summaryrefslogtreecommitdiff
path: root/target/sparc/ldst_helper.c
blob: 5bc090213c5bff05eaeadab5369dc344b32d1134 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
/*
 * Helpers for loads and stores
 *
 *  Copyright (c) 2003-2005 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "tcg.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "asi.h"

//#define DEBUG_MMU
//#define DEBUG_MXCC
//#define DEBUG_UNALIGNED
//#define DEBUG_UNASSIGNED
//#define DEBUG_ASI
//#define DEBUG_CACHE_CONTROL

#ifdef DEBUG_MMU
#define DPRINTF_MMU(fmt, ...)                                   \
    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_MMU(fmt, ...) do {} while (0)
#endif

#ifdef DEBUG_MXCC
#define DPRINTF_MXCC(fmt, ...)                                  \
    do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_MXCC(fmt, ...) do {} while (0)
#endif

#ifdef DEBUG_ASI
#define DPRINTF_ASI(fmt, ...)                                   \
    do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
#endif

#ifdef DEBUG_CACHE_CONTROL
#define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
    do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
#endif

#ifdef TARGET_SPARC64
#ifndef TARGET_ABI32
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
#else
#define AM_CHECK(env1) (1)
#endif
#endif

#define QT0 (env->qt0)
#define QT1 (env->qt1)

#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
/* Calculates TSB pointer value for fault page size
 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
 * UA2005 holds the page size configuration in mmu_ctx registers */
static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
                                       const SparcV9MMU *mmu, const int idx)
{
    uint64_t tsb_register;
    int page_size;
    if (cpu_has_hypervisor(env)) {
        int tsb_index = 0;
        int ctx = mmu->tag_access & 0x1fffULL;
        uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
        tsb_index = idx;
        tsb_index |= ctx ? 2 : 0;
        page_size = idx ? ctx_register >> 8 : ctx_register;
        page_size &= 7;
        tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
    } else {
        page_size = idx;
        tsb_register = mmu->tsb;
    }
    int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
    int tsb_size  = tsb_register & 0xf;

    uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;

    /* move va bits to correct position,
     * the context bits will be masked out later */
    uint64_t va = mmu->tag_access >> (3 * page_size + 9);

    /* calculate tsb_base mask and adjust va if split is in use */
    if (tsb_split) {
        if (idx == 0) {
            va &= ~(1ULL << (13 + tsb_size));
        } else {
            va |= (1ULL << (13 + tsb_size));
        }
        tsb_base_mask <<= 1;
    }

    return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
}

/* Calculates tag target register value by reordering bits
   in tag access register */
static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
{
    return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
}

static void replace_tlb_entry(SparcTLBEntry *tlb,
                              uint64_t tlb_tag, uint64_t tlb_tte,
                              CPUSPARCState *env1)
{
    target_ulong mask, size, va, offset;

    /* flush page range if translation is valid */
    if (TTE_IS_VALID(tlb->tte)) {
        CPUState *cs = CPU(sparc_env_get_cpu(env1));

        size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
        mask = 1ULL + ~size;

        va = tlb->tag & mask;

        for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
            tlb_flush_page(cs, va + offset);
        }
    }

    tlb->tag = tlb_tag;
    tlb->tte = tlb_tte;
}

static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
                      const char *strmmu, CPUSPARCState *env1)
{
    unsigned int i;
    target_ulong mask;
    uint64_t context;

    int is_demap_context = (demap_addr >> 6) & 1;

    /* demap context */
    switch ((demap_addr >> 4) & 3) {
    case 0: /* primary */
        context = env1->dmmu.mmu_primary_context;
        break;
    case 1: /* secondary */
        context = env1->dmmu.mmu_secondary_context;
        break;
    case 2: /* nucleus */
        context = 0;
        break;
    case 3: /* reserved */
    default:
        return;
    }

    for (i = 0; i < 64; i++) {
        if (TTE_IS_VALID(tlb[i].tte)) {

            if (is_demap_context) {
                /* will remove non-global entries matching context value */
                if (TTE_IS_GLOBAL(tlb[i].tte) ||
                    !tlb_compare_context(&tlb[i], context)) {
                    continue;
                }
            } else {
                /* demap page
                   will remove any entry matching VA */
                mask = 0xffffffffffffe000ULL;
                mask <<= 3 * ((tlb[i].tte >> 61) & 3);

                if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
                    continue;
                }

                /* entry should be global or matching context value */
                if (!TTE_IS_GLOBAL(tlb[i].tte) &&
                    !tlb_compare_context(&tlb[i], context)) {
                    continue;
                }
            }

            replace_tlb_entry(&tlb[i], 0, 0, env1);
#ifdef DEBUG_MMU
            DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
            dump_mmu(stdout, fprintf, env1);
#endif
        }
    }
}

static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
                                   uint64_t sun4v_tte)
{
    uint64_t sun4u_tte;
    if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
        /* is already in the sun4u format */
        return sun4v_tte;
    }
    sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
    sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
                             TTE_SIDEEFFECT_BIT);
    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
    return sun4u_tte;
}

static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
                                 uint64_t tlb_tag, uint64_t tlb_tte,
                                 const char *strmmu, CPUSPARCState *env1,
                                 uint64_t addr)
{
    unsigned int i, replace_used;

    tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
    if (cpu_has_hypervisor(env1)) {
        uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
        uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
        uint32_t new_ctx = tlb_tag & 0x1fffU;
        for (i = 0; i < 64; i++) {
            uint32_t ctx = tlb[i].tag & 0x1fffU;
            /* check if new mapping overlaps an existing one */
            if (new_ctx == ctx) {
                uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
                uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
                if (new_vaddr == vaddr
                    || (new_vaddr < vaddr + size
                        && vaddr < new_vaddr + new_size)) {
                    DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
                                new_vaddr);
                    replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
                    return;
                }
            }

        }
    }
    /* Try replacing invalid entry */
    for (i = 0; i < 64; i++) {
        if (!TTE_IS_VALID(tlb[i].tte)) {
            replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU
            DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
            dump_mmu(stdout, fprintf, env1);
#endif
            return;
        }
    }

    /* All entries are valid, try replacing unlocked entry */

    for (replace_used = 0; replace_used < 2; ++replace_used) {

        /* Used entries are not replaced on first pass */

        for (i = 0; i < 64; i++) {
            if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {

                replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU
                DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
                            strmmu, (replace_used ? "used" : "unused"), i);
                dump_mmu(stdout, fprintf, env1);
#endif
                return;
            }
        }

        /* Now reset used bit and search for unused entries again */

        for (i = 0; i < 64; i++) {
            TTE_SET_UNUSED(tlb[i].tte);
        }
    }

#ifdef DEBUG_MMU
    DPRINTF_MMU("%s lru replacement: no free entries available, "
                "replacing the last one\n", strmmu);
#endif
    /* corner case: the last entry is replaced anyway */
    replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
}

#endif

#ifdef TARGET_SPARC64
/* returns true if access using this ASI is to have address translated by MMU
   otherwise access is to raw physical address */
/* TODO: check sparc32 bits */
static inline int is_translating_asi(int asi)
{
    /* Ultrasparc IIi translating asi
       - note this list is defined by cpu implementation
    */
    switch (asi) {
    case 0x04 ... 0x11:
    case 0x16 ... 0x19:
    case 0x1E ... 0x1F:
    case 0x24 ... 0x2C:
    case 0x70 ... 0x73:
    case 0x78 ... 0x79:
    case 0x80 ... 0xFF:
        return 1;

    default:
        return 0;
    }
}

static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
{
    if (AM_CHECK(env1)) {
        addr &= 0xffffffffULL;
    }
    return addr;
}

static inline target_ulong asi_address_mask(CPUSPARCState *env,
                                            int asi, target_ulong addr)
{
    if (is_translating_asi(asi)) {
        addr = address_mask(env, addr);
    }
    return addr;
}

#ifndef CONFIG_USER_ONLY
static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
{
    /* ASIs >= 0x80 are user mode.
     * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
     * ASIs <= 0x2f are super mode.
     */
    if (asi < 0x80
        && !cpu_hypervisor_mode(env)
        && (!cpu_supervisor_mode(env)
            || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
        cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
    }
}
#endif /* !CONFIG_USER_ONLY */
#endif

static void do_check_align(CPUSPARCState *env, target_ulong addr,
                           uint32_t align, uintptr_t ra)
{
    if (addr & align) {
#ifdef DEBUG_UNALIGNED
        printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
               "\n", addr, env->pc);
#endif
        cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
    }
}

void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
{
    do_check_align(env, addr, align, GETPC());
}

#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
    defined(DEBUG_MXCC)
static void dump_mxcc(CPUSPARCState *env)
{
    printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
           "\n",
           env->mxccdata[0], env->mxccdata[1],
           env->mxccdata[2], env->mxccdata[3]);
    printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
           "\n"
           "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
           "\n",
           env->mxccregs[0], env->mxccregs[1],
           env->mxccregs[2], env->mxccregs[3],
           env->mxccregs[4], env->mxccregs[5],
           env->mxccregs[6], env->mxccregs[7]);
}
#endif

#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
    && defined(DEBUG_ASI)
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
                     uint64_t r1)
{
    switch (size) {
    case 1:
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
                    addr, asi, r1 & 0xff);
        break;
    case 2:
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
                    addr, asi, r1 & 0xffff);
        break;
    case 4:
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
                    addr, asi, r1 & 0xffffffff);
        break;
    case 8:
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
                    addr, asi, r1);
        break;
    }
}
#endif

#ifndef TARGET_SPARC64
#ifndef CONFIG_USER_ONLY


/* Leon3 cache control */

static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
                                   uint64_t val, int size)
{
    DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
                          addr, val, size);

    if (size != 4) {
        DPRINTF_CACHE_CONTROL("32bits only\n");
        return;
    }

    switch (addr) {
    case 0x00:              /* Cache control */

        /* These values must always be read as zeros */
        val &= ~CACHE_CTRL_FD;
        val &= ~CACHE_CTRL_FI;
        val &= ~CACHE_CTRL_IB;
        val &= ~CACHE_CTRL_IP;
        val &= ~CACHE_CTRL_DP;

        env->cache_control = val;
        break;
    case 0x04:              /* Instruction cache configuration */
    case 0x08:              /* Data cache configuration */
        /* Read Only */
        break;
    default:
        DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
        break;
    };
}

static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
                                       int size)
{
    uint64_t ret = 0;

    if (size != 4) {
        DPRINTF_CACHE_CONTROL("32bits only\n");
        return 0;
    }

    switch (addr) {
    case 0x00:              /* Cache control */
        ret = env->cache_control;
        break;

        /* Configuration registers are read and only always keep those
           predefined values */

    case 0x04:              /* Instruction cache configuration */
        ret = 0x10220000;
        break;
    case 0x08:              /* Data cache configuration */
        ret = 0x18220000;
        break;
    default:
        DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
        break;
    };
    DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
                          addr, ret, size);
    return ret;
}

uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
                       int asi, uint32_t memop)
{
    int size = 1 << (memop & MO_SIZE);
    int sign = memop & MO_SIGN;
    CPUState *cs = CPU(sparc_env_get_cpu(env));
    uint64_t ret = 0;
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
    uint32_t last_addr = addr;
#endif

    do_check_align(env, addr, size - 1, GETPC());
    switch (asi) {
    case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
    /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
        switch (addr) {
        case 0x00:          /* Leon3 Cache Control */
        case 0x08:          /* Leon3 Instruction Cache config */
        case 0x0C:          /* Leon3 Date Cache config */
            if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
                ret = leon3_cache_control_ld(env, addr, size);
            }
            break;
        case 0x01c00a00: /* MXCC control register */
            if (size == 8) {
                ret = env->mxccregs[3];
            } else {
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
            }
            break;
        case 0x01c00a04: /* MXCC control register */
            if (size == 4) {
                ret = env->mxccregs[3];
            } else {
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
            }
            break;
        case 0x01c00c00: /* Module reset register */
            if (size == 8) {
                ret = env->mxccregs[5];
                /* should we do something here? */
            } else {
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
            }
            break;
        case 0x01c00f00: /* MBus port address register */
            if (size == 8) {
                ret = env->mxccregs[7];
            } else {
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
            }
            break;
        default:
            qemu_log_mask(LOG_UNIMP,
                          "%08x: unimplemented address, size: %d\n", addr,
                          size);
            break;
        }
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
                     "addr = %08x -> ret = %" PRIx64 ","
                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
#ifdef DEBUG_MXCC
        dump_mxcc(env);
#endif
        break;
    case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
    case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
        {
            int mmulev;

            mmulev = (addr >> 8) & 15;
            if (mmulev > 4) {
                ret = 0;
            } else {
                ret = mmu_probe(env, addr, mmulev);
            }
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
                        addr, mmulev, ret);
        }
        break;
    case ASI_M_MMUREGS: /* SuperSparc MMU regs */
    case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
        {
            int reg = (addr >> 8) & 0x1f;

            ret = env->mmuregs[reg];
            if (reg == 3) { /* Fault status cleared on read */
                env->mmuregs[3] = 0;
            } else if (reg == 0x13) { /* Fault status read */
                ret = env->mmuregs[3];
            } else if (reg == 0x14) { /* Fault address read */
                ret = env->mmuregs[4];
            }
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
        }
        break;
    case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
    case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
    case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
        break;
    case ASI_KERNELTXT: /* Supervisor code access */
        switch (size) {
        case 1:
            ret = cpu_ldub_code(env, addr);
            break;
        case 2:
            ret = cpu_lduw_code(env, addr);
            break;
        default:
        case 4:
            ret = cpu_ldl_code(env, addr);
            break;
        case 8:
            ret = cpu_ldq_code(env, addr);
            break;
        }
        break;
    case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
    case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
    case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
    case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
        break;
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
        switch (size) {
        case 1:
            ret = ldub_phys(cs->as, (hwaddr)addr
                            | ((hwaddr)(asi & 0xf) << 32));
            break;
        case 2:
            ret = lduw_phys(cs->as, (hwaddr)addr
                            | ((hwaddr)(asi & 0xf) << 32));
            break;
        default:
        case 4:
            ret = ldl_phys(cs->as, (hwaddr)addr
                           | ((hwaddr)(asi & 0xf) << 32));
            break;
        case 8:
            ret = ldq_phys(cs->as, (hwaddr)addr
                           | ((hwaddr)(asi & 0xf) << 32));
            break;
        }
        break;
    case 0x30: /* Turbosparc secondary cache diagnostic */
    case 0x31: /* Turbosparc RAM snoop */
    case 0x32: /* Turbosparc page table descriptor diagnostic */
    case 0x39: /* data cache diagnostic register */
        ret = 0;
        break;
    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
        {
            int reg = (addr >> 8) & 3;

            switch (reg) {
            case 0: /* Breakpoint Value (Addr) */
                ret = env->mmubpregs[reg];
                break;
            case 1: /* Breakpoint Mask */
                ret = env->mmubpregs[reg];
                break;
            case 2: /* Breakpoint Control */
                ret = env->mmubpregs[reg];
                break;
            case 3: /* Breakpoint Status */
                ret = env->mmubpregs[reg];
                env->mmubpregs[reg] = 0ULL;
                break;
            }
            DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
                        ret);
        }
        break;
    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
        ret = env->mmubpctrv;
        break;
    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
        ret = env->mmubpctrc;
        break;
    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
        ret = env->mmubpctrs;
        break;
    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
        ret = env->mmubpaction;
        break;
    case ASI_USERTXT: /* User code access, XXX */
    default:
        cpu_unassigned_access(cs, addr, false, false, asi, size);
        ret = 0;
        break;

    case ASI_USERDATA: /* User data access */
    case ASI_KERNELDATA: /* Supervisor data access */
    case ASI_P: /* Implicit primary context data access (v9 only?) */
    case ASI_M_BYPASS:    /* MMU passthrough */
    case ASI_LEON_BYPASS: /* LEON MMU passthrough */
        /* These are always handled inline.  */
        g_assert_not_reached();
    }
    if (sign) {
        switch (size) {
        case 1:
            ret = (int8_t) ret;
            break;
        case 2:
            ret = (int16_t) ret;
            break;
        case 4:
            ret = (int32_t) ret;
            break;
        default:
            break;
        }
    }
#ifdef DEBUG_ASI
    dump_asi("read ", last_addr, asi, size, ret);
#endif
    return ret;
}

void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
                   int asi, uint32_t memop)
{
    int size = 1 << (memop & MO_SIZE);
    SPARCCPU *cpu = sparc_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    do_check_align(env, addr, size - 1, GETPC());
    switch (asi) {
    case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
    /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
        switch (addr) {
        case 0x00:          /* Leon3 Cache Control */
        case 0x08:          /* Leon3 Instruction Cache config */
        case 0x0C:          /* Leon3 Date Cache config */
            if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
                leon3_cache_control_st(env, addr, val, size);
            }
            break;

        case 0x01c00000: /* MXCC stream data register 0 */
            if (size == 8) {
                env->mxccdata[0] = val;
            } else {
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
            }
            break;
        case 0x01c00008: /* MXCC stream data register 1 */
            if (size == 8) {
                env->mxccdata[1] = val;
            } else {
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
            }
            break;
        case 0x01c00010: /* MXCC stream data register 2 */
            if (size == 8) {
                env->mxccdata[2] = val;
            } else {
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
            }
            break;
        case 0x01c00018: /* MXCC stream data register 3 */
            if (size == 8) {
                env->mxccdata[3] = val;
            } else {
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
            }
            break;
        case 0x01c00100: /* MXCC stream source */
            if (size == 8) {
                env->mxccregs[0] = val;
            } else {
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
            }
            env->mxccdata[0] = ldq_phys(cs->as,
                                        (env->mxccregs[0] & 0xffffffffULL) +
                                        0);
            env->mxccdata[1] = ldq_phys(cs->as,
                                        (env->mxccregs[0] & 0xffffffffULL) +
                                        8);
            env->mxccdata[2] = ldq_phys(cs->as,
                                        (env->mxccregs[0] & 0xffffffffULL) +
                                        16);
            env->mxccdata[3] = ldq_phys(cs->as,
                                        (env->mxccregs[0] & 0xffffffffULL) +
                                        24);
            break;
        case 0x01c00200: /* MXCC stream destination */
            if (size == 8) {
                env->mxccregs[1] = val;
            } else {
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
            }
            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  0,
                     env->mxccdata[0]);
            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  8,
                     env->mxccdata[1]);
            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
                     env->mxccdata[2]);
            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
                     env->mxccdata[3]);
            break;
        case 0x01c00a00: /* MXCC control register */
            if (size == 8) {
                env->mxccregs[3] = val;
            } else {
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
            }
            break;
        case 0x01c00a04: /* MXCC control register */
            if (size == 4) {
                env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
                    | val;
            } else {
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
            }
            break;
        case 0x01c00e00: /* MXCC error register  */
            /* writing a 1 bit clears the error */
            if (size == 8) {
                env->mxccregs[6] &= ~val;
            } else {
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
            }
            break;
        case 0x01c00f00: /* MBus port address register */
            if (size == 8) {
                env->mxccregs[7] = val;
            } else {
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
            }
            break;
        default:
            qemu_log_mask(LOG_UNIMP,
                          "%08x: unimplemented address, size: %d\n", addr,
                          size);
            break;
        }
        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
                     asi, size, addr, val);
#ifdef DEBUG_MXCC
        dump_mxcc(env);
#endif
        break;
    case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
    case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
        {
            int mmulev;

            mmulev = (addr >> 8) & 15;
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
            switch (mmulev) {
            case 0: /* flush page */
                tlb_flush_page(CPU(cpu), addr & 0xfffff000);
                break;
            case 1: /* flush segment (256k) */
            case 2: /* flush region (16M) */
            case 3: /* flush context (4G) */
            case 4: /* flush entire */
                tlb_flush(CPU(cpu));
                break;
            default:
                break;
            }
#ifdef DEBUG_MMU
            dump_mmu(stdout, fprintf, env);
#endif
        }
        break;
    case ASI_M_MMUREGS: /* write MMU regs */
    case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
        {
            int reg = (addr >> 8) & 0x1f;
            uint32_t oldreg;

            oldreg = env->mmuregs[reg];
            switch (reg) {
            case 0: /* Control Register */
                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
                    (val & 0x00ffffff);
                /* Mappings generated during no-fault mode
                   are invalid in normal mode.  */
                if ((oldreg ^ env->mmuregs[reg])
                    & (MMU_NF | env->def.mmu_bm)) {
                    tlb_flush(CPU(cpu));
                }
                break;
            case 1: /* Context Table Pointer Register */
                env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
                break;
            case 2: /* Context Register */
                env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
                if (oldreg != env->mmuregs[reg]) {
                    /* we flush when the MMU context changes because
                       QEMU has no MMU context support */
                    tlb_flush(CPU(cpu));
                }
                break;
            case 3: /* Synchronous Fault Status Register with Clear */
            case 4: /* Synchronous Fault Address Register */
                break;
            case 0x10: /* TLB Replacement Control Register */
                env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
                break;
            case 0x13: /* Synchronous Fault Status Register with Read
                          and Clear */
                env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
                break;
            case 0x14: /* Synchronous Fault Address Register */
                env->mmuregs[4] = val;
                break;
            default:
                env->mmuregs[reg] = val;
                break;
            }
            if (oldreg != env->mmuregs[reg]) {
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
                            reg, oldreg, env->mmuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(stdout, fprintf, env);
#endif
        }
        break;
    case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
    case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
    case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
        break;
    case ASI_M_TXTC_TAG:   /* I-cache tag */
    case ASI_M_TXTC_DATA:  /* I-cache data */
    case ASI_M_DATAC_TAG:  /* D-cache tag */
    case ASI_M_DATAC_DATA: /* D-cache data */
    case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
    case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
    case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
    case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
    case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
        break;
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
        {
            switch (size) {
            case 1:
                stb_phys(cs->as, (hwaddr)addr
                         | ((hwaddr)(asi & 0xf) << 32), val);
                break;
            case 2:
                stw_phys(cs->as, (hwaddr)addr
                         | ((hwaddr)(asi & 0xf) << 32), val);
                break;
            case 4:
            default:
                stl_phys(cs->as, (hwaddr)addr
                         | ((hwaddr)(asi & 0xf) << 32), val);
                break;
            case 8:
                stq_phys(cs->as, (hwaddr)addr
                         | ((hwaddr)(asi & 0xf) << 32), val);
                break;
            }
        }
        break;
    case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
    case 0x31: /* store buffer data, Ross RT620 I-cache flush or
                  Turbosparc snoop RAM */
    case 0x32: /* store buffer control or Turbosparc page table
                  descriptor diagnostic */
    case 0x36: /* I-cache flash clear */
    case 0x37: /* D-cache flash clear */
        break;
    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
        {
            int reg = (addr >> 8) & 3;

            switch (reg) {
            case 0: /* Breakpoint Value (Addr) */
                env->mmubpregs[reg] = (val & 0xfffffffffULL);
                break;
            case 1: /* Breakpoint Mask */
                env->mmubpregs[reg] = (val & 0xfffffffffULL);
                break;
            case 2: /* Breakpoint Control */
                env->mmubpregs[reg] = (val & 0x7fULL);
                break;
            case 3: /* Breakpoint Status */
                env->mmubpregs[reg] = (val & 0xfULL);
                break;
            }
            DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
                        env->mmuregs[reg]);
        }
        break;
    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
        env->mmubpctrv = val & 0xffffffff;
        break;
    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
        env->mmubpctrc = val & 0x3;
        break;
    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
        env->mmubpctrs = val & 0x3;
        break;
    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
        env->mmubpaction = val & 0x1fff;
        break;
    case ASI_USERTXT: /* User code access, XXX */
    case ASI_KERNELTXT: /* Supervisor code access, XXX */
    default:
        cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
                              addr, true, false, asi, size);
        break;

    case ASI_USERDATA: /* User data access */
    case ASI_KERNELDATA: /* Supervisor data access */
    case ASI_P:
    case ASI_M_BYPASS:    /* MMU passthrough */
    case ASI_LEON_BYPASS: /* LEON MMU passthrough */
    case ASI_M_BCOPY: /* Block copy, sta access */
    case ASI_M_BFILL: /* Block fill, stda access */
        /* These are always handled inline.  */
        g_assert_not_reached();
    }
#ifdef DEBUG_ASI
    dump_asi("write", addr, asi, size, val);
#endif
}

#endif /* CONFIG_USER_ONLY */
#else /* TARGET_SPARC64 */

#ifdef CONFIG_USER_ONLY
uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
                       int asi, uint32_t memop)
{
    int size = 1 << (memop & MO_SIZE);
    int sign = memop & MO_SIGN;
    uint64_t ret = 0;

    if (asi < 0x80) {
        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
    }
    do_check_align(env, addr, size - 1, GETPC());
    addr = asi_address_mask(env, asi, addr);

    switch (asi) {
    case ASI_PNF:  /* Primary no-fault */
    case ASI_PNFL: /* Primary no-fault LE */
    case ASI_SNF:  /* Secondary no-fault */
    case ASI_SNFL: /* Secondary no-fault LE */
        if (page_check_range(addr, size, PAGE_READ) == -1) {
            ret = 0;
            break;
        }
        switch (size) {
        case 1:
            ret = cpu_ldub_data(env, addr);
            break;
        case 2:
            ret = cpu_lduw_data(env, addr);
            break;
        case 4:
            ret = cpu_ldl_data(env, addr);
            break;
        case 8:
            ret = cpu_ldq_data(env, addr);
            break;
        default:
            g_assert_not_reached();
        }
        break;
        break;

    case ASI_P: /* Primary */
    case ASI_PL: /* Primary LE */
    case ASI_S:  /* Secondary */
    case ASI_SL: /* Secondary LE */
        /* These are always handled inline.  */
        g_assert_not_reached();

    default:
        cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
    }

    /* Convert from little endian */
    switch (asi) {
    case ASI_PNFL: /* Primary no-fault LE */
    case ASI_SNFL: /* Secondary no-fault LE */
        switch (size) {
        case 2:
            ret = bswap16(ret);
            break;
        case 4:
            ret = bswap32(ret);
            break;
        case 8:
            ret = bswap64(ret);
            break;
        }
    }

    /* Convert to signed number */
    if (sign) {
        switch (size) {
        case 1:
            ret = (int8_t) ret;
            break;
        case 2:
            ret = (int16_t) ret;
            break;
        case 4:
            ret = (int32_t) ret;
            break;
        }
    }
#ifdef DEBUG_ASI
    dump_asi("read", addr, asi, size, ret);
#endif
    return ret;
}

void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
                   int asi, uint32_t memop)
{
    int size = 1 << (memop & MO_SIZE);
#ifdef DEBUG_ASI
    dump_asi("write", addr, asi, size, val);
#endif
    if (asi < 0x80) {
        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
    }
    do_check_align(env, addr, size - 1, GETPC());

    switch (asi) {
    case ASI_P:  /* Primary */
    case ASI_PL: /* Primary LE */
    case ASI_S:  /* Secondary */
    case ASI_SL: /* Secondary LE */
        /* These are always handled inline.  */
        g_assert_not_reached();

    case ASI_PNF:  /* Primary no-fault, RO */
    case ASI_SNF:  /* Secondary no-fault, RO */
    case ASI_PNFL: /* Primary no-fault LE, RO */
    case ASI_SNFL: /* Secondary no-fault LE, RO */
    default:
        cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
    }
}

#else /* CONFIG_USER_ONLY */

uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
                       int asi, uint32_t memop)
{
    int size = 1 << (memop & MO_SIZE);
    int sign = memop & MO_SIGN;
    CPUState *cs = CPU(sparc_env_get_cpu(env));
    uint64_t ret = 0;
#if defined(DEBUG_ASI)
    target_ulong last_addr = addr;
#endif

    asi &= 0xff;

    do_check_asi(env, asi, GETPC());
    do_check_align(env, addr, size - 1, GETPC());
    addr = asi_address_mask(env, asi, addr);

    switch (asi) {
    case ASI_PNF:
    case ASI_PNFL:
    case ASI_SNF:
    case ASI_SNFL:
        {
            TCGMemOpIdx oi;
            int idx = (env->pstate & PS_PRIV
                       ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
                       : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));

            if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
#ifdef DEBUG_ASI
                dump_asi("read ", last_addr, asi, size, ret);
#endif
                /* exception_index is set in get_physical_address_data. */
                cpu_raise_exception_ra(env, cs->exception_index, GETPC());
            }
            oi = make_memop_idx(memop, idx);
            switch (size) {
            case 1:
                ret = helper_ret_ldub_mmu(env, addr, oi, GETPC());
                break;
            case 2:
                if (asi & 8) {
                    ret = helper_le_lduw_mmu(env, addr, oi, GETPC());
                } else {
                    ret = helper_be_lduw_mmu(env, addr, oi, GETPC());
                }
                break;
            case 4:
                if (asi & 8) {
                    ret = helper_le_ldul_mmu(env, addr, oi, GETPC());
                } else {
                    ret = helper_be_ldul_mmu(env, addr, oi, GETPC());
                }
                break;
            case 8:
                if (asi & 8) {
                    ret = helper_le_ldq_mmu(env, addr, oi, GETPC());
                } else {
                    ret = helper_be_ldq_mmu(env, addr, oi, GETPC());
                }
                break;
            default:
                g_assert_not_reached();
            }
        }
        break;

    case ASI_AIUP:  /* As if user primary */
    case ASI_AIUS:  /* As if user secondary */
    case ASI_AIUPL: /* As if user primary LE */
    case ASI_AIUSL: /* As if user secondary LE */
    case ASI_P:  /* Primary */
    case ASI_S:  /* Secondary */
    case ASI_PL: /* Primary LE */
    case ASI_SL: /* Secondary LE */
    case ASI_REAL:      /* Bypass */
    case ASI_REAL_IO:   /* Bypass, non-cacheable */
    case ASI_REAL_L:    /* Bypass LE */
    case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
    case ASI_N:  /* Nucleus */
    case ASI_NL: /* Nucleus Little Endian (LE) */
    case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
    case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
    case ASI_TWINX_AIUP:   /* As if user primary, twinx */
    case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
    case ASI_TWINX_REAL:   /* Real address, twinx */
    case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
    case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
    case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
    case ASI_TWINX_N:  /* Nucleus, twinx */
    case ASI_TWINX_NL: /* Nucleus, twinx, LE */
    /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
    case ASI_TWINX_P:  /* Primary, twinx */
    case ASI_TWINX_PL: /* Primary, twinx, LE */
    case ASI_TWINX_S:  /* Secondary, twinx */
    case ASI_TWINX_SL: /* Secondary, twinx, LE */
        /* These are always handled inline.  */
        g_assert_not_reached();

    case ASI_UPA_CONFIG: /* UPA config */
        /* XXX */
        break;
    case ASI_LSU_CONTROL: /* LSU */
        ret = env->lsu;
        break;
    case ASI_IMMU: /* I-MMU regs */
        {
            int reg = (addr >> 3) & 0xf;
            switch (reg) {
            case 0:
                /* 0x00 I-TSB Tag Target register */
                ret = ultrasparc_tag_target(env->immu.tag_access);
                break;
            case 3: /* SFSR */
                ret = env->immu.sfsr;
                break;
            case 5: /* TSB access */
                ret = env->immu.tsb;
                break;
            case 6:
                /* 0x30 I-TSB Tag Access register */
                ret = env->immu.tag_access;
                break;
            default:
                cpu_unassigned_access(cs, addr, false, false, 1, size);
                ret = 0;
            }
            break;
        }
    case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
        {
            /* env->immuregs[5] holds I-MMU TSB register value
               env->immuregs[6] holds I-MMU Tag Access register value */
            ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
            break;
        }
    case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
        {
            /* env->immuregs[5] holds I-MMU TSB register value
               env->immuregs[6] holds I-MMU Tag Access register value */
            ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
            break;
        }
    case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
        {
            int reg = (addr >> 3) & 0x3f;

            ret = env->itlb[reg].tte;
            break;
        }
    case ASI_ITLB_TAG_READ: /* I-MMU tag read */
        {
            int reg = (addr >> 3) & 0x3f;

            ret = env->itlb[reg].tag;
            break;
        }
    case ASI_DMMU: /* D-MMU regs */
        {
            int reg = (addr >> 3) & 0xf;
            switch (reg) {
            case 0:
                /* 0x00 D-TSB Tag Target register */
                ret = ultrasparc_tag_target(env->dmmu.tag_access);
                break;
            case 1: /* 0x08 Primary Context */
                ret = env->dmmu.mmu_primary_context;
                break;
            case 2: /* 0x10 Secondary Context */
                ret = env->dmmu.mmu_secondary_context;
                break;
            case 3: /* SFSR */
                ret = env->dmmu.sfsr;
                break;
            case 4: /* 0x20 SFAR */
                ret = env->dmmu.sfar;
                break;
            case 5: /* 0x28 TSB access */
                ret = env->dmmu.tsb;
                break;
            case 6: /* 0x30 D-TSB Tag Access register */
                ret = env->dmmu.tag_access;
                break;
            case 7:
                ret = env->dmmu.virtual_watchpoint;
                break;
            case 8:
                ret = env->dmmu.physical_watchpoint;
                break;
            default:
                cpu_unassigned_access(cs, addr, false, false, 1, size);
                ret = 0;
            }
            break;
        }
    case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
        {
            /* env->dmmuregs[5] holds D-MMU TSB register value
               env->dmmuregs[6] holds D-MMU Tag Access register value */
            ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
            break;
        }
    case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
        {
            /* env->dmmuregs[5] holds D-MMU TSB register value
               env->dmmuregs[6] holds D-MMU Tag Access register value */
            ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
            break;
        }
    case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
        {
            int reg = (addr >> 3) & 0x3f;

            ret = env->dtlb[reg].tte;
            break;
        }
    case ASI_DTLB_TAG_READ: /* D-MMU tag read */
        {
            int reg = (addr >> 3) & 0x3f;

            ret = env->dtlb[reg].tag;
            break;
        }
    case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
        break;
    case ASI_INTR_RECEIVE: /* Interrupt data receive */
        ret = env->ivec_status;
        break;
    case ASI_INTR_R: /* Incoming interrupt vector, RO */
        {
            int reg = (addr >> 4) & 0x3;
            if (reg < 3) {
                ret = env->ivec_data[reg];
            }
            break;
        }
    case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
        if (unlikely((addr >= 0x20) && (addr < 0x30))) {
            /* Hyperprivileged access only */
            cpu_unassigned_access(cs, addr, false, false, 1, size);
        }
        /* fall through */
    case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
        {
            unsigned int i = (addr >> 3) & 0x7;
            ret = env->scratch[i];
            break;
        }
    case ASI_MMU: /* UA2005 Context ID registers */
        switch ((addr >> 3) & 0x3) {
        case 1:
            ret = env->dmmu.mmu_primary_context;
            break;
        case 2:
            ret = env->dmmu.mmu_secondary_context;
            break;
        default:
          cpu_unassigned_access(cs, addr, true, false, 1, size);
        }
        break;
    case ASI_DCACHE_DATA:     /* D-cache data */
    case ASI_DCACHE_TAG:      /* D-cache tag access */
    case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
    case ASI_AFSR:            /* E-cache asynchronous fault status */
    case ASI_AFAR:            /* E-cache asynchronous fault address */
    case ASI_EC_TAG_DATA:     /* E-cache tag data */
    case ASI_IC_INSTR:        /* I-cache instruction access */
    case ASI_IC_TAG:          /* I-cache tag access */
    case ASI_IC_PRE_DECODE:   /* I-cache predecode */
    case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
    case ASI_EC_W:            /* E-cache tag */
    case ASI_EC_R:            /* E-cache tag */
        break;
    case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
    case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
    case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
    case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
    case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
    case ASI_INTR_W:              /* Interrupt vector, WO */
    default:
        cpu_unassigned_access(cs, addr, false, false, 1, size);
        ret = 0;
        break;
    }

    /* Convert to signed number */
    if (sign) {
        switch (size) {
        case 1:
            ret = (int8_t) ret;
            break;
        case 2:
            ret = (int16_t) ret;
            break;
        case 4:
            ret = (int32_t) ret;
            break;
        default:
            break;
        }
    }
#ifdef DEBUG_ASI
    dump_asi("read ", last_addr, asi, size, ret);
#endif
    return ret;
}

void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
                   int asi, uint32_t memop)
{
    int size = 1 << (memop & MO_SIZE);
    SPARCCPU *cpu = sparc_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

#ifdef DEBUG_ASI
    dump_asi("write", addr, asi, size, val);
#endif

    asi &= 0xff;

    do_check_asi(env, asi, GETPC());
    do_check_align(env, addr, size - 1, GETPC());
    addr = asi_address_mask(env, asi, addr);

    switch (asi) {
    case ASI_AIUP:  /* As if user primary */
    case ASI_AIUS:  /* As if user secondary */
    case ASI_AIUPL: /* As if user primary LE */
    case ASI_AIUSL: /* As if user secondary LE */
    case ASI_P:  /* Primary */
    case ASI_S:  /* Secondary */
    case ASI_PL: /* Primary LE */
    case ASI_SL: /* Secondary LE */
    case ASI_REAL:      /* Bypass */
    case ASI_REAL_IO:   /* Bypass, non-cacheable */
    case ASI_REAL_L:    /* Bypass LE */
    case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
    case ASI_N:  /* Nucleus */
    case ASI_NL: /* Nucleus Little Endian (LE) */
    case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
    case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
    case ASI_TWINX_AIUP:   /* As if user primary, twinx */
    case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
    case ASI_TWINX_REAL:   /* Real address, twinx */
    case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
    case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
    case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
    case ASI_TWINX_N:  /* Nucleus, twinx */
    case ASI_TWINX_NL: /* Nucleus, twinx, LE */
    /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
    case ASI_TWINX_P:  /* Primary, twinx */
    case ASI_TWINX_PL: /* Primary, twinx, LE */
    case ASI_TWINX_S:  /* Secondary, twinx */
    case ASI_TWINX_SL: /* Secondary, twinx, LE */
        /* These are always handled inline.  */
        g_assert_not_reached();
    /* these ASIs have different functions on UltraSPARC-IIIi
     * and UA2005 CPUs. Use the explicit numbers to avoid confusion
     */
    case 0x31:
    case 0x32:
    case 0x39:
    case 0x3a:
        if (cpu_has_hypervisor(env)) {
            /* UA2005
             * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
             * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
             * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
             * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
             */
            int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
            env->dmmu.sun4v_tsb_pointers[idx] = val;
        } else {
            helper_raise_exception(env, TT_ILL_INSN);
        }
        break;
    case 0x33:
    case 0x3b:
        if (cpu_has_hypervisor(env)) {
            /* UA2005
             * ASI_DMMU_CTX_ZERO_CONFIG
             * ASI_DMMU_CTX_NONZERO_CONFIG
             */
            env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
        } else {
            helper_raise_exception(env, TT_ILL_INSN);
        }
        break;
    case 0x35:
    case 0x36:
    case 0x3d:
    case 0x3e:
        if (cpu_has_hypervisor(env)) {
            /* UA2005
             * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
             * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
             * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
             * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
             */
            int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
            env->immu.sun4v_tsb_pointers[idx] = val;
        } else {
            helper_raise_exception(env, TT_ILL_INSN);
        }
      break;
    case 0x37:
    case 0x3f:
        if (cpu_has_hypervisor(env)) {
            /* UA2005
             * ASI_IMMU_CTX_ZERO_CONFIG
             * ASI_IMMU_CTX_NONZERO_CONFIG
             */
            env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
        } else {
          helper_raise_exception(env, TT_ILL_INSN);
        }
        break;
    case ASI_UPA_CONFIG: /* UPA config */
        /* XXX */
        return;
    case ASI_LSU_CONTROL: /* LSU */
        env->lsu = val & (DMMU_E | IMMU_E);
        return;
    case ASI_IMMU: /* I-MMU regs */
        {
            int reg = (addr >> 3) & 0xf;
            uint64_t oldreg;

            oldreg = env->immu.mmuregs[reg];
            switch (reg) {
            case 0: /* RO */
                return;
            case 1: /* Not in I-MMU */
            case 2:
                return;
            case 3: /* SFSR */
                if ((val & 1) == 0) {
                    val = 0; /* Clear SFSR */
                }
                env->immu.sfsr = val;
                break;
            case 4: /* RO */
                return;
            case 5: /* TSB access */
                DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
                            PRIx64 "\n", env->immu.tsb, val);
                env->immu.tsb = val;
                break;
            case 6: /* Tag access */
                env->immu.tag_access = val;
                break;
            case 7:
            case 8:
                return;
            default:
                cpu_unassigned_access(cs, addr, true, false, 1, size);
                break;
            }

            if (oldreg != env->immu.mmuregs[reg]) {
                DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(stdout, fprintf, env);
#endif
            return;
        }
    case ASI_ITLB_DATA_IN: /* I-MMU data in */
        /* ignore real translation entries */
        if (!(addr & TLB_UST1_IS_REAL_BIT)) {
            replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
                                 val, "immu", env, addr);
        }
        return;
    case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
        {
            /* TODO: auto demap */

            unsigned int i = (addr >> 3) & 0x3f;

            /* ignore real translation entries */
            if (!(addr & TLB_UST1_IS_REAL_BIT)) {
                replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
                                  sun4v_tte_to_sun4u(env, addr, val), env);
            }
#ifdef DEBUG_MMU
            DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
            dump_mmu(stdout, fprintf, env);
#endif
            return;
        }
    case ASI_IMMU_DEMAP: /* I-MMU demap */
        demap_tlb(env->itlb, addr, "immu", env);
        return;
    case ASI_DMMU: /* D-MMU regs */
        {
            int reg = (addr >> 3) & 0xf;
            uint64_t oldreg;

            oldreg = env->dmmu.mmuregs[reg];
            switch (reg) {
            case 0: /* RO */
            case 4:
                return;
            case 3: /* SFSR */
                if ((val & 1) == 0) {
                    val = 0; /* Clear SFSR, Fault address */
                    env->dmmu.sfar = 0;
                }
                env->dmmu.sfsr = val;
                break;
            case 1: /* Primary context */
                env->dmmu.mmu_primary_context = val;
                /* can be optimized to only flush MMU_USER_IDX
                   and MMU_KERNEL_IDX entries */
                tlb_flush(CPU(cpu));
                break;
            case 2: /* Secondary context */
                env->dmmu.mmu_secondary_context = val;
                /* can be optimized to only flush MMU_USER_SECONDARY_IDX
                   and MMU_KERNEL_SECONDARY_IDX entries */
                tlb_flush(CPU(cpu));
                break;
            case 5: /* TSB access */
                DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
                            PRIx64 "\n", env->dmmu.tsb, val);
                env->dmmu.tsb = val;
                break;
            case 6: /* Tag access */
                env->dmmu.tag_access = val;
                break;
            case 7: /* Virtual Watchpoint */
                env->dmmu.virtual_watchpoint = val;
                break;
            case 8: /* Physical Watchpoint */
                env->dmmu.physical_watchpoint = val;
                break;
            default:
                cpu_unassigned_access(cs, addr, true, false, 1, size);
                break;
            }

            if (oldreg != env->dmmu.mmuregs[reg]) {
                DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(stdout, fprintf, env);
#endif
            return;
        }
    case ASI_DTLB_DATA_IN: /* D-MMU data in */
      /* ignore real translation entries */
      if (!(addr & TLB_UST1_IS_REAL_BIT)) {
          replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
                               val, "dmmu", env, addr);
      }
      return;
    case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
        {
            unsigned int i = (addr >> 3) & 0x3f;

            /* ignore real translation entries */
            if (!(addr & TLB_UST1_IS_REAL_BIT)) {
                replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
                                  sun4v_tte_to_sun4u(env, addr, val), env);
            }
#ifdef DEBUG_MMU
            DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
            dump_mmu(stdout, fprintf, env);
#endif
            return;
        }
    case ASI_DMMU_DEMAP: /* D-MMU demap */
        demap_tlb(env->dtlb, addr, "dmmu", env);
        return;
    case ASI_INTR_RECEIVE: /* Interrupt data receive */
        env->ivec_status = val & 0x20;
        return;
    case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
        if (unlikely((addr >= 0x20) && (addr < 0x30))) {
            /* Hyperprivileged access only */
            cpu_unassigned_access(cs, addr, true, false, 1, size);
        }
        /* fall through */
    case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
        {
            unsigned int i = (addr >> 3) & 0x7;
            env->scratch[i] = val;
            return;
        }
    case ASI_MMU: /* UA2005 Context ID registers */
        {
          switch ((addr >> 3) & 0x3) {
          case 1:
              env->dmmu.mmu_primary_context = val;
              env->immu.mmu_primary_context = val;
              tlb_flush_by_mmuidx(CPU(cpu),
                                  (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
              break;
          case 2:
              env->dmmu.mmu_secondary_context = val;
              env->immu.mmu_secondary_context = val;
              tlb_flush_by_mmuidx(CPU(cpu),
                                  (1 << MMU_USER_SECONDARY_IDX) |
                                  (1 << MMU_KERNEL_SECONDARY_IDX));
              break;
          default:
              cpu_unassigned_access(cs, addr, true, false, 1, size);
          }
        }
        return;
    case ASI_QUEUE: /* UA2005 CPU mondo queue */
    case ASI_DCACHE_DATA: /* D-cache data */
    case ASI_DCACHE_TAG: /* D-cache tag access */
    case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
    case ASI_AFSR: /* E-cache asynchronous fault status */
    case ASI_AFAR: /* E-cache asynchronous fault address */
    case ASI_EC_TAG_DATA: /* E-cache tag data */
    case ASI_IC_INSTR: /* I-cache instruction access */
    case ASI_IC_TAG: /* I-cache tag access */
    case ASI_IC_PRE_DECODE: /* I-cache predecode */
    case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
    case ASI_EC_W: /* E-cache tag */
    case ASI_EC_R: /* E-cache tag */
        return;
    case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
    case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
    case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
    case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
    case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
    case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
    case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
    case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
    case ASI_INTR_R: /* Incoming interrupt vector, RO */
    case ASI_PNF: /* Primary no-fault, RO */
    case ASI_SNF: /* Secondary no-fault, RO */
    case ASI_PNFL: /* Primary no-fault LE, RO */
    case ASI_SNFL: /* Secondary no-fault LE, RO */
    default:
        cpu_unassigned_access(cs, addr, true, false, 1, size);
        return;
    }
}
#endif /* CONFIG_USER_ONLY */
#endif /* TARGET_SPARC64 */

#if !defined(CONFIG_USER_ONLY)
#ifndef TARGET_SPARC64
void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
                                 bool is_write, bool is_exec, int is_asi,
                                 unsigned size)
{
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;
    int fault_type;

#ifdef DEBUG_UNASSIGNED
    if (is_asi) {
        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
               " asi 0x%02x from " TARGET_FMT_lx "\n",
               is_exec ? "exec" : is_write ? "write" : "read", size,
               size == 1 ? "" : "s", addr, is_asi, env->pc);
    } else {
        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
               " from " TARGET_FMT_lx "\n",
               is_exec ? "exec" : is_write ? "write" : "read", size,
               size == 1 ? "" : "s", addr, env->pc);
    }
#endif
    /* Don't overwrite translation and access faults */
    fault_type = (env->mmuregs[3] & 0x1c) >> 2;
    if ((fault_type > 4) || (fault_type == 0)) {
        env->mmuregs[3] = 0; /* Fault status register */
        if (is_asi) {
            env->mmuregs[3] |= 1 << 16;
        }
        if (env->psrs) {
            env->mmuregs[3] |= 1 << 5;
        }
        if (is_exec) {
            env->mmuregs[3] |= 1 << 6;
        }
        if (is_write) {
            env->mmuregs[3] |= 1 << 7;
        }
        env->mmuregs[3] |= (5 << 2) | 2;
        /* SuperSPARC will never place instruction fault addresses in the FAR */
        if (!is_exec) {
            env->mmuregs[4] = addr; /* Fault address register */
        }
    }
    /* overflow (same type fault was not read before another fault) */
    if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
        env->mmuregs[3] |= 1;
    }

    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
        int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
        cpu_raise_exception_ra(env, tt, GETPC());
    }

    /* flush neverland mappings created during no-fault mode,
       so the sequential MMU faults report proper fault types */
    if (env->mmuregs[0] & MMU_NF) {
        tlb_flush(cs);
    }
}
#else
void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
                                 bool is_write, bool is_exec, int is_asi,
                                 unsigned size)
{
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;

#ifdef DEBUG_UNASSIGNED
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
           "\n", addr, env->pc);
#endif

    if (is_exec) { /* XXX has_hypervisor */
        if (env->lsu & (IMMU_E)) {
            cpu_raise_exception_ra(env, TT_CODE_ACCESS, GETPC());
        } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
            cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, GETPC());
        }
    } else {
        if (env->lsu & (DMMU_E)) {
            cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
        } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
            cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, GETPC());
        }
    }
}
#endif
#endif

#if !defined(CONFIG_USER_ONLY)
void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
                                                 MMUAccessType access_type,
                                                 int mmu_idx,
                                                 uintptr_t retaddr)
{
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;

#ifdef DEBUG_UNALIGNED
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
           "\n", addr, env->pc);
#endif
    cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
}

/* try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill(CPUState *cs, target_ulong addr, int size,
              MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
{
    int ret;

    ret = sparc_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx);
    if (ret) {
        cpu_loop_exit_restore(cs, retaddr);
    }
}
#endif