status1 = flash_read(c, 0);
    g_assert_cmpint(status0 & dq6, ==, status1 & dq6);
    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
    g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));

    /* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */
    erase_resume(c);
    status0 = flash_read(c, 0);
    status1 = flash_read(c, 0);
    g_assert_cmpint(status0 & dq3, ==, dq3);
    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
    status0 = flash_read(c, byte_addr);
    status1 = flash_read(c, byte_addr);
    g_assert_cmpint(status0 & dq3, ==, dq3);
    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
    wait_for_completion(c, 0);

    qtest_quit(qtest);
}

/*
 * Test that
 * 1. enter autoselect mode;
 * 2. enter CFI mode; and then
 * 3. exit CFI mode
 * leaves the flash device in autoselect mode.
 */
static void test_cfi_in_autoselect(const void *opaque)
{
    const FlashConfig *config = opaque;
    QTestState *qtest;
    qtest = qtest_initf("-M musicpal,accel=qtest"
                        " -drive if=pflash,file=%s,format=raw,copy-on-read",
                        image_path);
    FlashConfig explicit_config = expand_config_defaults(config);
    explicit_config.qtest = qtest;
    const FlashConfig *c = &explicit_config;

    /* 1. Enter autoselect. */
    unlock(c);
    flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
    g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));

    /* 2. Enter CFI. */
    flash_cmd(c, CFI_ADDR, CFI_CMD);
    g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
    g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
    g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));

    /* 3. Exit CFI. */
    reset(c);
    g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));

    qtest_quit(qtest);
}

static void cleanup(void *opaque)
{
    unlink(image_path);
}

/*
 * XXX: Tests are limited to bank_width = 2 for now because that's what
 * hw/arm/musicpal.c has.
 */
static const FlashConfig configuration[] = {
    /* One x16 device. */
    {
        .bank_width = 2,
    },
    /* Nonuniform sectors (top boot). */
    {
        .bank_width = 2,
        .nb_blocs = { 127, 1, 2, 1 },
        .sector_len = { 0x10000, 0x08000, 0x02000, 0x04000 },
    },
    /* Nonuniform sectors (bottom boot). */
    {
        .bank_width = 2,
        .nb_blocs = { 1, 2, 1, 127 },
        .sector_len = { 0x04000, 0x02000, 0x08000, 0x10000 },
    },
};

int main(int argc, char **argv)
{
    int fd = mkstemp(image_path);
    if (fd == -1) {
        g_printerr("Failed to create temporary file %s: %s\n", image_path,
                   strerror(errno));
        exit(EXIT_FAILURE);
    }
    if (ftruncate(fd, UNIFORM_FLASH_SIZE) < 0) {
        int error_code = errno;
        close(fd);
        unlink(image_path);
        g_printerr("Failed to truncate file %s to %u MB: %s\n", image_path,
                   UNIFORM_FLASH_SIZE, strerror(error_code));
        exit(EXIT_FAILURE);
    }
    close(fd);

    qtest_add_abrt_handler(cleanup, NULL);
    g_test_init(&argc, &argv, NULL);

    size_t nb_configurations = sizeof configuration / sizeof configuration[0];
    for (size_t i = 0; i < nb_configurations; ++i) {
        const FlashConfig *config = &configuration[i];
        char *path = g_strdup_printf("pflash-cfi02"
                                     "/geometry/%dx%x-%dx%x-%dx%x-%dx%x"
                                     "/%d",
                                     config->nb_blocs[0],
                                     config->sector_len[0],
                                     config->nb_blocs[1],
                                     config->sector_len[1],
                                     config->nb_blocs[2],
                                     config->sector_len[2],
                                     config->nb_blocs[3],
                                     config->sector_len[3],
                                     config->bank_width);
        qtest_add_data_func(path, config, test_geometry);
        g_free(path);
    }

    qtest_add_data_func("pflash-cfi02/cfi-in-autoselect", &configuration[0],
                        test_cfi_in_autoselect);
    int result = g_test_run();
    cleanup(NULL);
    return result;
}