summaryrefslogtreecommitdiff
path: root/target/riscv/pmp.c
blob: 80d0334e1bfcf8baf90273d791bc4cbd8b583427 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
 * QEMU RISC-V PMP (Physical Memory Protection)
 *
 * Author: Daire McNamara, daire.mcnamara@emdalo.com
 *         Ivan Griffin, ivan.griffin@emdalo.com
 *
 * This provides a RISC-V Physical Memory Protection implementation
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2 or later, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * PMP (Physical Memory Protection) is as-of-yet unused and needs testing.
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "cpu.h"
#include "trace.h"

static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index,
    uint8_t val);
static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index);
static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index);

/*
 * Accessor method to extract address matching type 'a field' from cfg reg
 */
static inline uint8_t pmp_get_a_field(uint8_t cfg)
{
    uint8_t a = cfg >> 3;
    return a & 0x3;
}

/*
 * Check whether a PMP is locked or not.
 */
static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index)
{

    if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) {
        return 1;
    }

    /* Top PMP has no 'next' to check */
    if ((pmp_index + 1u) >= MAX_RISCV_PMPS) {
        return 0;
    }

    /* In TOR mode, need to check the lock bit of the next pmp
     * (if there is a next)
     */
    const uint8_t a_field =
        pmp_get_a_field(env->pmp_state.pmp[pmp_index + 1].cfg_reg);
    if ((env->pmp_state.pmp[pmp_index + 1u].cfg_reg & PMP_LOCK) &&
         (PMP_AMATCH_TOR == a_field)) {
        return 1;
    }

    return 0;
}

/*
 * Count the number of active rules.
 */
uint32_t pmp_get_num_rules(CPURISCVState *env)
{
     return env->pmp_state.num_rules;
}

/*
 * Accessor to get the cfg reg for a specific PMP/HART
 */
static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index)
{
    if (pmp_index < MAX_RISCV_PMPS) {
        return env->pmp_state.pmp[pmp_index].cfg_reg;
    }

    return 0;
}


/*
 * Accessor to set the cfg reg for a specific PMP/HART
 * Bounds checks and relevant lock bit.
 */
static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val)
{
    if (pmp_index < MAX_RISCV_PMPS) {
        if (!pmp_is_locked(env, pmp_index)) {
            env->pmp_state.pmp[pmp_index].cfg_reg = val;
            pmp_update_rule(env, pmp_index);
        } else {
            qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n");
        }
    } else {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "ignoring pmpcfg write - out of bounds\n");
    }
}

static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea)
{
    /*
       aaaa...aaa0   8-byte NAPOT range
       aaaa...aa01   16-byte NAPOT range
       aaaa...a011   32-byte NAPOT range
       ...
       aa01...1111   2^XLEN-byte NAPOT range
       a011...1111   2^(XLEN+1)-byte NAPOT range
       0111...1111   2^(XLEN+2)-byte NAPOT range
       1111...1111   Reserved
    */
    if (a == -1) {
        *sa = 0u;
        *ea = -1;
        return;
    } else {
        target_ulong t1 = ctz64(~a);
        target_ulong base = (a & ~(((target_ulong)1 << t1) - 1)) << 2;
        target_ulong range = ((target_ulong)1 << (t1 + 3)) - 1;
        *sa = base;
        *ea = base + range;
    }
}

void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index)
{
    uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg;
    target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg;
    target_ulong prev_addr = 0u;
    target_ulong sa = 0u;
    target_ulong ea = 0u;

    if (pmp_index >= 1u) {
        prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg;
    }

    switch (pmp_get_a_field(this_cfg)) {
    case PMP_AMATCH_OFF:
        sa = 0u;
        ea = -1;
        break;

    case PMP_AMATCH_TOR:
        sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
        ea = (this_addr << 2) - 1u;
        break;

    case PMP_AMATCH_NA4:
        sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
        ea = (sa + 4u) - 1u;
        break;

    case PMP_AMATCH_NAPOT:
        pmp_decode_napot(this_addr, &sa, &ea);
        break;

    default:
        sa = 0u;
        ea = 0u;
        break;
    }

    env->pmp_state.addr[pmp_index].sa = sa;
    env->pmp_state.addr[pmp_index].ea = ea;
}

void pmp_update_rule_nums(CPURISCVState *env)
{
    int i;

    env->pmp_state.num_rules = 0;
    for (i = 0; i < MAX_RISCV_PMPS; i++) {
        const uint8_t a_field =
            pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
        if (PMP_AMATCH_OFF != a_field) {
            env->pmp_state.num_rules++;
        }
    }
}

/* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea'
 *   end address values.
 *   This function is called relatively infrequently whereas the check that
 *   an address is within a pmp rule is called often, so optimise that one
 */
static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index)
{
    pmp_update_rule_addr(env, pmp_index);
    pmp_update_rule_nums(env);
}

static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr)
{
    int result = 0;

    if ((addr >= env->pmp_state.addr[pmp_index].sa)
        && (addr <= env->pmp_state.addr[pmp_index].ea)) {
        result = 1;
    } else {
        result = 0;
    }

    return result;
}


/*
 * Public Interface
 */

/*
 * Check if the address has required RWX privs to complete desired operation
 */
bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr,
    target_ulong size, pmp_priv_t privs, target_ulong mode)
{
    int i = 0;
    int ret = -1;
    int pmp_size = 0;
    target_ulong s = 0;
    target_ulong e = 0;
    pmp_priv_t allowed_privs = 0;

    /* Short cut if no rules */
    if (0 == pmp_get_num_rules(env)) {
        return (env->priv == PRV_M) ? true : false;
    }

    if (size == 0) {
        if (riscv_feature(env, RISCV_FEATURE_MMU)) {
            /*
             * If size is unknown (0), assume that all bytes
             * from addr to the end of the page will be accessed.
             */
            pmp_size = -(addr | TARGET_PAGE_MASK);
        } else {
            pmp_size = sizeof(target_ulong);
        }
    } else {
        pmp_size = size;
    }

    /* 1.10 draft priv spec states there is an implicit order
         from low to high */
    for (i = 0; i < MAX_RISCV_PMPS; i++) {
        s = pmp_is_in_range(env, i, addr);
        e = pmp_is_in_range(env, i, addr + pmp_size - 1);

        /* partially inside */
        if ((s + e) == 1) {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "pmp violation - access is partially inside\n");
            ret = 0;
            break;
        }

        /* fully inside */
        const uint8_t a_field =
            pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);

        /*
         * If the PMP entry is not off and the address is in range, do the priv
         * check
         */
        if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) {
            allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
            if ((mode != PRV_M) || pmp_is_locked(env, i)) {
                allowed_privs &= env->pmp_state.pmp[i].cfg_reg;
            }

            if ((privs & allowed_privs) == privs) {
                ret = 1;
                break;
            } else {
                ret = 0;
                break;
            }
        }
    }

    /* No rule matched */
    if (ret == -1) {
        if (mode == PRV_M) {
            ret = 1; /* Privileged spec v1.10 states if no PMP entry matches an
                      * M-Mode access, the access succeeds */
        } else {
            ret = 0; /* Other modes are not allowed to succeed if they don't
                      * match a rule, but there are rules.  We've checked for
                      * no rule earlier in this function. */
        }
    }

    return ret == 1 ? true : false;
}


/*
 * Handle a write to a pmpcfg CSP
 */
void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index,
    target_ulong val)
{
    int i;
    uint8_t cfg_val;

    trace_pmpcfg_csr_write(env->mhartid, reg_index, val);

    if ((reg_index & 1) && (sizeof(target_ulong) == 8)) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "ignoring pmpcfg write - incorrect address\n");
        return;
    }

    for (i = 0; i < sizeof(target_ulong); i++) {
        cfg_val = (val >> 8 * i)  & 0xff;
        pmp_write_cfg(env, (reg_index * 4) + i, cfg_val);
    }
}


/*
 * Handle a read from a pmpcfg CSP
 */
target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index)
{
    int i;
    target_ulong cfg_val = 0;
    target_ulong val = 0;

    for (i = 0; i < sizeof(target_ulong); i++) {
        val = pmp_read_cfg(env, (reg_index * 4) + i);
        cfg_val |= (val << (i * 8));
    }
    trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val);

    return cfg_val;
}


/*
 * Handle a write to a pmpaddr CSP
 */
void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index,
    target_ulong val)
{
    trace_pmpaddr_csr_write(env->mhartid, addr_index, val);
    if (addr_index < MAX_RISCV_PMPS) {
        if (!pmp_is_locked(env, addr_index)) {
            env->pmp_state.pmp[addr_index].addr_reg = val;
            pmp_update_rule(env, addr_index);
        } else {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "ignoring pmpaddr write - locked\n");
        }
    } else {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "ignoring pmpaddr write - out of bounds\n");
    }
}


/*
 * Handle a read from a pmpaddr CSP
 */
target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index)
{
    target_ulong val = 0;

    if (addr_index < MAX_RISCV_PMPS) {
        val = env->pmp_state.pmp[addr_index].addr_reg;
        trace_pmpaddr_csr_read(env->mhartid, addr_index, val);
    } else {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "ignoring pmpaddr read - out of bounds\n");
    }

    return val;
}

/*
 * Calculate the TLB size if the start address or the end address of
 * PMP entry is presented in thie TLB page.
 */
static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index,
                                     target_ulong tlb_sa, target_ulong tlb_ea)
{
    target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa;
    target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea;

    if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) {
        return pmp_ea - pmp_sa + 1;
    }

    if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) {
        return tlb_ea - pmp_sa + 1;
    }

    if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) {
        return pmp_ea - tlb_sa + 1;
    }

    return 0;
}

/*
 * Check is there a PMP entry which range covers this page. If so,
 * try to find the minimum granularity for the TLB size.
 */
bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa,
                         target_ulong *tlb_size)
{
    int i;
    target_ulong val;
    target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1);

    for (i = 0; i < MAX_RISCV_PMPS; i++) {
        val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea);
        if (val) {
            if (*tlb_size == 0 || *tlb_size > val) {
                *tlb_size = val;
            }
        }
    }

    if (*tlb_size != 0) {
        return true;
    }

    return false;
}