1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|
/*
* QEMU TCG support -- s390x vector instruction translation functions
*
* Copyright (C) 2019 Red Hat Inc
*
* Authors:
* David Hildenbrand <david@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
/*
* For most instructions that use the same element size for reads and
* writes, we can use real gvec vector expansion, which potantially uses
* real host vector instructions. As they only work up to 64 bit elements,
* 128 bit elements (vector is a single element) have to be handled
* differently. Operations that are too complicated to encode via TCG ops
* are handled via gvec ool (out-of-line) handlers.
*
* As soon as instructions use different element sizes for reads and writes
* or access elements "out of their element scope" we expand them manually
* in fancy loops, as gvec expansion does not deal with actual element
* numbers and does also not support access to other elements.
*
* 128 bit elements:
* As we only have i32/i64, such elements have to be loaded into two
* i64 values and can then be processed e.g. by tcg_gen_add2_i64.
*
* Sizes:
* On s390x, the operand size (oprsz) and the maximum size (maxsz) are
* always 16 (128 bit). What gvec code calls "vece", s390x calls "es",
* a.k.a. "element size". These values nicely map to MO_8 ... MO_64. Only
* 128 bit element size has to be treated in a special way (MO_64 + 1).
* We will use ES_* instead of MO_* for this reason in this file.
*
* CC handling:
* As gvec ool-helpers can currently not return values (besides via
* pointers like vectors or cpu_env), whenever we have to set the CC and
* can't conclude the value from the result vector, we will directly
* set it in "env->cc_op" and mark it as static via set_cc_static()".
* Whenever this is done, the helper writes globals (cc_op).
*/
#define NUM_VEC_ELEMENT_BYTES(es) (1 << (es))
#define NUM_VEC_ELEMENTS(es) (16 / NUM_VEC_ELEMENT_BYTES(es))
#define NUM_VEC_ELEMENT_BITS(es) (NUM_VEC_ELEMENT_BYTES(es) * BITS_PER_BYTE)
#define ES_8 MO_8
#define ES_16 MO_16
#define ES_32 MO_32
#define ES_64 MO_64
#define ES_128 4
static inline bool valid_vec_element(uint8_t enr, TCGMemOp es)
{
return !(enr & ~(NUM_VEC_ELEMENTS(es) - 1));
}
static void read_vec_element_i64(TCGv_i64 dst, uint8_t reg, uint8_t enr,
TCGMemOp memop)
{
const int offs = vec_reg_offset(reg, enr, memop & MO_SIZE);
switch (memop) {
case ES_8:
tcg_gen_ld8u_i64(dst, cpu_env, offs);
break;
case ES_16:
tcg_gen_ld16u_i64(dst, cpu_env, offs);
break;
case ES_32:
tcg_gen_ld32u_i64(dst, cpu_env, offs);
break;
case ES_8 | MO_SIGN:
tcg_gen_ld8s_i64(dst, cpu_env, offs);
break;
case ES_16 | MO_SIGN:
tcg_gen_ld16s_i64(dst, cpu_env, offs);
break;
case ES_32 | MO_SIGN:
tcg_gen_ld32s_i64(dst, cpu_env, offs);
break;
case ES_64:
case ES_64 | MO_SIGN:
tcg_gen_ld_i64(dst, cpu_env, offs);
break;
default:
g_assert_not_reached();
}
}
static void write_vec_element_i64(TCGv_i64 src, int reg, uint8_t enr,
TCGMemOp memop)
{
const int offs = vec_reg_offset(reg, enr, memop & MO_SIZE);
switch (memop) {
case ES_8:
tcg_gen_st8_i64(src, cpu_env, offs);
break;
case ES_16:
tcg_gen_st16_i64(src, cpu_env, offs);
break;
case ES_32:
tcg_gen_st32_i64(src, cpu_env, offs);
break;
case ES_64:
tcg_gen_st_i64(src, cpu_env, offs);
break;
default:
g_assert_not_reached();
}
}
static void get_vec_element_ptr_i64(TCGv_ptr ptr, uint8_t reg, TCGv_i64 enr,
uint8_t es)
{
TCGv_i64 tmp = tcg_temp_new_i64();
/* mask off invalid parts from the element nr */
tcg_gen_andi_i64(tmp, enr, NUM_VEC_ELEMENTS(es) - 1);
/* convert it to an element offset relative to cpu_env (vec_reg_offset() */
tcg_gen_shli_i64(tmp, tmp, es);
#ifndef HOST_WORDS_BIGENDIAN
tcg_gen_xori_i64(tmp, tmp, 8 - NUM_VEC_ELEMENT_BYTES(es));
#endif
tcg_gen_addi_i64(tmp, tmp, vec_full_reg_offset(reg));
/* generate the final ptr by adding cpu_env */
tcg_gen_trunc_i64_ptr(ptr, tmp);
tcg_gen_add_ptr(ptr, ptr, cpu_env);
tcg_temp_free_i64(tmp);
}
#define gen_gvec_dup_i64(es, v1, c) \
tcg_gen_gvec_dup_i64(es, vec_full_reg_offset(v1), 16, 16, c)
#define gen_gvec_mov(v1, v2) \
tcg_gen_gvec_mov(0, vec_full_reg_offset(v1), vec_full_reg_offset(v2), 16, \
16)
#define gen_gvec_dup64i(v1, c) \
tcg_gen_gvec_dup64i(vec_full_reg_offset(v1), 16, 16, c)
static void gen_gvec_dupi(uint8_t es, uint8_t reg, uint64_t c)
{
switch (es) {
case ES_8:
tcg_gen_gvec_dup8i(vec_full_reg_offset(reg), 16, 16, c);
break;
case ES_16:
tcg_gen_gvec_dup16i(vec_full_reg_offset(reg), 16, 16, c);
break;
case ES_32:
tcg_gen_gvec_dup32i(vec_full_reg_offset(reg), 16, 16, c);
break;
case ES_64:
gen_gvec_dup64i(reg, c);
break;
default:
g_assert_not_reached();
}
}
static void zero_vec(uint8_t reg)
{
tcg_gen_gvec_dup8i(vec_full_reg_offset(reg), 16, 16, 0);
}
static DisasJumpType op_vge(DisasContext *s, DisasOps *o)
{
const uint8_t es = s->insn->data;
const uint8_t enr = get_field(s->fields, m3);
TCGv_i64 tmp;
if (!valid_vec_element(enr, es)) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tmp = tcg_temp_new_i64();
read_vec_element_i64(tmp, get_field(s->fields, v2), enr, es);
tcg_gen_add_i64(o->addr1, o->addr1, tmp);
gen_addi_and_wrap_i64(s, o->addr1, o->addr1, 0);
tcg_gen_qemu_ld_i64(tmp, o->addr1, get_mem_index(s), MO_TE | es);
write_vec_element_i64(tmp, get_field(s->fields, v1), enr, es);
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static uint64_t generate_byte_mask(uint8_t mask)
{
uint64_t r = 0;
int i;
for (i = 0; i < 8; i++) {
if ((mask >> i) & 1) {
r |= 0xffull << (i * 8);
}
}
return r;
}
static DisasJumpType op_vgbm(DisasContext *s, DisasOps *o)
{
const uint16_t i2 = get_field(s->fields, i2);
if (i2 == (i2 & 0xff) * 0x0101) {
/*
* Masks for both 64 bit elements of the vector are the same.
* Trust tcg to produce a good constant loading.
*/
gen_gvec_dup64i(get_field(s->fields, v1),
generate_byte_mask(i2 & 0xff));
} else {
TCGv_i64 t = tcg_temp_new_i64();
tcg_gen_movi_i64(t, generate_byte_mask(i2 >> 8));
write_vec_element_i64(t, get_field(s->fields, v1), 0, ES_64);
tcg_gen_movi_i64(t, generate_byte_mask(i2));
write_vec_element_i64(t, get_field(s->fields, v1), 1, ES_64);
tcg_temp_free_i64(t);
}
return DISAS_NEXT;
}
static DisasJumpType op_vgm(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m4);
const uint8_t bits = NUM_VEC_ELEMENT_BITS(es);
const uint8_t i2 = get_field(s->fields, i2) & (bits - 1);
const uint8_t i3 = get_field(s->fields, i3) & (bits - 1);
uint64_t mask = 0;
int i;
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
/* generate the mask - take care of wrapping */
for (i = i2; ; i = (i + 1) % bits) {
mask |= 1ull << (bits - i - 1);
if (i == i3) {
break;
}
}
gen_gvec_dupi(es, get_field(s->fields, v1), mask);
return DISAS_NEXT;
}
static DisasJumpType op_vl(DisasContext *s, DisasOps *o)
{
TCGv_i64 t0 = tcg_temp_new_i64();
TCGv_i64 t1 = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(t0, o->addr1, get_mem_index(s), MO_TEQ);
gen_addi_and_wrap_i64(s, o->addr1, o->addr1, 8);
tcg_gen_qemu_ld_i64(t1, o->addr1, get_mem_index(s), MO_TEQ);
write_vec_element_i64(t0, get_field(s->fields, v1), 0, ES_64);
write_vec_element_i64(t1, get_field(s->fields, v1), 1, ES_64);
tcg_temp_free(t0);
tcg_temp_free(t1);
return DISAS_NEXT;
}
static DisasJumpType op_vlr(DisasContext *s, DisasOps *o)
{
gen_gvec_mov(get_field(s->fields, v1), get_field(s->fields, v2));
return DISAS_NEXT;
}
static DisasJumpType op_vlrep(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m3);
TCGv_i64 tmp;
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tmp = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tmp, o->addr1, get_mem_index(s), MO_TE | es);
gen_gvec_dup_i64(es, get_field(s->fields, v1), tmp);
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static DisasJumpType op_vle(DisasContext *s, DisasOps *o)
{
const uint8_t es = s->insn->data;
const uint8_t enr = get_field(s->fields, m3);
TCGv_i64 tmp;
if (!valid_vec_element(enr, es)) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tmp = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tmp, o->addr1, get_mem_index(s), MO_TE | es);
write_vec_element_i64(tmp, get_field(s->fields, v1), enr, es);
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static DisasJumpType op_vlei(DisasContext *s, DisasOps *o)
{
const uint8_t es = s->insn->data;
const uint8_t enr = get_field(s->fields, m3);
TCGv_i64 tmp;
if (!valid_vec_element(enr, es)) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
tmp = tcg_const_i64((int16_t)get_field(s->fields, i2));
write_vec_element_i64(tmp, get_field(s->fields, v1), enr, es);
tcg_temp_free_i64(tmp);
return DISAS_NEXT;
}
static DisasJumpType op_vlgv(DisasContext *s, DisasOps *o)
{
const uint8_t es = get_field(s->fields, m4);
TCGv_ptr ptr;
if (es > ES_64) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
/* fast path if we don't need the register content */
if (!get_field(s->fields, b2)) {
uint8_t enr = get_field(s->fields, d2) & (NUM_VEC_ELEMENTS(es) - 1);
read_vec_element_i64(o->out, get_field(s->fields, v3), enr, es);
return DISAS_NEXT;
}
ptr = tcg_temp_new_ptr();
get_vec_element_ptr_i64(ptr, get_field(s->fields, v3), o->addr1, es);
switch (es) {
case ES_8:
tcg_gen_ld8u_i64(o->out, ptr, 0);
break;
case ES_16:
tcg_gen_ld16u_i64(o->out, ptr, 0);
break;
case ES_32:
tcg_gen_ld32u_i64(o->out, ptr, 0);
break;
case ES_64:
tcg_gen_ld_i64(o->out, ptr, 0);
break;
default:
g_assert_not_reached();
}
tcg_temp_free_ptr(ptr);
return DISAS_NEXT;
}
static DisasJumpType op_vllez(DisasContext *s, DisasOps *o)
{
uint8_t es = get_field(s->fields, m3);
uint8_t enr;
TCGv_i64 t;
switch (es) {
/* rightmost sub-element of leftmost doubleword */
case ES_8:
enr = 7;
break;
case ES_16:
enr = 3;
break;
case ES_32:
enr = 1;
break;
case ES_64:
enr = 0;
break;
/* leftmost sub-element of leftmost doubleword */
case 6:
if (s390_has_feat(S390_FEAT_VECTOR_ENH)) {
es = ES_32;
enr = 0;
break;
}
default:
/* fallthrough */
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
t = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(t, o->addr1, get_mem_index(s), MO_TE | es);
zero_vec(get_field(s->fields, v1));
write_vec_element_i64(t, get_field(s->fields, v1), enr, es);
tcg_temp_free_i64(t);
return DISAS_NEXT;
}
static DisasJumpType op_vlm(DisasContext *s, DisasOps *o)
{
const uint8_t v3 = get_field(s->fields, v3);
uint8_t v1 = get_field(s->fields, v1);
TCGv_i64 t0, t1;
if (v3 < v1 || (v3 - v1 + 1) > 16) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
/*
* Check for possible access exceptions by trying to load the last
* element. The first element will be checked first next.
*/
t0 = tcg_temp_new_i64();
t1 = tcg_temp_new_i64();
gen_addi_and_wrap_i64(s, t0, o->addr1, (v3 - v1) * 16 + 8);
tcg_gen_qemu_ld_i64(t0, t0, get_mem_index(s), MO_TEQ);
for (;; v1++) {
tcg_gen_qemu_ld_i64(t1, o->addr1, get_mem_index(s), MO_TEQ);
write_vec_element_i64(t1, v1, 0, ES_64);
if (v1 == v3) {
break;
}
gen_addi_and_wrap_i64(s, o->addr1, o->addr1, 8);
tcg_gen_qemu_ld_i64(t1, o->addr1, get_mem_index(s), MO_TEQ);
write_vec_element_i64(t1, v1, 1, ES_64);
gen_addi_and_wrap_i64(s, o->addr1, o->addr1, 8);
}
/* Store the last element, loaded first */
write_vec_element_i64(t0, v1, 1, ES_64);
tcg_temp_free_i64(t0);
tcg_temp_free_i64(t1);
return DISAS_NEXT;
}
static DisasJumpType op_vlbb(DisasContext *s, DisasOps *o)
{
const int64_t block_size = (1ull << (get_field(s->fields, m3) + 6));
const int v1_offs = vec_full_reg_offset(get_field(s->fields, v1));
TCGv_ptr a0;
TCGv_i64 bytes;
if (get_field(s->fields, m3) > 6) {
gen_program_exception(s, PGM_SPECIFICATION);
return DISAS_NORETURN;
}
bytes = tcg_temp_new_i64();
a0 = tcg_temp_new_ptr();
/* calculate the number of bytes until the next block boundary */
tcg_gen_ori_i64(bytes, o->addr1, -block_size);
tcg_gen_neg_i64(bytes, bytes);
tcg_gen_addi_ptr(a0, cpu_env, v1_offs);
gen_helper_vll(cpu_env, a0, o->addr1, bytes);
tcg_temp_free_i64(bytes);
tcg_temp_free_ptr(a0);
return DISAS_NEXT;
}
|