summaryrefslogtreecommitdiff
path: root/target/arm/cpu.h
blob: 297ad5e47ad8da04c1e7aebb89132219cc69f994 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
/*
 * ARM virtual CPU header
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#ifndef ARM_CPU_H
#define ARM_CPU_H

#include "kvm-consts.h"
#include "hw/registerfields.h"
#include "cpu-qom.h"
#include "exec/cpu-defs.h"

/* ARM processors have a weak memory model */
#define TCG_GUEST_DEFAULT_MO      (0)

#define EXCP_UDEF            1   /* undefined instruction */
#define EXCP_SWI             2   /* software interrupt */
#define EXCP_PREFETCH_ABORT  3
#define EXCP_DATA_ABORT      4
#define EXCP_IRQ             5
#define EXCP_FIQ             6
#define EXCP_BKPT            7
#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
#define EXCP_HVC            11   /* HyperVisor Call */
#define EXCP_HYP_TRAP       12
#define EXCP_SMC            13   /* Secure Monitor Call */
#define EXCP_VIRQ           14
#define EXCP_VFIQ           15
#define EXCP_SEMIHOST       16   /* semihosting call */
#define EXCP_NOCP           17   /* v7M NOCP UsageFault */
#define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
#define EXCP_STKOF          19   /* v8M STKOF UsageFault */
#define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
#define EXCP_LSERR          21   /* v8M LSERR SecureFault */
#define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
/* NB: add new EXCP_ defines to the array in arm_log_exception() too */

#define ARMV7M_EXCP_RESET   1
#define ARMV7M_EXCP_NMI     2
#define ARMV7M_EXCP_HARD    3
#define ARMV7M_EXCP_MEM     4
#define ARMV7M_EXCP_BUS     5
#define ARMV7M_EXCP_USAGE   6
#define ARMV7M_EXCP_SECURE  7
#define ARMV7M_EXCP_SVC     11
#define ARMV7M_EXCP_DEBUG   12
#define ARMV7M_EXCP_PENDSV  14
#define ARMV7M_EXCP_SYSTICK 15

/* For M profile, some registers are banked secure vs non-secure;
 * these are represented as a 2-element array where the first element
 * is the non-secure copy and the second is the secure copy.
 * When the CPU does not have implement the security extension then
 * only the first element is used.
 * This means that the copy for the current security state can be
 * accessed via env->registerfield[env->v7m.secure] (whether the security
 * extension is implemented or not).
 */
enum {
    M_REG_NS = 0,
    M_REG_S = 1,
    M_REG_NUM_BANKS = 2,
};

/* ARM-specific interrupt pending bits.  */
#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3

/* The usual mapping for an AArch64 system register to its AArch32
 * counterpart is for the 32 bit world to have access to the lower
 * half only (with writes leaving the upper half untouched). It's
 * therefore useful to be able to pass TCG the offset of the least
 * significant half of a uint64_t struct member.
 */
#ifdef HOST_WORDS_BIGENDIAN
#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
#define offsetofhigh32(S, M) offsetof(S, M)
#else
#define offsetoflow32(S, M) offsetof(S, M)
#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
#endif

/* Meanings of the ARMCPU object's four inbound GPIO lines */
#define ARM_CPU_IRQ 0
#define ARM_CPU_FIQ 1
#define ARM_CPU_VIRQ 2
#define ARM_CPU_VFIQ 3

/* ARM-specific extra insn start words:
 * 1: Conditional execution bits
 * 2: Partial exception syndrome for data aborts
 */
#define TARGET_INSN_START_EXTRA_WORDS 2

/* The 2nd extra word holding syndrome info for data aborts does not use
 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 * help the sleb128 encoder do a better job.
 * When restoring the CPU state, we shift it back up.
 */
#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
#define ARM_INSN_START_WORD2_SHIFT 14

/* We currently assume float and double are IEEE single and double
   precision respectively.
   Doing runtime conversions is tricky because VFP registers may contain
   integer values (eg. as the result of a FTOSI instruction).
   s<2n> maps to the least significant half of d<n>
   s<2n+1> maps to the most significant half of d<n>
 */

/**
 * DynamicGDBXMLInfo:
 * @desc: Contains the XML descriptions.
 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
 * @cpregs_keys: Array that contains the corresponding Key of
 * a given cpreg with the same order of the cpreg in the XML description.
 */
typedef struct DynamicGDBXMLInfo {
    char *desc;
    int num_cpregs;
    uint32_t *cpregs_keys;
} DynamicGDBXMLInfo;

/* CPU state for each instance of a generic timer (in cp15 c14) */
typedef struct ARMGenericTimer {
    uint64_t cval; /* Timer CompareValue register */
    uint64_t ctl; /* Timer Control register */
} ARMGenericTimer;

#define GTIMER_PHYS 0
#define GTIMER_VIRT 1
#define GTIMER_HYP  2
#define GTIMER_SEC  3
#define NUM_GTIMERS 4

typedef struct {
    uint64_t raw_tcr;
    uint32_t mask;
    uint32_t base_mask;
} TCR;

/* Define a maximum sized vector register.
 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
 * For 64-bit, this is a 2048-bit SVE register.
 *
 * Note that the mapping between S, D, and Q views of the register bank
 * differs between AArch64 and AArch32.
 * In AArch32:
 *  Qn = regs[n].d[1]:regs[n].d[0]
 *  Dn = regs[n / 2].d[n & 1]
 *  Sn = regs[n / 4].d[n % 4 / 2],
 *       bits 31..0 for even n, and bits 63..32 for odd n
 *       (and regs[16] to regs[31] are inaccessible)
 * In AArch64:
 *  Zn = regs[n].d[*]
 *  Qn = regs[n].d[1]:regs[n].d[0]
 *  Dn = regs[n].d[0]
 *  Sn = regs[n].d[0] bits 31..0
 *  Hn = regs[n].d[0] bits 15..0
 *
 * This corresponds to the architecturally defined mapping between
 * the two execution states, and means we do not need to explicitly
 * map these registers when changing states.
 *
 * Align the data for use with TCG host vector operations.
 */

#ifdef TARGET_AARCH64
# define ARM_MAX_VQ    16
#else
# define ARM_MAX_VQ    1
#endif

typedef struct ARMVectorReg {
    uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
} ARMVectorReg;

#ifdef TARGET_AARCH64
/* In AArch32 mode, predicate registers do not exist at all.  */
typedef struct ARMPredicateReg {
    uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
} ARMPredicateReg;

/* In AArch32 mode, PAC keys do not exist at all.  */
typedef struct ARMPACKey {
    uint64_t lo, hi;
} ARMPACKey;
#endif


typedef struct CPUARMState {
    /* Regs for current mode.  */
    uint32_t regs[16];

    /* 32/64 switch only happens when taking and returning from
     * exceptions so the overlap semantics are taken care of then
     * instead of having a complicated union.
     */
    /* Regs for A64 mode.  */
    uint64_t xregs[32];
    uint64_t pc;
    /* PSTATE isn't an architectural register for ARMv8. However, it is
     * convenient for us to assemble the underlying state into a 32 bit format
     * identical to the architectural format used for the SPSR. (This is also
     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
     * 'pstate' register are.) Of the PSTATE bits:
     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
     *    semantics as for AArch32, as described in the comments on each field)
     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
     *  DAIF (exception masks) are kept in env->daif
     *  BTYPE is kept in env->btype
     *  all other bits are stored in their correct places in env->pstate
     */
    uint32_t pstate;
    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */

    /* Frequently accessed CPSR bits are stored separately for efficiency.
       This contains all the other bits.  Use cpsr_{read,write} to access
       the whole CPSR.  */
    uint32_t uncached_cpsr;
    uint32_t spsr;

    /* Banked registers.  */
    uint64_t banked_spsr[8];
    uint32_t banked_r13[8];
    uint32_t banked_r14[8];

    /* These hold r8-r12.  */
    uint32_t usr_regs[5];
    uint32_t fiq_regs[5];

    /* cpsr flag cache for faster execution */
    uint32_t CF; /* 0 or 1 */
    uint32_t VF; /* V is the bit 31. All other bits are undefined */
    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
    uint32_t ZF; /* Z set if zero.  */
    uint32_t QF; /* 0 or 1 */
    uint32_t GE; /* cpsr[19:16] */
    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
    uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
    uint64_t daif; /* exception masks, in the bits they are in PSTATE */

    uint64_t elr_el[4]; /* AArch64 exception link regs  */
    uint64_t sp_el[4]; /* AArch64 banked stack pointers */

    /* System control coprocessor (cp15) */
    struct {
        uint32_t c0_cpuid;
        union { /* Cache size selection */
            struct {
                uint64_t _unused_csselr0;
                uint64_t csselr_ns;
                uint64_t _unused_csselr1;
                uint64_t csselr_s;
            };
            uint64_t csselr_el[4];
        };
        union { /* System control register. */
            struct {
                uint64_t _unused_sctlr;
                uint64_t sctlr_ns;
                uint64_t hsctlr;
                uint64_t sctlr_s;
            };
            uint64_t sctlr_el[4];
        };
        uint64_t cpacr_el1; /* Architectural feature access control register */
        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
        uint64_t sder; /* Secure debug enable register. */
        uint32_t nsacr; /* Non-secure access control register. */
        union { /* MMU translation table base 0. */
            struct {
                uint64_t _unused_ttbr0_0;
                uint64_t ttbr0_ns;
                uint64_t _unused_ttbr0_1;
                uint64_t ttbr0_s;
            };
            uint64_t ttbr0_el[4];
        };
        union { /* MMU translation table base 1. */
            struct {
                uint64_t _unused_ttbr1_0;
                uint64_t ttbr1_ns;
                uint64_t _unused_ttbr1_1;
                uint64_t ttbr1_s;
            };
            uint64_t ttbr1_el[4];
        };
        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
        /* MMU translation table base control. */
        TCR tcr_el[4];
        TCR vtcr_el2; /* Virtualization Translation Control.  */
        uint32_t c2_data; /* MPU data cacheable bits.  */
        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
        union { /* MMU domain access control register
                 * MPU write buffer control.
                 */
            struct {
                uint64_t dacr_ns;
                uint64_t dacr_s;
            };
            struct {
                uint64_t dacr32_el2;
            };
        };
        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
        uint64_t hcr_el2; /* Hypervisor configuration register */
        uint64_t scr_el3; /* Secure configuration register.  */
        union { /* Fault status registers.  */
            struct {
                uint64_t ifsr_ns;
                uint64_t ifsr_s;
            };
            struct {
                uint64_t ifsr32_el2;
            };
        };
        union {
            struct {
                uint64_t _unused_dfsr;
                uint64_t dfsr_ns;
                uint64_t hsr;
                uint64_t dfsr_s;
            };
            uint64_t esr_el[4];
        };
        uint32_t c6_region[8]; /* MPU base/size registers.  */
        union { /* Fault address registers. */
            struct {
                uint64_t _unused_far0;
#ifdef HOST_WORDS_BIGENDIAN
                uint32_t ifar_ns;
                uint32_t dfar_ns;
                uint32_t ifar_s;
                uint32_t dfar_s;
#else
                uint32_t dfar_ns;
                uint32_t ifar_ns;
                uint32_t dfar_s;
                uint32_t ifar_s;
#endif
                uint64_t _unused_far3;
            };
            uint64_t far_el[4];
        };
        uint64_t hpfar_el2;
        uint64_t hstr_el2;
        union { /* Translation result. */
            struct {
                uint64_t _unused_par_0;
                uint64_t par_ns;
                uint64_t _unused_par_1;
                uint64_t par_s;
            };
            uint64_t par_el[4];
        };

        uint32_t c9_insn; /* Cache lockdown registers.  */
        uint32_t c9_data;
        uint64_t c9_pmcr; /* performance monitor control register */
        uint64_t c9_pmcnten; /* perf monitor counter enables */
        uint64_t c9_pmovsr; /* perf monitor overflow status */
        uint64_t c9_pmuserenr; /* perf monitor user enable */
        uint64_t c9_pmselr; /* perf monitor counter selection register */
        uint64_t c9_pminten; /* perf monitor interrupt enables */
        union { /* Memory attribute redirection */
            struct {
#ifdef HOST_WORDS_BIGENDIAN
                uint64_t _unused_mair_0;
                uint32_t mair1_ns;
                uint32_t mair0_ns;
                uint64_t _unused_mair_1;
                uint32_t mair1_s;
                uint32_t mair0_s;
#else
                uint64_t _unused_mair_0;
                uint32_t mair0_ns;
                uint32_t mair1_ns;
                uint64_t _unused_mair_1;
                uint32_t mair0_s;
                uint32_t mair1_s;
#endif
            };
            uint64_t mair_el[4];
        };
        union { /* vector base address register */
            struct {
                uint64_t _unused_vbar;
                uint64_t vbar_ns;
                uint64_t hvbar;
                uint64_t vbar_s;
            };
            uint64_t vbar_el[4];
        };
        uint32_t mvbar; /* (monitor) vector base address register */
        struct { /* FCSE PID. */
            uint32_t fcseidr_ns;
            uint32_t fcseidr_s;
        };
        union { /* Context ID. */
            struct {
                uint64_t _unused_contextidr_0;
                uint64_t contextidr_ns;
                uint64_t _unused_contextidr_1;
                uint64_t contextidr_s;
            };
            uint64_t contextidr_el[4];
        };
        union { /* User RW Thread register. */
            struct {
                uint64_t tpidrurw_ns;
                uint64_t tpidrprw_ns;
                uint64_t htpidr;
                uint64_t _tpidr_el3;
            };
            uint64_t tpidr_el[4];
        };
        /* The secure banks of these registers don't map anywhere */
        uint64_t tpidrurw_s;
        uint64_t tpidrprw_s;
        uint64_t tpidruro_s;

        union { /* User RO Thread register. */
            uint64_t tpidruro_ns;
            uint64_t tpidrro_el[1];
        };
        uint64_t c14_cntfrq; /* Counter Frequency register */
        uint64_t c14_cntkctl; /* Timer Control register */
        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
        ARMGenericTimer c14_timer[NUM_GTIMERS];
        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
        uint32_t c15_threadid; /* TI debugger thread-ID.  */
        uint32_t c15_config_base_address; /* SCU base address.  */
        uint32_t c15_diagnostic; /* diagnostic register */
        uint32_t c15_power_diagnostic;
        uint32_t c15_power_control; /* power control */
        uint64_t dbgbvr[16]; /* breakpoint value registers */
        uint64_t dbgbcr[16]; /* breakpoint control registers */
        uint64_t dbgwvr[16]; /* watchpoint value registers */
        uint64_t dbgwcr[16]; /* watchpoint control registers */
        uint64_t mdscr_el1;
        uint64_t oslsr_el1; /* OS Lock Status */
        uint64_t mdcr_el2;
        uint64_t mdcr_el3;
        /* Stores the architectural value of the counter *the last time it was
         * updated* by pmccntr_op_start. Accesses should always be surrounded
         * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
         * architecturally-correct value is being read/set.
         */
        uint64_t c15_ccnt;
        /* Stores the delta between the architectural value and the underlying
         * cycle count during normal operation. It is used to update c15_ccnt
         * to be the correct architectural value before accesses. During
         * accesses, c15_ccnt_delta contains the underlying count being used
         * for the access, after which it reverts to the delta value in
         * pmccntr_op_finish.
         */
        uint64_t c15_ccnt_delta;
        uint64_t c14_pmevcntr[31];
        uint64_t c14_pmevcntr_delta[31];
        uint64_t c14_pmevtyper[31];
        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
    } cp15;

    struct {
        /* M profile has up to 4 stack pointers:
         * a Main Stack Pointer and a Process Stack Pointer for each
         * of the Secure and Non-Secure states. (If the CPU doesn't support
         * the security extension then it has only two SPs.)
         * In QEMU we always store the currently active SP in regs[13],
         * and the non-active SP for the current security state in
         * v7m.other_sp. The stack pointers for the inactive security state
         * are stored in other_ss_msp and other_ss_psp.
         * switch_v7m_security_state() is responsible for rearranging them
         * when we change security state.
         */
        uint32_t other_sp;
        uint32_t other_ss_msp;
        uint32_t other_ss_psp;
        uint32_t vecbase[M_REG_NUM_BANKS];
        uint32_t basepri[M_REG_NUM_BANKS];
        uint32_t control[M_REG_NUM_BANKS];
        uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
        uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
        uint32_t hfsr; /* HardFault Status */
        uint32_t dfsr; /* Debug Fault Status Register */
        uint32_t sfsr; /* Secure Fault Status Register */
        uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
        uint32_t bfar; /* BusFault Address */
        uint32_t sfar; /* Secure Fault Address Register */
        unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
        int exception;
        uint32_t primask[M_REG_NUM_BANKS];
        uint32_t faultmask[M_REG_NUM_BANKS];
        uint32_t aircr; /* only holds r/w state if security extn implemented */
        uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
        uint32_t csselr[M_REG_NUM_BANKS];
        uint32_t scr[M_REG_NUM_BANKS];
        uint32_t msplim[M_REG_NUM_BANKS];
        uint32_t psplim[M_REG_NUM_BANKS];
        uint32_t fpcar[M_REG_NUM_BANKS];
        uint32_t fpccr[M_REG_NUM_BANKS];
        uint32_t fpdscr[M_REG_NUM_BANKS];
        uint32_t cpacr[M_REG_NUM_BANKS];
        uint32_t nsacr;
    } v7m;

    /* Information associated with an exception about to be taken:
     * code which raises an exception must set cs->exception_index and
     * the relevant parts of this structure; the cpu_do_interrupt function
     * will then set the guest-visible registers as part of the exception
     * entry process.
     */
    struct {
        uint32_t syndrome; /* AArch64 format syndrome register */
        uint32_t fsr; /* AArch32 format fault status register info */
        uint64_t vaddress; /* virtual addr associated with exception, if any */
        uint32_t target_el; /* EL the exception should be targeted for */
        /* If we implement EL2 we will also need to store information
         * about the intermediate physical address for stage 2 faults.
         */
    } exception;

    /* Information associated with an SError */
    struct {
        uint8_t pending;
        uint8_t has_esr;
        uint64_t esr;
    } serror;

    /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
    uint32_t irq_line_state;

    /* Thumb-2 EE state.  */
    uint32_t teecr;
    uint32_t teehbr;

    /* VFP coprocessor state.  */
    struct {
        ARMVectorReg zregs[32];

#ifdef TARGET_AARCH64
        /* Store FFR as pregs[16] to make it easier to treat as any other.  */
#define FFR_PRED_NUM 16
        ARMPredicateReg pregs[17];
        /* Scratch space for aa64 sve predicate temporary.  */
        ARMPredicateReg preg_tmp;
#endif

        /* We store these fpcsr fields separately for convenience.  */
        uint32_t qc[4] QEMU_ALIGNED(16);
        int vec_len;
        int vec_stride;

        uint32_t xregs[16];

        /* Scratch space for aa32 neon expansion.  */
        uint32_t scratch[8];

        /* There are a number of distinct float control structures:
         *
         *  fp_status: is the "normal" fp status.
         *  fp_status_fp16: used for half-precision calculations
         *  standard_fp_status : the ARM "Standard FPSCR Value"
         *
         * Half-precision operations are governed by a separate
         * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
         * status structure to control this.
         *
         * The "Standard FPSCR", ie default-NaN, flush-to-zero,
         * round-to-nearest and is used by any operations (generally
         * Neon) which the architecture defines as controlled by the
         * standard FPSCR value rather than the FPSCR.
         *
         * To avoid having to transfer exception bits around, we simply
         * say that the FPSCR cumulative exception flags are the logical
         * OR of the flags in the three fp statuses. This relies on the
         * only thing which needs to read the exception flags being
         * an explicit FPSCR read.
         */
        float_status fp_status;
        float_status fp_status_f16;
        float_status standard_fp_status;

        /* ZCR_EL[1-3] */
        uint64_t zcr_el[4];
    } vfp;
    uint64_t exclusive_addr;
    uint64_t exclusive_val;
    uint64_t exclusive_high;

    /* iwMMXt coprocessor state.  */
    struct {
        uint64_t regs[16];
        uint64_t val;

        uint32_t cregs[16];
    } iwmmxt;

#ifdef TARGET_AARCH64
    struct {
        ARMPACKey apia;
        ARMPACKey apib;
        ARMPACKey apda;
        ARMPACKey apdb;
        ARMPACKey apga;
    } keys;
#endif

#if defined(CONFIG_USER_ONLY)
    /* For usermode syscall translation.  */
    int eabi;
#endif

    struct CPUBreakpoint *cpu_breakpoint[16];
    struct CPUWatchpoint *cpu_watchpoint[16];

    /* Fields up to this point are cleared by a CPU reset */
    struct {} end_reset_fields;

    /* Fields after this point are preserved across CPU reset. */

    /* Internal CPU feature flags.  */
    uint64_t features;

    /* PMSAv7 MPU */
    struct {
        uint32_t *drbar;
        uint32_t *drsr;
        uint32_t *dracr;
        uint32_t rnr[M_REG_NUM_BANKS];
    } pmsav7;

    /* PMSAv8 MPU */
    struct {
        /* The PMSAv8 implementation also shares some PMSAv7 config
         * and state:
         *  pmsav7.rnr (region number register)
         *  pmsav7_dregion (number of configured regions)
         */
        uint32_t *rbar[M_REG_NUM_BANKS];
        uint32_t *rlar[M_REG_NUM_BANKS];
        uint32_t mair0[M_REG_NUM_BANKS];
        uint32_t mair1[M_REG_NUM_BANKS];
    } pmsav8;

    /* v8M SAU */
    struct {
        uint32_t *rbar;
        uint32_t *rlar;
        uint32_t rnr;
        uint32_t ctrl;
    } sau;

    void *nvic;
    const struct arm_boot_info *boot_info;
    /* Store GICv3CPUState to access from this struct */
    void *gicv3state;
} CPUARMState;

/**
 * ARMELChangeHookFn:
 * type of a function which can be registered via arm_register_el_change_hook()
 * to get callbacks when the CPU changes its exception level or mode.
 */
typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
typedef struct ARMELChangeHook ARMELChangeHook;
struct ARMELChangeHook {
    ARMELChangeHookFn *hook;
    void *opaque;
    QLIST_ENTRY(ARMELChangeHook) node;
};

/* These values map onto the return values for
 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
typedef enum ARMPSCIState {
    PSCI_ON = 0,
    PSCI_OFF = 1,
    PSCI_ON_PENDING = 2
} ARMPSCIState;

typedef struct ARMISARegisters ARMISARegisters;

/**
 * ARMCPU:
 * @env: #CPUARMState
 *
 * An ARM CPU core.
 */
struct ARMCPU {
    /*< private >*/
    CPUState parent_obj;
    /*< public >*/

    CPUNegativeOffsetState neg;
    CPUARMState env;

    /* Coprocessor information */
    GHashTable *cp_regs;
    /* For marshalling (mostly coprocessor) register state between the
     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
     * we use these arrays.
     */
    /* List of register indexes managed via these arrays; (full KVM style
     * 64 bit indexes, not CPRegInfo 32 bit indexes)
     */
    uint64_t *cpreg_indexes;
    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
    uint64_t *cpreg_values;
    /* Length of the indexes, values, reset_values arrays */
    int32_t cpreg_array_len;
    /* These are used only for migration: incoming data arrives in
     * these fields and is sanity checked in post_load before copying
     * to the working data structures above.
     */
    uint64_t *cpreg_vmstate_indexes;
    uint64_t *cpreg_vmstate_values;
    int32_t cpreg_vmstate_array_len;

    DynamicGDBXMLInfo dyn_xml;

    /* Timers used by the generic (architected) timer */
    QEMUTimer *gt_timer[NUM_GTIMERS];
    /*
     * Timer used by the PMU. Its state is restored after migration by
     * pmu_op_finish() - it does not need other handling during migration
     */
    QEMUTimer *pmu_timer;
    /* GPIO outputs for generic timer */
    qemu_irq gt_timer_outputs[NUM_GTIMERS];
    /* GPIO output for GICv3 maintenance interrupt signal */
    qemu_irq gicv3_maintenance_interrupt;
    /* GPIO output for the PMU interrupt */
    qemu_irq pmu_interrupt;

    /* MemoryRegion to use for secure physical accesses */
    MemoryRegion *secure_memory;

    /* For v8M, pointer to the IDAU interface provided by board/SoC */
    Object *idau;

    /* 'compatible' string for this CPU for Linux device trees */
    const char *dtb_compatible;

    /* PSCI version for this CPU
     * Bits[31:16] = Major Version
     * Bits[15:0] = Minor Version
     */
    uint32_t psci_version;

    /* Should CPU start in PSCI powered-off state? */
    bool start_powered_off;

    /* Current power state, access guarded by BQL */
    ARMPSCIState power_state;

    /* CPU has virtualization extension */
    bool has_el2;
    /* CPU has security extension */
    bool has_el3;
    /* CPU has PMU (Performance Monitor Unit) */
    bool has_pmu;
    /* CPU has VFP */
    bool has_vfp;
    /* CPU has Neon */
    bool has_neon;
    /* CPU has M-profile DSP extension */
    bool has_dsp;

    /* CPU has memory protection unit */
    bool has_mpu;
    /* PMSAv7 MPU number of supported regions */
    uint32_t pmsav7_dregion;
    /* v8M SAU number of supported regions */
    uint32_t sau_sregion;

    /* PSCI conduit used to invoke PSCI methods
     * 0 - disabled, 1 - smc, 2 - hvc
     */
    uint32_t psci_conduit;

    /* For v8M, initial value of the Secure VTOR */
    uint32_t init_svtor;

    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
     */
    uint32_t kvm_target;

    /* KVM init features for this CPU */
    uint32_t kvm_init_features[7];

    /* Uniprocessor system with MP extensions */
    bool mp_is_up;

    /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
     * and the probe failed (so we need to report the error in realize)
     */
    bool host_cpu_probe_failed;

    /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
     * register.
     */
    int32_t core_count;

    /* The instance init functions for implementation-specific subclasses
     * set these fields to specify the implementation-dependent values of
     * various constant registers and reset values of non-constant
     * registers.
     * Some of these might become QOM properties eventually.
     * Field names match the official register names as defined in the
     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
     * is used for reset values of non-constant registers; no reset_
     * prefix means a constant register.
     * Some of these registers are split out into a substructure that
     * is shared with the translators to control the ISA.
     */
    struct ARMISARegisters {
        uint32_t id_isar0;
        uint32_t id_isar1;
        uint32_t id_isar2;
        uint32_t id_isar3;
        uint32_t id_isar4;
        uint32_t id_isar5;
        uint32_t id_isar6;
        uint32_t mvfr0;
        uint32_t mvfr1;
        uint32_t mvfr2;
        uint64_t id_aa64isar0;
        uint64_t id_aa64isar1;
        uint64_t id_aa64pfr0;
        uint64_t id_aa64pfr1;
        uint64_t id_aa64mmfr0;
        uint64_t id_aa64mmfr1;
    } isar;
    uint32_t midr;
    uint32_t revidr;
    uint32_t reset_fpsid;
    uint32_t ctr;
    uint32_t reset_sctlr;
    uint32_t id_pfr0;
    uint32_t id_pfr1;
    uint32_t id_dfr0;
    uint64_t pmceid0;
    uint64_t pmceid1;
    uint32_t id_afr0;
    uint32_t id_mmfr0;
    uint32_t id_mmfr1;
    uint32_t id_mmfr2;
    uint32_t id_mmfr3;
    uint32_t id_mmfr4;
    uint64_t id_aa64dfr0;
    uint64_t id_aa64dfr1;
    uint64_t id_aa64afr0;
    uint64_t id_aa64afr1;
    uint32_t dbgdidr;
    uint32_t clidr;
    uint64_t mp_affinity; /* MP ID without feature bits */
    /* The elements of this array are the CCSIDR values for each cache,
     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
     */
    uint32_t ccsidr[16];
    uint64_t reset_cbar;
    uint32_t reset_auxcr;
    bool reset_hivecs;
    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
    uint32_t dcz_blocksize;
    uint64_t rvbar;

    /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
    int gic_num_lrs; /* number of list registers */
    int gic_vpribits; /* number of virtual priority bits */
    int gic_vprebits; /* number of virtual preemption bits */

    /* Whether the cfgend input is high (i.e. this CPU should reset into
     * big-endian mode).  This setting isn't used directly: instead it modifies
     * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
     * architecture version.
     */
    bool cfgend;

    QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
    QLIST_HEAD(, ARMELChangeHook) el_change_hooks;

    int32_t node_id; /* NUMA node this CPU belongs to */

    /* Used to synchronize KVM and QEMU in-kernel device levels */
    uint8_t device_irq_level;

    /* Used to set the maximum vector length the cpu will support.  */
    uint32_t sve_max_vq;
};

void arm_cpu_post_init(Object *obj);

uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);

#ifndef CONFIG_USER_ONLY
extern const VMStateDescription vmstate_arm_cpu;
#endif

void arm_cpu_do_interrupt(CPUState *cpu);
void arm_v7m_cpu_do_interrupt(CPUState *cpu);
bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);

hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
                                         MemTxAttrs *attrs);

int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);

/* Dynamically generates for gdb stub an XML description of the sysregs from
 * the cp_regs hashtable. Returns the registered sysregs number.
 */
int arm_gen_dynamic_xml(CPUState *cpu);

/* Returns the dynamically generated XML for the gdb stub.
 * Returns a pointer to the XML contents for the specified XML file or NULL
 * if the XML name doesn't match the predefined one.
 */
const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);

int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
                             int cpuid, void *opaque);
int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
                             int cpuid, void *opaque);

#ifdef TARGET_AARCH64
int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
void aarch64_sve_change_el(CPUARMState *env, int old_el,
                           int new_el, bool el0_a64);
#else
static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
static inline void aarch64_sve_change_el(CPUARMState *env, int o,
                                         int n, bool a)
{ }
#endif

#if !defined(CONFIG_TCG)
static inline target_ulong do_arm_semihosting(CPUARMState *env)
{
    g_assert_not_reached();
}
#else
target_ulong do_arm_semihosting(CPUARMState *env);
#endif
void aarch64_sync_32_to_64(CPUARMState *env);
void aarch64_sync_64_to_32(CPUARMState *env);

int fp_exception_el(CPUARMState *env, int cur_el);
int sve_exception_el(CPUARMState *env, int cur_el);
uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);

static inline bool is_a64(CPUARMState *env)
{
    return env->aarch64;
}

/* you can call this signal handler from your SIGBUS and SIGSEGV
   signal handlers to inform the virtual CPU of exceptions. non zero
   is returned if the signal was handled by the virtual CPU.  */
int cpu_arm_signal_handler(int host_signum, void *pinfo,
                           void *puc);

/**
 * pmu_op_start/finish
 * @env: CPUARMState
 *
 * Convert all PMU counters between their delta form (the typical mode when
 * they are enabled) and the guest-visible values. These two calls must
 * surround any action which might affect the counters.
 */
void pmu_op_start(CPUARMState *env);
void pmu_op_finish(CPUARMState *env);

/*
 * Called when a PMU counter is due to overflow
 */
void arm_pmu_timer_cb(void *opaque);

/**
 * Functions to register as EL change hooks for PMU mode filtering
 */
void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
void pmu_post_el_change(ARMCPU *cpu, void *ignored);

/*
 * pmu_init
 * @cpu: ARMCPU
 *
 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
 * for the current configuration
 */
void pmu_init(ARMCPU *cpu);

/* SCTLR bit meanings. Several bits have been reused in newer
 * versions of the architecture; in that case we define constants
 * for both old and new bit meanings. Code which tests against those
 * bits should probably check or otherwise arrange that the CPU
 * is the architectural version it expects.
 */
#define SCTLR_M       (1U << 0)
#define SCTLR_A       (1U << 1)
#define SCTLR_C       (1U << 2)
#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
#define SCTLR_SA      (1U << 3) /* AArch64 only */
#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
#define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
#define SCTLR_ITD     (1U << 7) /* v8 onward */
#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
#define SCTLR_SED     (1U << 8) /* v8 onward */
#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
#define SCTLR_F       (1U << 10) /* up to v6 */
#define SCTLR_SW      (1U << 10) /* v7 */
#define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
#define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
#define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
#define SCTLR_I       (1U << 12)
#define SCTLR_V       (1U << 13) /* AArch32 only */
#define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
#define SCTLR_RR      (1U << 14) /* up to v7 */
#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWI    (1U << 16) /* v8 onward */
#define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
#define SCTLR_BR      (1U << 17) /* PMSA only */
#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWE    (1U << 18) /* v8 onward */
#define SCTLR_WXN     (1U << 19)
#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
#define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
#define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
#define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
#define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
#define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
#define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
#define SCTLR_VE      (1U << 24) /* up to v7 */
#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
#define SCTLR_EE      (1U << 25)
#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
#define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
#define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
#define SCTLR_TRE     (1U << 28) /* AArch32 only */
#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
#define SCTLR_AFE     (1U << 29) /* AArch32 only */
#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
#define SCTLR_TE      (1U << 30) /* AArch32 only */
#define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
#define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
#define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
#define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
#define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
#define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
#define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
#define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
#define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
#define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */

#define CPTR_TCPAC    (1U << 31)
#define CPTR_TTA      (1U << 20)
#define CPTR_TFP      (1U << 10)
#define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
#define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */

#define MDCR_EPMAD    (1U << 21)
#define MDCR_EDAD     (1U << 20)
#define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
#define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
#define MDCR_SDD      (1U << 16)
#define MDCR_SPD      (3U << 14)
#define MDCR_TDRA     (1U << 11)
#define MDCR_TDOSA    (1U << 10)
#define MDCR_TDA      (1U << 9)
#define MDCR_TDE      (1U << 8)
#define MDCR_HPME     (1U << 7)
#define MDCR_TPM      (1U << 6)
#define MDCR_TPMCR    (1U << 5)
#define MDCR_HPMN     (0x1fU)

/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)

#define CPSR_M (0x1fU)
#define CPSR_T (1U << 5)
#define CPSR_F (1U << 6)
#define CPSR_I (1U << 7)
#define CPSR_A (1U << 8)
#define CPSR_E (1U << 9)
#define CPSR_IT_2_7 (0xfc00U)
#define CPSR_GE (0xfU << 16)
#define CPSR_IL (1U << 20)
/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
 * where it is live state but not accessible to the AArch32 code.
 */
#define CPSR_RESERVED (0x7U << 21)
#define CPSR_J (1U << 24)
#define CPSR_IT_0_1 (3U << 25)
#define CPSR_Q (1U << 27)
#define CPSR_V (1U << 28)
#define CPSR_C (1U << 29)
#define CPSR_Z (1U << 30)
#define CPSR_N (1U << 31)
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)

#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
    | CPSR_NZCV)
/* Bits writable in user mode.  */
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
/* Mask of bits which may be set by exception return copying them from SPSR */
#define CPSR_ERET_MASK (~CPSR_RESERVED)

/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
#define XPSR_EXCP 0x1ffU
#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
#define XPSR_IT_2_7 CPSR_IT_2_7
#define XPSR_GE CPSR_GE
#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
#define XPSR_IT_0_1 CPSR_IT_0_1
#define XPSR_Q CPSR_Q
#define XPSR_V CPSR_V
#define XPSR_C CPSR_C
#define XPSR_Z CPSR_Z
#define XPSR_N CPSR_N
#define XPSR_NZCV CPSR_NZCV
#define XPSR_IT CPSR_IT

#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
#define TTBCR_PD0    (1U << 4)
#define TTBCR_PD1    (1U << 5)
#define TTBCR_EPD0   (1U << 7)
#define TTBCR_IRGN0  (3U << 8)
#define TTBCR_ORGN0  (3U << 10)
#define TTBCR_SH0    (3U << 12)
#define TTBCR_T1SZ   (3U << 16)
#define TTBCR_A1     (1U << 22)
#define TTBCR_EPD1   (1U << 23)
#define TTBCR_IRGN1  (3U << 24)
#define TTBCR_ORGN1  (3U << 26)
#define TTBCR_SH1    (1U << 28)
#define TTBCR_EAE    (1U << 31)

/* Bit definitions for ARMv8 SPSR (PSTATE) format.
 * Only these are valid when in AArch64 mode; in
 * AArch32 mode SPSRs are basically CPSR-format.
 */
#define PSTATE_SP (1U)
#define PSTATE_M (0xFU)
#define PSTATE_nRW (1U << 4)
#define PSTATE_F (1U << 6)
#define PSTATE_I (1U << 7)
#define PSTATE_A (1U << 8)
#define PSTATE_D (1U << 9)
#define PSTATE_BTYPE (3U << 10)
#define PSTATE_IL (1U << 20)
#define PSTATE_SS (1U << 21)
#define PSTATE_V (1U << 28)
#define PSTATE_C (1U << 29)
#define PSTATE_Z (1U << 30)
#define PSTATE_N (1U << 31)
#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
/* Mode values for AArch64 */
#define PSTATE_MODE_EL3h 13
#define PSTATE_MODE_EL3t 12
#define PSTATE_MODE_EL2h 9
#define PSTATE_MODE_EL2t 8
#define PSTATE_MODE_EL1h 5
#define PSTATE_MODE_EL1t 4
#define PSTATE_MODE_EL0t 0

/* Write a new value to v7m.exception, thus transitioning into or out
 * of Handler mode; this may result in a change of active stack pointer.
 */
void write_v7m_exception(CPUARMState *env, uint32_t new_exc);

/* Map EL and handler into a PSTATE_MODE.  */
static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
{
    return (el << 2) | handler;
}

/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
 * interprocessing, so we don't attempt to sync with the cpsr state used by
 * the 32 bit decoder.
 */
static inline uint32_t pstate_read(CPUARMState *env)
{
    int ZF;

    ZF = (env->ZF == 0);
    return (env->NF & 0x80000000) | (ZF << 30)
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
        | env->pstate | env->daif | (env->btype << 10);
}

static inline void pstate_write(CPUARMState *env, uint32_t val)
{
    env->ZF = (~val) & PSTATE_Z;
    env->NF = val;
    env->CF = (val >> 29) & 1;
    env->VF = (val << 3) & 0x80000000;
    env->daif = val & PSTATE_DAIF;
    env->btype = (val >> 10) & 3;
    env->pstate = val & ~CACHED_PSTATE_BITS;
}

/* Return the current CPSR value.  */
uint32_t cpsr_read(CPUARMState *env);

typedef enum CPSRWriteType {
    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
    CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
} CPSRWriteType;

/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
                CPSRWriteType write_type);

/* Return the current xPSR value.  */
static inline uint32_t xpsr_read(CPUARMState *env)
{
    int ZF;
    ZF = (env->ZF == 0);
    return (env->NF & 0x80000000) | (ZF << 30)
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
        | (env->GE << 16)
        | env->v7m.exception;
}

/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
    if (mask & XPSR_NZCV) {
        env->ZF = (~val) & XPSR_Z;
        env->NF = val;
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & XPSR_Q) {
        env->QF = ((val & XPSR_Q) != 0);
    }
    if (mask & XPSR_GE) {
        env->GE = (val & XPSR_GE) >> 16;
    }
    if (mask & XPSR_T) {
        env->thumb = ((val & XPSR_T) != 0);
    }
    if (mask & XPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & XPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & XPSR_EXCP) {
        /* Note that this only happens on exception exit */
        write_v7m_exception(env, val & XPSR_EXCP);
    }
}

#define HCR_VM        (1ULL << 0)
#define HCR_SWIO      (1ULL << 1)
#define HCR_PTW       (1ULL << 2)
#define HCR_FMO       (1ULL << 3)
#define HCR_IMO       (1ULL << 4)
#define HCR_AMO       (1ULL << 5)
#define HCR_VF        (1ULL << 6)
#define HCR_VI        (1ULL << 7)
#define HCR_VSE       (1ULL << 8)
#define HCR_FB        (1ULL << 9)
#define HCR_BSU_MASK  (3ULL << 10)
#define HCR_DC        (1ULL << 12)
#define HCR_TWI       (1ULL << 13)
#define HCR_TWE       (1ULL << 14)
#define HCR_TID0      (1ULL << 15)
#define HCR_TID1      (1ULL << 16)
#define HCR_TID2      (1ULL << 17)
#define HCR_TID3      (1ULL << 18)
#define HCR_TSC       (1ULL << 19)
#define HCR_TIDCP     (1ULL << 20)
#define HCR_TACR      (1ULL << 21)
#define HCR_TSW       (1ULL << 22)
#define HCR_TPCP      (1ULL << 23)
#define HCR_TPU       (1ULL << 24)
#define HCR_TTLB      (1ULL << 25)
#define HCR_TVM       (1ULL << 26)
#define HCR_TGE       (1ULL << 27)
#define HCR_TDZ       (1ULL << 28)
#define HCR_HCD       (1ULL << 29)
#define HCR_TRVM      (1ULL << 30)
#define HCR_RW        (1ULL << 31)
#define HCR_CD        (1ULL << 32)
#define HCR_ID        (1ULL << 33)
#define HCR_E2H       (1ULL << 34)
#define HCR_TLOR      (1ULL << 35)
#define HCR_TERR      (1ULL << 36)
#define HCR_TEA       (1ULL << 37)
#define HCR_MIOCNCE   (1ULL << 38)
#define HCR_APK       (1ULL << 40)
#define HCR_API       (1ULL << 41)
#define HCR_NV        (1ULL << 42)
#define HCR_NV1       (1ULL << 43)
#define HCR_AT        (1ULL << 44)
#define HCR_NV2       (1ULL << 45)
#define HCR_FWB       (1ULL << 46)
#define HCR_FIEN      (1ULL << 47)
#define HCR_TID4      (1ULL << 49)
#define HCR_TICAB     (1ULL << 50)
#define HCR_TOCU      (1ULL << 52)
#define HCR_TTLBIS    (1ULL << 54)
#define HCR_TTLBOS    (1ULL << 55)
#define HCR_ATA       (1ULL << 56)
#define HCR_DCT       (1ULL << 57)

/*
 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
 * HCR_MASK and then clear it again if the feature bit is not set in
 * hcr_write().
 */
#define HCR_MASK      ((1ULL << 34) - 1)

#define SCR_NS                (1U << 0)
#define SCR_IRQ               (1U << 1)
#define SCR_FIQ               (1U << 2)
#define SCR_EA                (1U << 3)
#define SCR_FW                (1U << 4)
#define SCR_AW                (1U << 5)
#define SCR_NET               (1U << 6)
#define SCR_SMD               (1U << 7)
#define SCR_HCE               (1U << 8)
#define SCR_SIF               (1U << 9)
#define SCR_RW                (1U << 10)
#define SCR_ST                (1U << 11)
#define SCR_TWI               (1U << 12)
#define SCR_TWE               (1U << 13)
#define SCR_TLOR              (1U << 14)
#define SCR_TERR              (1U << 15)
#define SCR_APK               (1U << 16)
#define SCR_API               (1U << 17)
#define SCR_EEL2              (1U << 18)
#define SCR_EASE              (1U << 19)
#define SCR_NMEA              (1U << 20)
#define SCR_FIEN              (1U << 21)
#define SCR_ENSCXT            (1U << 25)
#define SCR_ATA               (1U << 26)

/* Return the current FPSCR value.  */
uint32_t vfp_get_fpscr(CPUARMState *env);
void vfp_set_fpscr(CPUARMState *env, uint32_t val);

/* FPCR, Floating Point Control Register
 * FPSR, Floating Poiht Status Register
 *
 * For A64 the FPSCR is split into two logically distinct registers,
 * FPCR and FPSR. However since they still use non-overlapping bits
 * we store the underlying state in fpscr and just mask on read/write.
 */
#define FPSR_MASK 0xf800009f
#define FPCR_MASK 0x07ff9f00

#define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
#define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
#define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
#define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
#define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
#define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
#define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
#define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
#define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
#define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */

static inline uint32_t vfp_get_fpsr(CPUARMState *env)
{
    return vfp_get_fpscr(env) & FPSR_MASK;
}

static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
{
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
    vfp_set_fpscr(env, new_fpscr);
}

static inline uint32_t vfp_get_fpcr(CPUARMState *env)
{
    return vfp_get_fpscr(env) & FPCR_MASK;
}

static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
{
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
    vfp_set_fpscr(env, new_fpscr);
}

enum arm_cpu_mode {
  ARM_CPU_MODE_USR = 0x10,
  ARM_CPU_MODE_FIQ = 0x11,
  ARM_CPU_MODE_IRQ = 0x12,
  ARM_CPU_MODE_SVC = 0x13,
  ARM_CPU_MODE_MON = 0x16,
  ARM_CPU_MODE_ABT = 0x17,
  ARM_CPU_MODE_HYP = 0x1a,
  ARM_CPU_MODE_UND = 0x1b,
  ARM_CPU_MODE_SYS = 0x1f
};

/* VFP system registers.  */
#define ARM_VFP_FPSID   0
#define ARM_VFP_FPSCR   1
#define ARM_VFP_MVFR2   5
#define ARM_VFP_MVFR1   6
#define ARM_VFP_MVFR0   7
#define ARM_VFP_FPEXC   8
#define ARM_VFP_FPINST  9
#define ARM_VFP_FPINST2 10

/* iwMMXt coprocessor control registers.  */
#define ARM_IWMMXT_wCID  0
#define ARM_IWMMXT_wCon  1
#define ARM_IWMMXT_wCSSF 2
#define ARM_IWMMXT_wCASF 3
#define ARM_IWMMXT_wCGR0 8
#define ARM_IWMMXT_wCGR1 9
#define ARM_IWMMXT_wCGR2 10
#define ARM_IWMMXT_wCGR3 11

/* V7M CCR bits */
FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
FIELD(V7M_CCR, USERSETMPEND, 1, 1)
FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
FIELD(V7M_CCR, STKALIGN, 9, 1)
FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
FIELD(V7M_CCR, DC, 16, 1)
FIELD(V7M_CCR, IC, 17, 1)
FIELD(V7M_CCR, BP, 18, 1)

/* V7M SCR bits */
FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
FIELD(V7M_SCR, SEVONPEND, 4, 1)

/* V7M AIRCR bits */
FIELD(V7M_AIRCR, VECTRESET, 0, 1)
FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
FIELD(V7M_AIRCR, PRIS, 14, 1)
FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
FIELD(V7M_AIRCR, VECTKEY, 16, 16)

/* V7M CFSR bits for MMFSR */
FIELD(V7M_CFSR, IACCVIOL, 0, 1)
FIELD(V7M_CFSR, DACCVIOL, 1, 1)
FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
FIELD(V7M_CFSR, MSTKERR, 4, 1)
FIELD(V7M_CFSR, MLSPERR, 5, 1)
FIELD(V7M_CFSR, MMARVALID, 7, 1)

/* V7M CFSR bits for BFSR */
FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)

/* V7M CFSR bits for UFSR */
FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)

/* V7M CFSR bit masks covering all of the subregister bits */
FIELD(V7M_CFSR, MMFSR, 0, 8)
FIELD(V7M_CFSR, BFSR, 8, 8)
FIELD(V7M_CFSR, UFSR, 16, 16)

/* V7M HFSR bits */
FIELD(V7M_HFSR, VECTTBL, 1, 1)
FIELD(V7M_HFSR, FORCED, 30, 1)
FIELD(V7M_HFSR, DEBUGEVT, 31, 1)

/* V7M DFSR bits */
FIELD(V7M_DFSR, HALTED, 0, 1)
FIELD(V7M_DFSR, BKPT, 1, 1)
FIELD(V7M_DFSR, DWTTRAP, 2, 1)
FIELD(V7M_DFSR, VCATCH, 3, 1)
FIELD(V7M_DFSR, EXTERNAL, 4, 1)

/* V7M SFSR bits */
FIELD(V7M_SFSR, INVEP, 0, 1)
FIELD(V7M_SFSR, INVIS, 1, 1)
FIELD(V7M_SFSR, INVER, 2, 1)
FIELD(V7M_SFSR, AUVIOL, 3, 1)
FIELD(V7M_SFSR, INVTRAN, 4, 1)
FIELD(V7M_SFSR, LSPERR, 5, 1)
FIELD(V7M_SFSR, SFARVALID, 6, 1)
FIELD(V7M_SFSR, LSERR, 7, 1)

/* v7M MPU_CTRL bits */
FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)

/* v7M CLIDR bits */
FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
FIELD(V7M_CLIDR, LOUIS, 21, 3)
FIELD(V7M_CLIDR, LOC, 24, 3)
FIELD(V7M_CLIDR, LOUU, 27, 3)
FIELD(V7M_CLIDR, ICB, 30, 2)

FIELD(V7M_CSSELR, IND, 0, 1)
FIELD(V7M_CSSELR, LEVEL, 1, 3)
/* We use the combination of InD and Level to index into cpu->ccsidr[];
 * define a mask for this and check that it doesn't permit running off
 * the end of the array.
 */
FIELD(V7M_CSSELR, INDEX, 0, 4)

/* v7M FPCCR bits */
FIELD(V7M_FPCCR, LSPACT, 0, 1)
FIELD(V7M_FPCCR, USER, 1, 1)
FIELD(V7M_FPCCR, S, 2, 1)
FIELD(V7M_FPCCR, THREAD, 3, 1)
FIELD(V7M_FPCCR, HFRDY, 4, 1)
FIELD(V7M_FPCCR, MMRDY, 5, 1)
FIELD(V7M_FPCCR, BFRDY, 6, 1)
FIELD(V7M_FPCCR, SFRDY, 7, 1)
FIELD(V7M_FPCCR, MONRDY, 8, 1)
FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
FIELD(V7M_FPCCR, UFRDY, 10, 1)
FIELD(V7M_FPCCR, RES0, 11, 15)
FIELD(V7M_FPCCR, TS, 26, 1)
FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
FIELD(V7M_FPCCR, CLRONRET, 28, 1)
FIELD(V7M_FPCCR, LSPENS, 29, 1)
FIELD(V7M_FPCCR, LSPEN, 30, 1)
FIELD(V7M_FPCCR, ASPEN, 31, 1)
/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
#define R_V7M_FPCCR_BANKED_MASK                 \
    (R_V7M_FPCCR_LSPACT_MASK |                  \
     R_V7M_FPCCR_USER_MASK |                    \
     R_V7M_FPCCR_THREAD_MASK |                  \
     R_V7M_FPCCR_MMRDY_MASK |                   \
     R_V7M_FPCCR_SPLIMVIOL_MASK |               \
     R_V7M_FPCCR_UFRDY_MASK |                   \
     R_V7M_FPCCR_ASPEN_MASK)

/*
 * System register ID fields.
 */
FIELD(MIDR_EL1, REVISION, 0, 4)
FIELD(MIDR_EL1, PARTNUM, 4, 12)
FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
FIELD(MIDR_EL1, VARIANT, 20, 4)
FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)

FIELD(ID_ISAR0, SWAP, 0, 4)
FIELD(ID_ISAR0, BITCOUNT, 4, 4)
FIELD(ID_ISAR0, BITFIELD, 8, 4)
FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
FIELD(ID_ISAR0, COPROC, 16, 4)
FIELD(ID_ISAR0, DEBUG, 20, 4)
FIELD(ID_ISAR0, DIVIDE, 24, 4)

FIELD(ID_ISAR1, ENDIAN, 0, 4)
FIELD(ID_ISAR1, EXCEPT, 4, 4)
FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
FIELD(ID_ISAR1, EXTEND, 12, 4)
FIELD(ID_ISAR1, IFTHEN, 16, 4)
FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
FIELD(ID_ISAR1, INTERWORK, 24, 4)
FIELD(ID_ISAR1, JAZELLE, 28, 4)

FIELD(ID_ISAR2, LOADSTORE, 0, 4)
FIELD(ID_ISAR2, MEMHINT, 4, 4)
FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
FIELD(ID_ISAR2, MULT, 12, 4)
FIELD(ID_ISAR2, MULTS, 16, 4)
FIELD(ID_ISAR2, MULTU, 20, 4)
FIELD(ID_ISAR2, PSR_AR, 24, 4)
FIELD(ID_ISAR2, REVERSAL, 28, 4)

FIELD(ID_ISAR3, SATURATE, 0, 4)
FIELD(ID_ISAR3, SIMD, 4, 4)
FIELD(ID_ISAR3, SVC, 8, 4)
FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
FIELD(ID_ISAR3, TABBRANCH, 16, 4)
FIELD(ID_ISAR3, T32COPY, 20, 4)
FIELD(ID_ISAR3, TRUENOP, 24, 4)
FIELD(ID_ISAR3, T32EE, 28, 4)

FIELD(ID_ISAR4, UNPRIV, 0, 4)
FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
FIELD(ID_ISAR4, WRITEBACK, 8, 4)
FIELD(ID_ISAR4, SMC, 12, 4)
FIELD(ID_ISAR4, BARRIER, 16, 4)
FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
FIELD(ID_ISAR4, PSR_M, 24, 4)
FIELD(ID_ISAR4, SWP_FRAC, 28, 4)

FIELD(ID_ISAR5, SEVL, 0, 4)
FIELD(ID_ISAR5, AES, 4, 4)
FIELD(ID_ISAR5, SHA1, 8, 4)
FIELD(ID_ISAR5, SHA2, 12, 4)
FIELD(ID_ISAR5, CRC32, 16, 4)
FIELD(ID_ISAR5, RDM, 24, 4)
FIELD(ID_ISAR5, VCMA, 28, 4)

FIELD(ID_ISAR6, JSCVT, 0, 4)
FIELD(ID_ISAR6, DP, 4, 4)
FIELD(ID_ISAR6, FHM, 8, 4)
FIELD(ID_ISAR6, SB, 12, 4)
FIELD(ID_ISAR6, SPECRES, 16, 4)

FIELD(ID_MMFR4, SPECSEI, 0, 4)
FIELD(ID_MMFR4, AC2, 4, 4)
FIELD(ID_MMFR4, XNX, 8, 4)
FIELD(ID_MMFR4, CNP, 12, 4)
FIELD(ID_MMFR4, HPDS, 16, 4)
FIELD(ID_MMFR4, LSM, 20, 4)
FIELD(ID_MMFR4, CCIDX, 24, 4)
FIELD(ID_MMFR4, EVT, 28, 4)

FIELD(ID_AA64ISAR0, AES, 4, 4)
FIELD(ID_AA64ISAR0, SHA1, 8, 4)
FIELD(ID_AA64ISAR0, SHA2, 12, 4)
FIELD(ID_AA64ISAR0, CRC32, 16, 4)
FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
FIELD(ID_AA64ISAR0, RDM, 28, 4)
FIELD(ID_AA64ISAR0, SHA3, 32, 4)
FIELD(ID_AA64ISAR0, SM3, 36, 4)
FIELD(ID_AA64ISAR0, SM4, 40, 4)
FIELD(ID_AA64ISAR0, DP, 44, 4)
FIELD(ID_AA64ISAR0, FHM, 48, 4)
FIELD(ID_AA64ISAR0, TS, 52, 4)
FIELD(ID_AA64ISAR0, TLB, 56, 4)
FIELD(ID_AA64ISAR0, RNDR, 60, 4)

FIELD(ID_AA64ISAR1, DPB, 0, 4)
FIELD(ID_AA64ISAR1, APA, 4, 4)
FIELD(ID_AA64ISAR1, API, 8, 4)
FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
FIELD(ID_AA64ISAR1, FCMA, 16, 4)
FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
FIELD(ID_AA64ISAR1, GPA, 24, 4)
FIELD(ID_AA64ISAR1, GPI, 28, 4)
FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
FIELD(ID_AA64ISAR1, SB, 36, 4)
FIELD(ID_AA64ISAR1, SPECRES, 40, 4)

FIELD(ID_AA64PFR0, EL0, 0, 4)
FIELD(ID_AA64PFR0, EL1, 4, 4)
FIELD(ID_AA64PFR0, EL2, 8, 4)
FIELD(ID_AA64PFR0, EL3, 12, 4)
FIELD(ID_AA64PFR0, FP, 16, 4)
FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
FIELD(ID_AA64PFR0, GIC, 24, 4)
FIELD(ID_AA64PFR0, RAS, 28, 4)
FIELD(ID_AA64PFR0, SVE, 32, 4)

FIELD(ID_AA64PFR1, BT, 0, 4)
FIELD(ID_AA64PFR1, SBSS, 4, 4)
FIELD(ID_AA64PFR1, MTE, 8, 4)
FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)

FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
FIELD(ID_AA64MMFR0, EXS, 44, 4)

FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
FIELD(ID_AA64MMFR1, VH, 8, 4)
FIELD(ID_AA64MMFR1, HPDS, 12, 4)
FIELD(ID_AA64MMFR1, LO, 16, 4)
FIELD(ID_AA64MMFR1, PAN, 20, 4)
FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
FIELD(ID_AA64MMFR1, XNX, 28, 4)

FIELD(ID_DFR0, COPDBG, 0, 4)
FIELD(ID_DFR0, COPSDBG, 4, 4)
FIELD(ID_DFR0, MMAPDBG, 8, 4)
FIELD(ID_DFR0, COPTRC, 12, 4)
FIELD(ID_DFR0, MMAPTRC, 16, 4)
FIELD(ID_DFR0, MPROFDBG, 20, 4)
FIELD(ID_DFR0, PERFMON, 24, 4)
FIELD(ID_DFR0, TRACEFILT, 28, 4)

FIELD(MVFR0, SIMDREG, 0, 4)
FIELD(MVFR0, FPSP, 4, 4)
FIELD(MVFR0, FPDP, 8, 4)
FIELD(MVFR0, FPTRAP, 12, 4)
FIELD(MVFR0, FPDIVIDE, 16, 4)
FIELD(MVFR0, FPSQRT, 20, 4)
FIELD(MVFR0, FPSHVEC, 24, 4)
FIELD(MVFR0, FPROUND, 28, 4)

FIELD(MVFR1, FPFTZ, 0, 4)
FIELD(MVFR1, FPDNAN, 4, 4)
FIELD(MVFR1, SIMDLS, 8, 4)
FIELD(MVFR1, SIMDINT, 12, 4)
FIELD(MVFR1, SIMDSP, 16, 4)
FIELD(MVFR1, SIMDHP, 20, 4)
FIELD(MVFR1, FPHP, 24, 4)
FIELD(MVFR1, SIMDFMAC, 28, 4)

FIELD(MVFR2, SIMDMISC, 0, 4)
FIELD(MVFR2, FPMISC, 4, 4)

QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);

/* If adding a feature bit which corresponds to a Linux ELF
 * HWCAP bit, remember to update the feature-bit-to-hwcap
 * mapping in linux-user/elfload.c:get_elf_hwcap().
 */
enum arm_features {
    ARM_FEATURE_VFP,
    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
    ARM_FEATURE_V6,
    ARM_FEATURE_V6K,
    ARM_FEATURE_V7,
    ARM_FEATURE_THUMB2,
    ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
    ARM_FEATURE_VFP3,
    ARM_FEATURE_NEON,
    ARM_FEATURE_M, /* Microcontroller profile.  */
    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
    ARM_FEATURE_THUMB2EE,
    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
    ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
    ARM_FEATURE_V4T,
    ARM_FEATURE_V5,
    ARM_FEATURE_STRONGARM,
    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
    ARM_FEATURE_GENERIC_TIMER,
    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
    ARM_FEATURE_V8,
    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
    ARM_FEATURE_CBAR, /* has cp15 CBAR */
    ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
    ARM_FEATURE_PMU, /* has PMU support */
    ARM_FEATURE_VBAR, /* has cp15 VBAR */
    ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
    ARM_FEATURE_M_MAIN, /* M profile Main Extension */
};

static inline int arm_feature(CPUARMState *env, int feature)
{
    return (env->features & (1ULL << feature)) != 0;
}

#if !defined(CONFIG_USER_ONLY)
/* Return true if exception levels below EL3 are in secure state,
 * or would be following an exception return to that level.
 * Unlike arm_is_secure() (which is always a question about the
 * _current_ state of the CPU) this doesn't care about the current
 * EL or mode.
 */
static inline bool arm_is_secure_below_el3(CPUARMState *env)
{
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        return !(env->cp15.scr_el3 & SCR_NS);
    } else {
        /* If EL3 is not supported then the secure state is implementation
         * defined, in which case QEMU defaults to non-secure.
         */
        return false;
    }
}

/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
static inline bool arm_is_el3_or_mon(CPUARMState *env)
{
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
            /* CPU currently in AArch64 state and EL3 */
            return true;
        } else if (!is_a64(env) &&
                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
            /* CPU currently in AArch32 state and monitor mode */
            return true;
        }
    }
    return false;
}

/* Return true if the processor is in secure state */
static inline bool arm_is_secure(CPUARMState *env)
{
    if (arm_is_el3_or_mon(env)) {
        return true;
    }
    return arm_is_secure_below_el3(env);
}

#else
static inline bool arm_is_secure_below_el3(CPUARMState *env)
{
    return false;
}

static inline bool arm_is_secure(CPUARMState *env)
{
    return false;
}
#endif

/**
 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
 * "for all purposes other than a direct read or write access of HCR_EL2."
 * Not included here is HCR_RW.
 */
uint64_t arm_hcr_el2_eff(CPUARMState *env);

/* Return true if the specified exception level is running in AArch64 state. */
static inline bool arm_el_is_aa64(CPUARMState *env, int el)
{
    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
     * and if we're not in EL0 then the state of EL0 isn't well defined.)
     */
    assert(el >= 1 && el <= 3);
    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);

    /* The highest exception level is always at the maximum supported
     * register width, and then lower levels have a register width controlled
     * by bits in the SCR or HCR registers.
     */
    if (el == 3) {
        return aa64;
    }

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
    }

    if (el == 2) {
        return aa64;
    }

    if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
    }

    return aa64;
}

/* Function for determing whether guest cp register reads and writes should
 * access the secure or non-secure bank of a cp register.  When EL3 is
 * operating in AArch32 state, the NS-bit determines whether the secure
 * instance of a cp register should be used. When EL3 is AArch64 (or if
 * it doesn't exist at all) then there is no register banking, and all
 * accesses are to the non-secure version.
 */
static inline bool access_secure_reg(CPUARMState *env)
{
    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
                !arm_el_is_aa64(env, 3) &&
                !(env->cp15.scr_el3 & SCR_NS));

    return ret;
}

/* Macros for accessing a specified CP register bank */
#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)

#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
    do {                                                \
        if (_secure) {                                   \
            (_env)->cp15._regname##_s = (_val);            \
        } else {                                        \
            (_env)->cp15._regname##_ns = (_val);           \
        }                                               \
    } while (0)

/* Macros for automatically accessing a specific CP register bank depending on
 * the current secure state of the system.  These macros are not intended for
 * supporting instruction translation reads/writes as these are dependent
 * solely on the SCR.NS bit and not the mode.
 */
#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
    A32_BANKED_REG_GET((_env), _regname,                \
                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))

#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
    A32_BANKED_REG_SET((_env), _regname,                                    \
                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
                       (_val))

void arm_cpu_list(void);
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure);

/* Interface between CPU and Interrupt controller.  */
#ifndef CONFIG_USER_ONLY
bool armv7m_nvic_can_take_pending_exception(void *opaque);
#else
static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
{
    return true;
}
#endif
/**
 * armv7m_nvic_set_pending: mark the specified exception as pending
 * @opaque: the NVIC
 * @irq: the exception number to mark pending
 * @secure: false for non-banked exceptions or for the nonsecure
 * version of a banked exception, true for the secure version of a banked
 * exception.
 *
 * Marks the specified exception as pending. Note that we will assert()
 * if @secure is true and @irq does not specify one of the fixed set
 * of architecturally banked exceptions.
 */
void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
/**
 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
 * @opaque: the NVIC
 * @irq: the exception number to mark pending
 * @secure: false for non-banked exceptions or for the nonsecure
 * version of a banked exception, true for the secure version of a banked
 * exception.
 *
 * Similar to armv7m_nvic_set_pending(), but specifically for derived
 * exceptions (exceptions generated in the course of trying to take
 * a different exception).
 */
void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
/**
 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
 * @opaque: the NVIC
 * @irq: the exception number to mark pending
 * @secure: false for non-banked exceptions or for the nonsecure
 * version of a banked exception, true for the secure version of a banked
 * exception.
 *
 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
 * generated in the course of lazy stacking of FP registers.
 */
void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
/**
 * armv7m_nvic_get_pending_irq_info: return highest priority pending
 *    exception, and whether it targets Secure state
 * @opaque: the NVIC
 * @pirq: set to pending exception number
 * @ptargets_secure: set to whether pending exception targets Secure
 *
 * This function writes the number of the highest priority pending
 * exception (the one which would be made active by
 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
 * to true if the current highest priority pending exception should
 * be taken to Secure state, false for NS.
 */
void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
                                      bool *ptargets_secure);
/**
 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
 * @opaque: the NVIC
 *
 * Move the current highest priority pending exception from the pending
 * state to the active state, and update v7m.exception to indicate that
 * it is the exception currently being handled.
 */
void armv7m_nvic_acknowledge_irq(void *opaque);
/**
 * armv7m_nvic_complete_irq: complete specified interrupt or exception
 * @opaque: the NVIC
 * @irq: the exception number to complete
 * @secure: true if this exception was secure
 *
 * Returns: -1 if the irq was not active
 *           1 if completing this irq brought us back to base (no active irqs)
 *           0 if there is still an irq active after this one was completed
 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
 */
int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
/**
 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
 * @opaque: the NVIC
 * @irq: the exception number to mark pending
 * @secure: false for non-banked exceptions or for the nonsecure
 * version of a banked exception, true for the secure version of a banked
 * exception.
 *
 * Return whether an exception is "ready", i.e. whether the exception is
 * enabled and is configured at a priority which would allow it to
 * interrupt the current execution priority. This controls whether the
 * RDY bit for it in the FPCCR is set.
 */
bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
/**
 * armv7m_nvic_raw_execution_priority: return the raw execution priority
 * @opaque: the NVIC
 *
 * Returns: the raw execution priority as defined by the v8M architecture.
 * This is the execution priority minus the effects of AIRCR.PRIS,
 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
 * (v8M ARM ARM I_PKLD.)
 */
int armv7m_nvic_raw_execution_priority(void *opaque);
/**
 * armv7m_nvic_neg_prio_requested: return true if the requested execution
 * priority is negative for the specified security state.
 * @opaque: the NVIC
 * @secure: the security state to test
 * This corresponds to the pseudocode IsReqExecPriNeg().
 */
#ifndef CONFIG_USER_ONLY
bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
#else
static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
{
    return false;
}
#endif

/* Interface for defining coprocessor registers.
 * Registers are defined in tables of arm_cp_reginfo structs
 * which are passed to define_arm_cp_regs().
 */

/* When looking up a coprocessor register we look for it
 * via an integer which encodes all of:
 *  coprocessor number
 *  Crn, Crm, opc1, opc2 fields
 *  32 or 64 bit register (ie is it accessed via MRC/MCR
 *    or via MRRC/MCRR?)
 *  non-secure/secure bank (AArch32 only)
 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
 * (In this case crn and opc2 should be zero.)
 * For AArch64, there is no 32/64 bit size distinction;
 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
 * and 4 bit CRn and CRm. The encoding patterns are chosen
 * to be easy to convert to and from the KVM encodings, and also
 * so that the hashtable can contain both AArch32 and AArch64
 * registers (to allow for interprocessing where we might run
 * 32 bit code on a 64 bit core).
 */
/* This bit is private to our hashtable cpreg; in KVM register
 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
 * in the upper bits of the 64 bit ID.
 */
#define CP_REG_AA64_SHIFT 28
#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)

/* To enable banking of coprocessor registers depending on ns-bit we
 * add a bit to distinguish between secure and non-secure cpregs in the
 * hashtable.
 */
#define CP_REG_NS_SHIFT 29
#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)

#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))

#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
    (CP_REG_AA64_MASK |                                 \
     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))

/* Convert a full 64 bit KVM register ID to the truncated 32 bit
 * version used as a key for the coprocessor register hashtable
 */
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
{
    uint32_t cpregid = kvmid;
    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
        cpregid |= CP_REG_AA64_MASK;
    } else {
        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
            cpregid |= (1 << 15);
        }

        /* KVM is always non-secure so add the NS flag on AArch32 register
         * entries.
         */
         cpregid |= 1 << CP_REG_NS_SHIFT;
    }
    return cpregid;
}

/* Convert a truncated 32 bit hashtable key into the full
 * 64 bit KVM register ID.
 */
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
{
    uint64_t kvmid;

    if (cpregid & CP_REG_AA64_MASK) {
        kvmid = cpregid & ~CP_REG_AA64_MASK;
        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
    } else {
        kvmid = cpregid & ~(1 << 15);
        if (cpregid & (1 << 15)) {
            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
        } else {
            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
        }
    }
    return kvmid;
}

/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
 * special-behaviour cp reg and bits [11..8] indicate what behaviour
 * it has. Otherwise it is a simple cp reg, where CONST indicates that
 * TCG can assume the value to be constant (ie load at translate time)
 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
 * indicates that the TB should not be ended after a write to this register
 * (the default is that the TB ends after cp writes). OVERRIDE permits
 * a register definition to override a previous definition for the
 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
 * old must have the OVERRIDE bit set.
 * ALIAS indicates that this register is an alias view of some underlying
 * state which is also visible via another register, and that the other
 * register is handling migration and reset; registers marked ALIAS will not be
 * migrated but may have their state set by syncing of register state from KVM.
 * NO_RAW indicates that this register has no underlying state and does not
 * support raw access for state saving/loading; it will not be used for either
 * migration or KVM state synchronization. (Typically this is for "registers"
 * which are actually used as instructions for cache maintenance and so on.)
 * IO indicates that this register does I/O and therefore its accesses
 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
 * registers which implement clocks or timers require this.
 * RAISES_EXC is for when the read or write hook might raise an exception;
 * the generated code will synchronize the CPU state before calling the hook
 * so that it is safe for the hook to call raise_exception().
 */
#define ARM_CP_SPECIAL           0x0001
#define ARM_CP_CONST             0x0002
#define ARM_CP_64BIT             0x0004
#define ARM_CP_SUPPRESS_TB_END   0x0008
#define ARM_CP_OVERRIDE          0x0010
#define ARM_CP_ALIAS             0x0020
#define ARM_CP_IO                0x0040
#define ARM_CP_NO_RAW            0x0080
#define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
#define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
#define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
#define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
#define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
#define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
#define ARM_CP_FPU               0x1000
#define ARM_CP_SVE               0x2000
#define ARM_CP_NO_GDB            0x4000
#define ARM_CP_RAISES_EXC        0x8000
/* Used only as a terminator for ARMCPRegInfo lists */
#define ARM_CP_SENTINEL          0xffff
/* Mask of only the flag bits in a type field */
#define ARM_CP_FLAG_MASK         0xf0ff

/* Valid values for ARMCPRegInfo state field, indicating which of
 * the AArch32 and AArch64 execution states this register is visible in.
 * If the reginfo doesn't explicitly specify then it is AArch32 only.
 * If the reginfo is declared to be visible in both states then a second
 * reginfo is synthesised for the AArch32 view of the AArch64 register,
 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
 * Note that we rely on the values of these enums as we iterate through
 * the various states in some places.
 */
enum {
    ARM_CP_STATE_AA32 = 0,
    ARM_CP_STATE_AA64 = 1,
    ARM_CP_STATE_BOTH = 2,
};

/* ARM CP register secure state flags.  These flags identify security state
 * attributes for a given CP register entry.
 * The existence of both or neither secure and non-secure flags indicates that
 * the register has both a secure and non-secure hash entry.  A single one of
 * these flags causes the register to only be hashed for the specified
 * security state.
 * Although definitions may have any combination of the S/NS bits, each
 * registered entry will only have one to identify whether the entry is secure
 * or non-secure.
 */
enum {
    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
};

/* Return true if cptype is a valid type field. This is used to try to
 * catch errors where the sentinel has been accidentally left off the end
 * of a list of registers.
 */
static inline bool cptype_valid(int cptype)
{
    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
        || ((cptype & ARM_CP_SPECIAL) &&
            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
}

/* Access rights:
 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
 * (ie any of the privileged modes in Secure state, or Monitor mode).
 * If a register is accessible in one privilege level it's always accessible
 * in higher privilege levels too. Since "Secure PL1" also follows this rule
 * (ie anything visible in PL2 is visible in S-PL1, some things are only
 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
 * terminology a little and call this PL3.
 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
 * with the ELx exception levels.
 *
 * If access permissions for a register are more complex than can be
 * described with these bits, then use a laxer set of restrictions, and
 * do the more restrictive/complex check inside a helper function.
 */
#define PL3_R 0x80
#define PL3_W 0x40
#define PL2_R (0x20 | PL3_R)
#define PL2_W (0x10 | PL3_W)
#define PL1_R (0x08 | PL2_R)
#define PL1_W (0x04 | PL2_W)
#define PL0_R (0x02 | PL1_R)
#define PL0_W (0x01 | PL1_W)

/*
 * For user-mode some registers are accessible to EL0 via a kernel
 * trap-and-emulate ABI. In this case we define the read permissions
 * as actually being PL0_R. However some bits of any given register
 * may still be masked.
 */
#ifdef CONFIG_USER_ONLY
#define PL0U_R PL0_R
#else
#define PL0U_R PL1_R
#endif

#define PL3_RW (PL3_R | PL3_W)
#define PL2_RW (PL2_R | PL2_W)
#define PL1_RW (PL1_R | PL1_W)
#define PL0_RW (PL0_R | PL0_W)

/* Return the highest implemented Exception Level */
static inline int arm_highest_el(CPUARMState *env)
{
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        return 3;
    }
    if (arm_feature(env, ARM_FEATURE_EL2)) {
        return 2;
    }
    return 1;
}

/* Return true if a v7M CPU is in Handler mode */
static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
{
    return env->v7m.exception != 0;
}

/* Return the current Exception Level (as per ARMv8; note that this differs
 * from the ARMv7 Privilege Level).
 */
static inline int arm_current_el(CPUARMState *env)
{
    if (arm_feature(env, ARM_FEATURE_M)) {
        return arm_v7m_is_handler_mode(env) ||
            !(env->v7m.control[env->v7m.secure] & 1);
    }

    if (is_a64(env)) {
        return extract32(env->pstate, 2, 2);
    }

    switch (env->uncached_cpsr & 0x1f) {
    case ARM_CPU_MODE_USR:
        return 0;
    case ARM_CPU_MODE_HYP:
        return 2;
    case ARM_CPU_MODE_MON:
        return 3;
    default:
        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
            /* If EL3 is 32-bit then all secure privileged modes run in
             * EL3
             */
            return 3;
        }

        return 1;
    }
}

typedef struct ARMCPRegInfo ARMCPRegInfo;

typedef enum CPAccessResult {
    /* Access is permitted */
    CP_ACCESS_OK = 0,
    /* Access fails due to a configurable trap or enable which would
     * result in a categorized exception syndrome giving information about
     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
     * PL1 if in EL0, otherwise to the current EL).
     */
    CP_ACCESS_TRAP = 1,
    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
     * Note that this is not a catch-all case -- the set of cases which may
     * result in this failure is specifically defined by the architecture.
     */
    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
    CP_ACCESS_TRAP_EL2 = 3,
    CP_ACCESS_TRAP_EL3 = 4,
    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
    /* Access fails and results in an exception syndrome for an FP access,
     * trapped directly to EL2 or EL3
     */
    CP_ACCESS_TRAP_FP_EL2 = 7,
    CP_ACCESS_TRAP_FP_EL3 = 8,
} CPAccessResult;

/* Access functions for coprocessor registers. These cannot fail and
 * may not raise exceptions.
 */
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
                       uint64_t value);
/* Access permission check functions for coprocessor registers. */
typedef CPAccessResult CPAccessFn(CPUARMState *env,
                                  const ARMCPRegInfo *opaque,
                                  bool isread);
/* Hook function for register reset */
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);

#define CP_ANY 0xff

/* Definition of an ARM coprocessor register */
struct ARMCPRegInfo {
    /* Name of register (useful mainly for debugging, need not be unique) */
    const char *name;
    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
     * 'wildcard' field -- any value of that field in the MRC/MCR insn
     * will be decoded to this register. The register read and write
     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
     * used by the program, so it is possible to register a wildcard and
     * then behave differently on read/write if necessary.
     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
     * must both be zero.
     * For AArch64-visible registers, opc0 is also used.
     * Since there are no "coprocessors" in AArch64, cp is purely used as a
     * way to distinguish (for KVM's benefit) guest-visible system registers
     * from demuxed ones provided to preserve the "no side effects on
     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
     * visible (to match KVM's encoding); cp==0 will be converted to
     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
     */
    uint8_t cp;
    uint8_t crn;
    uint8_t crm;
    uint8_t opc0;
    uint8_t opc1;
    uint8_t opc2;
    /* Execution state in which this register is visible: ARM_CP_STATE_* */
    int state;
    /* Register type: ARM_CP_* bits/values */
    int type;
    /* Access rights: PL*_[RW] */
    int access;
    /* Security state: ARM_CP_SECSTATE_* bits/values */
    int secure;
    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
     * this register was defined: can be used to hand data through to the
     * register read/write functions, since they are passed the ARMCPRegInfo*.
     */
    void *opaque;
    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
     * fieldoffset is non-zero, the reset value of the register.
     */
    uint64_t resetvalue;
    /* Offset of the field in CPUARMState for this register.
     *
     * This is not needed if either:
     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
     *  2. both readfn and writefn are specified
     */
    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */

    /* Offsets of the secure and non-secure fields in CPUARMState for the
     * register if it is banked.  These fields are only used during the static
     * registration of a register.  During hashing the bank associated
     * with a given security state is copied to fieldoffset which is used from
     * there on out.
     *
     * It is expected that register definitions use either fieldoffset or
     * bank_fieldoffsets in the definition but not both.  It is also expected
     * that both bank offsets are set when defining a banked register.  This
     * use indicates that a register is banked.
     */
    ptrdiff_t bank_fieldoffsets[2];

    /* Function for making any access checks for this register in addition to
     * those specified by the 'access' permissions bits. If NULL, no extra
     * checks required. The access check is performed at runtime, not at
     * translate time.
     */
    CPAccessFn *accessfn;
    /* Function for handling reads of this register. If NULL, then reads
     * will be done by loading from the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPReadFn *readfn;
    /* Function for handling writes of this register. If NULL, then writes
     * will be done by writing to the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPWriteFn *writefn;
    /* Function for doing a "raw" read; used when we need to copy
     * coprocessor state to the kernel for KVM or out for
     * migration. This only needs to be provided if there is also a
     * readfn and it has side effects (for instance clear-on-read bits).
     */
    CPReadFn *raw_readfn;
    /* Function for doing a "raw" write; used when we need to copy KVM
     * kernel coprocessor state into userspace, or for inbound
     * migration. This only needs to be provided if there is also a
     * writefn and it masks out "unwritable" bits or has write-one-to-clear
     * or similar behaviour.
     */
    CPWriteFn *raw_writefn;
    /* Function for resetting the register. If NULL, then reset will be done
     * by writing resetvalue to the field specified in fieldoffset. If
     * fieldoffset is 0 then no reset will be done.
     */
    CPResetFn *resetfn;
};

/* Macros which are lvalues for the field in CPUARMState for the
 * ARMCPRegInfo *ri.
 */
#define CPREG_FIELD32(env, ri) \
    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
#define CPREG_FIELD64(env, ri) \
    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))

#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque);
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *regs, void *opaque);
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_arm_cp_regs_with_opaque(cpu, regs, 0);
}
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
}
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);

/*
 * Definition of an ARM co-processor register as viewed from
 * userspace. This is used for presenting sanitised versions of
 * registers to userspace when emulating the Linux AArch64 CPU
 * ID/feature ABI (advertised as HWCAP_CPUID).
 */
typedef struct ARMCPRegUserSpaceInfo {
    /* Name of register */
    const char *name;

    /* Is the name actually a glob pattern */
    bool is_glob;

    /* Only some bits are exported to user space */
    uint64_t exported_bits;

    /* Fixed bits are applied after the mask */
    uint64_t fixed_bits;
} ARMCPRegUserSpaceInfo;

#define REGUSERINFO_SENTINEL { .name = NULL }

void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);

/* CPWriteFn that can be used to implement writes-ignored behaviour */
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value);
/* CPReadFn that can be used for read-as-zero behaviour */
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);

/* CPResetFn that does nothing, for use if no reset is required even
 * if fieldoffset is non zero.
 */
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);

/* Return true if this reginfo struct's field in the cpu state struct
 * is 64 bits wide.
 */
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
{
    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
}

static inline bool cp_access_ok(int current_el,
                                const ARMCPRegInfo *ri, int isread)
{
    return (ri->access >> ((current_el * 2) + isread)) & 1;
}

/* Raw read of a coprocessor register (as needed for migration, etc) */
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);

/**
 * write_list_to_cpustate
 * @cpu: ARMCPU
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the cpreg_values list into the ARMCPUState structure.
 * This updates TCG's working data structures from KVM data or
 * from incoming migration state.
 *
 * Returns: true if all register values were updated correctly,
 * false if some register was unknown or could not be written.
 * Note that we do not stop early on failure -- we will attempt
 * writing all registers in the list.
 */
bool write_list_to_cpustate(ARMCPU *cpu);

/**
 * write_cpustate_to_list:
 * @cpu: ARMCPU
 * @kvm_sync: true if this is for syncing back to KVM
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the ARMCPUState structure into the cpreg_values list.
 * This is used to copy info from TCG's working data structures into
 * KVM or for outbound migration.
 *
 * @kvm_sync is true if we are doing this in order to sync the
 * register state back to KVM. In this case we will only update
 * values in the list if the previous list->cpustate sync actually
 * successfully wrote the CPU state. Otherwise we will keep the value
 * that is in the list.
 *
 * Returns: true if all register values were read correctly,
 * false if some register was unknown or could not be read.
 * Note that we do not stop early on failure -- we will attempt
 * reading all registers in the list.
 */
bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);

#define ARM_CPUID_TI915T      0x54029152
#define ARM_CPUID_TI925T      0x54029252

static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
                                     unsigned int target_el)
{
    CPUARMState *env = cs->env_ptr;
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);
    bool pstate_unmasked;
    int8_t unmasked = 0;
    uint64_t hcr_el2;

    /* Don't take exceptions if they target a lower EL.
     * This check should catch any exceptions that would not be taken but left
     * pending.
     */
    if (cur_el > target_el) {
        return false;
    }

    hcr_el2 = arm_hcr_el2_eff(env);

    switch (excp_idx) {
    case EXCP_FIQ:
        pstate_unmasked = !(env->daif & PSTATE_F);
        break;

    case EXCP_IRQ:
        pstate_unmasked = !(env->daif & PSTATE_I);
        break;

    case EXCP_VFIQ:
        if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
            /* VFIQs are only taken when hypervized and non-secure.  */
            return false;
        }
        return !(env->daif & PSTATE_F);
    case EXCP_VIRQ:
        if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
            /* VIRQs are only taken when hypervized and non-secure.  */
            return false;
        }
        return !(env->daif & PSTATE_I);
    default:
        g_assert_not_reached();
    }

    /* Use the target EL, current execution state and SCR/HCR settings to
     * determine whether the corresponding CPSR bit is used to mask the
     * interrupt.
     */
    if ((target_el > cur_el) && (target_el != 1)) {
        /* Exceptions targeting a higher EL may not be maskable */
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 64-bit masking rules are simple: exceptions to EL3
             * can't be masked, and exceptions to EL2 can only be
             * masked from Secure state. The HCR and SCR settings
             * don't affect the masking logic, only the interrupt routing.
             */
            if (target_el == 3 || !secure) {
                unmasked = 1;
            }
        } else {
            /* The old 32-bit-only environment has a more complicated
             * masking setup. HCR and SCR bits not only affect interrupt
             * routing but also change the behaviour of masking.
             */
            bool hcr, scr;

            switch (excp_idx) {
            case EXCP_FIQ:
                /* If FIQs are routed to EL3 or EL2 then there are cases where
                 * we override the CPSR.F in determining if the exception is
                 * masked or not. If neither of these are set then we fall back
                 * to the CPSR.F setting otherwise we further assess the state
                 * below.
                 */
                hcr = hcr_el2 & HCR_FMO;
                scr = (env->cp15.scr_el3 & SCR_FIQ);

                /* When EL3 is 32-bit, the SCR.FW bit controls whether the
                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
                 * when non-secure but only when FIQs are only routed to EL3.
                 */
                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
                break;
            case EXCP_IRQ:
                /* When EL3 execution state is 32-bit, if HCR.IMO is set then
                 * we may override the CPSR.I masking when in non-secure state.
                 * The SCR.IRQ setting has already been taken into consideration
                 * when setting the target EL, so it does not have a further
                 * affect here.
                 */
                hcr = hcr_el2 & HCR_IMO;
                scr = false;
                break;
            default:
                g_assert_not_reached();
            }

            if ((scr || hcr) && !secure) {
                unmasked = 1;
            }
        }
    }

    /* The PSTATE bits only mask the interrupt if we have not overriden the
     * ability above.
     */
    return unmasked || pstate_unmasked;
}

#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
#define CPU_RESOLVING_TYPE TYPE_ARM_CPU

#define cpu_signal_handler cpu_arm_signal_handler
#define cpu_list arm_cpu_list

/* ARM has the following "translation regimes" (as the ARM ARM calls them):
 *
 * If EL3 is 64-bit:
 *  + NonSecure EL1 & 0 stage 1
 *  + NonSecure EL1 & 0 stage 2
 *  + NonSecure EL2
 *  + Secure EL1 & EL0
 *  + Secure EL3
 * If EL3 is 32-bit:
 *  + NonSecure PL1 & 0 stage 1
 *  + NonSecure PL1 & 0 stage 2
 *  + NonSecure PL2
 *  + Secure PL0 & PL1
 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
 *
 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
 *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
 *     may differ in access permissions even if the VA->PA map is the same
 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
 *     translation, which means that we have one mmu_idx that deals with two
 *     concatenated translation regimes [this sort of combined s1+2 TLB is
 *     architecturally permitted]
 *  3. we don't need to allocate an mmu_idx to translations that we won't be
 *     handling via the TLB. The only way to do a stage 1 translation without
 *     the immediate stage 2 translation is via the ATS or AT system insns,
 *     which can be slow-pathed and always do a page table walk.
 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
 *     translation regimes, because they map reasonably well to each other
 *     and they can't both be active at the same time.
 * This gives us the following list of mmu_idx values:
 *
 * NS EL0 (aka NS PL0) stage 1+2
 * NS EL1 (aka NS PL1) stage 1+2
 * NS EL2 (aka NS PL2)
 * S EL3 (aka S PL1)
 * S EL0 (aka S PL0)
 * S EL1 (not used if EL3 is 32 bit)
 * NS EL0+1 stage 2
 *
 * (The last of these is an mmu_idx because we want to be able to use the TLB
 * for the accesses done as part of a stage 1 page table walk, rather than
 * having to walk the stage 2 page table over and over.)
 *
 * R profile CPUs have an MPU, but can use the same set of MMU indexes
 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
 * NS EL2 if we ever model a Cortex-R52).
 *
 * M profile CPUs are rather different as they do not have a true MMU.
 * They have the following different MMU indexes:
 *  User
 *  Privileged
 *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
 *  Privileged, execution priority negative (ditto)
 * If the CPU supports the v8M Security Extension then there are also:
 *  Secure User
 *  Secure Privileged
 *  Secure User, execution priority negative
 *  Secure Privileged, execution priority negative
 *
 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
 * are not quite the same -- different CPU types (most notably M profile
 * vs A/R profile) would like to use MMU indexes with different semantics,
 * but since we don't ever need to use all of those in a single CPU we
 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
 * the same for any particular CPU.
 * Variables of type ARMMUIdx are always full values, and the core
 * index values are in variables of type 'int'.
 *
 * Our enumeration includes at the end some entries which are not "true"
 * mmu_idx values in that they don't have corresponding TLBs and are only
 * valid for doing slow path page table walks.
 *
 * The constant names here are patterned after the general style of the names
 * of the AT/ATS operations.
 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
 * For M profile we arrange them to have a bit for priv, a bit for negpri
 * and a bit for secure.
 */
#define ARM_MMU_IDX_A 0x10 /* A profile */
#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
#define ARM_MMU_IDX_M 0x40 /* M profile */

/* meanings of the bits for M profile mmu idx values */
#define ARM_MMU_IDX_M_PRIV 0x1
#define ARM_MMU_IDX_M_NEGPRI 0x2
#define ARM_MMU_IDX_M_S 0x4

#define ARM_MMU_IDX_TYPE_MASK (~0x7)
#define ARM_MMU_IDX_COREIDX_MASK 0x7

typedef enum ARMMMUIdx {
    ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
    ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
    ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
    ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
    ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
    ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
    ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
    ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
    ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
    ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
    ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
    ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
    ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
    ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
    ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
    /* Indexes below here don't have TLBs and are used only for AT system
     * instructions or for the first stage of an S12 page table walk.
     */
    ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
    ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
} ARMMMUIdx;

/* Bit macros for the core-mmu-index values for each index,
 * for use when calling tlb_flush_by_mmuidx() and friends.
 */
typedef enum ARMMMUIdxBit {
    ARMMMUIdxBit_S12NSE0 = 1 << 0,
    ARMMMUIdxBit_S12NSE1 = 1 << 1,
    ARMMMUIdxBit_S1E2 = 1 << 2,
    ARMMMUIdxBit_S1E3 = 1 << 3,
    ARMMMUIdxBit_S1SE0 = 1 << 4,
    ARMMMUIdxBit_S1SE1 = 1 << 5,
    ARMMMUIdxBit_S2NS = 1 << 6,
    ARMMMUIdxBit_MUser = 1 << 0,
    ARMMMUIdxBit_MPriv = 1 << 1,
    ARMMMUIdxBit_MUserNegPri = 1 << 2,
    ARMMMUIdxBit_MPrivNegPri = 1 << 3,
    ARMMMUIdxBit_MSUser = 1 << 4,
    ARMMMUIdxBit_MSPriv = 1 << 5,
    ARMMMUIdxBit_MSUserNegPri = 1 << 6,
    ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
} ARMMMUIdxBit;

#define MMU_USER_IDX 0

static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
{
    return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
}

static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
{
    if (arm_feature(env, ARM_FEATURE_M)) {
        return mmu_idx | ARM_MMU_IDX_M;
    } else {
        return mmu_idx | ARM_MMU_IDX_A;
    }
}

/* Return the exception level we're running at if this is our mmu_idx */
static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
{
    switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
    case ARM_MMU_IDX_A:
        return mmu_idx & 3;
    case ARM_MMU_IDX_M:
        return mmu_idx & ARM_MMU_IDX_M_PRIV;
    default:
        g_assert_not_reached();
    }
}

/*
 * Return the MMU index for a v7M CPU with all relevant information
 * manually specified.
 */
ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
                              bool secstate, bool priv, bool negpri);

/* Return the MMU index for a v7M CPU in the specified security and
 * privilege state.
 */
ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
                                                bool secstate, bool priv);

/* Return the MMU index for a v7M CPU in the specified security state */
ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);

/**
 * cpu_mmu_index:
 * @env: The cpu environment
 * @ifetch: True for code access, false for data access.
 *
 * Return the core mmu index for the current translation regime.
 * This function is used by generic TCG code paths.
 */
int cpu_mmu_index(CPUARMState *env, bool ifetch);

/* Indexes used when registering address spaces with cpu_address_space_init */
typedef enum ARMASIdx {
    ARMASIdx_NS = 0,
    ARMASIdx_S = 1,
} ARMASIdx;

/* Return the Exception Level targeted by debug exceptions. */
static inline int arm_debug_target_el(CPUARMState *env)
{
    bool secure = arm_is_secure(env);
    bool route_to_el2 = false;

    if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
                       env->cp15.mdcr_el2 & MDCR_TDE;
    }

    if (route_to_el2) {
        return 2;
    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
               !arm_el_is_aa64(env, 3) && secure) {
        return 3;
    } else {
        return 1;
    }
}

static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
{
    /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
     * CSSELR is RAZ/WI.
     */
    return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
}

/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
{
    int cur_el = arm_current_el(env);
    int debug_el;

    if (cur_el == 3) {
        return false;
    }

    /* MDCR_EL3.SDD disables debug events from Secure state */
    if (arm_is_secure_below_el3(env)
        && extract32(env->cp15.mdcr_el3, 16, 1)) {
        return false;
    }

    /*
     * Same EL to same EL debug exceptions need MDSCR_KDE enabled
     * while not masking the (D)ebug bit in DAIF.
     */
    debug_el = arm_debug_target_el(env);

    if (cur_el == debug_el) {
        return extract32(env->cp15.mdscr_el1, 13, 1)
            && !(env->daif & PSTATE_D);
    }

    /* Otherwise the debug target needs to be a higher EL */
    return debug_el > cur_el;
}

static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
{
    int el = arm_current_el(env);

    if (el == 0 && arm_el_is_aa64(env, 1)) {
        return aa64_generate_debug_exceptions(env);
    }

    if (arm_is_secure(env)) {
        int spd;

        if (el == 0 && (env->cp15.sder & 1)) {
            /* SDER.SUIDEN means debug exceptions from Secure EL0
             * are always enabled. Otherwise they are controlled by
             * SDCR.SPD like those from other Secure ELs.
             */
            return true;
        }

        spd = extract32(env->cp15.mdcr_el3, 14, 2);
        switch (spd) {
        case 1:
            /* SPD == 0b01 is reserved, but behaves as 0b00. */
        case 0:
            /* For 0b00 we return true if external secure invasive debug
             * is enabled. On real hardware this is controlled by external
             * signals to the core. QEMU always permits debug, and behaves
             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
             */
            return true;
        case 2:
            return false;
        case 3:
            return true;
        }
    }

    return el != 2;
}

/* Return true if debugging exceptions are currently enabled.
 * This corresponds to what in ARM ARM pseudocode would be
 *    if UsingAArch32() then
 *        return AArch32.GenerateDebugExceptions()
 *    else
 *        return AArch64.GenerateDebugExceptions()
 * We choose to push the if() down into this function for clarity,
 * since the pseudocode has it at all callsites except for the one in
 * CheckSoftwareStep(), where it is elided because both branches would
 * always return the same value.
 */
static inline bool arm_generate_debug_exceptions(CPUARMState *env)
{
    if (env->aarch64) {
        return aa64_generate_debug_exceptions(env);
    } else {
        return aa32_generate_debug_exceptions(env);
    }
}

/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
 * implicitly means this always returns false in pre-v8 CPUs.)
 */
static inline bool arm_singlestep_active(CPUARMState *env)
{
    return extract32(env->cp15.mdscr_el1, 0, 1)
        && arm_el_is_aa64(env, arm_debug_target_el(env))
        && arm_generate_debug_exceptions(env);
}

static inline bool arm_sctlr_b(CPUARMState *env)
{
    return
        /* We need not implement SCTLR.ITD in user-mode emulation, so
         * let linux-user ignore the fact that it conflicts with SCTLR_B.
         * This lets people run BE32 binaries with "-cpu any".
         */
#ifndef CONFIG_USER_ONLY
        !arm_feature(env, ARM_FEATURE_V7) &&
#endif
        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
}

static inline uint64_t arm_sctlr(CPUARMState *env, int el)
{
    if (el == 0) {
        /* FIXME: ARMv8.1-VHE S2 translation regime.  */
        return env->cp15.sctlr_el[1];
    } else {
        return env->cp15.sctlr_el[el];
    }
}


/* Return true if the processor is in big-endian mode. */
static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
{
    /* In 32bit endianness is determined by looking at CPSR's E bit */
    if (!is_a64(env)) {
        return
#ifdef CONFIG_USER_ONLY
            /* In system mode, BE32 is modelled in line with the
             * architecture (as word-invariant big-endianness), where loads
             * and stores are done little endian but from addresses which
             * are adjusted by XORing with the appropriate constant. So the
             * endianness to use for the raw data access is not affected by
             * SCTLR.B.
             * In user mode, however, we model BE32 as byte-invariant
             * big-endianness (because user-only code cannot tell the
             * difference), and so we need to use a data access endianness
             * that depends on SCTLR.B.
             */
            arm_sctlr_b(env) ||
#endif
                ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
    } else {
        int cur_el = arm_current_el(env);
        uint64_t sctlr = arm_sctlr(env, cur_el);

        return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
    }
}

typedef CPUARMState CPUArchState;
typedef ARMCPU ArchCPU;

#include "exec/cpu-all.h"

/* Bit usage in the TB flags field: bit 31 indicates whether we are
 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
 * We put flags which are shared between 32 and 64 bit mode at the top
 * of the word, and flags which apply to only one mode at the bottom.
 */
FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
/* Target EL if we take a floating-point-disabled exception */
FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
/*
 * For A-profile only, target EL for debug exceptions.
 * Note that this overlaps with the M-profile-only HANDLER and STACKCHECK bits.
 */
FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 21, 2)

/* Bit usage when in AArch32 state: */
FIELD(TBFLAG_A32, THUMB, 0, 1)
FIELD(TBFLAG_A32, VECLEN, 1, 3)
FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
/*
 * We store the bottom two bits of the CPAR as TB flags and handle
 * checks on the other bits at runtime. This shares the same bits as
 * VECSTRIDE, which is OK as no XScale CPU has VFP.
 */
FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
/*
 * Indicates whether cp register reads and writes by guest code should access
 * the secure or nonsecure bank of banked registers; note that this is not
 * the same thing as the current security state of the processor!
 */
FIELD(TBFLAG_A32, NS, 6, 1)
FIELD(TBFLAG_A32, VFPEN, 7, 1)
FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
/* For M profile only, set if FPCCR.LSPACT is set */
FIELD(TBFLAG_A32, LSPACT, 18, 1)
/* For M profile only, set if we must create a new FP context */
FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
/* For M profile only, set if FPCCR.S does not match current security state */
FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
/* For M profile only, Handler (ie not Thread) mode */
FIELD(TBFLAG_A32, HANDLER, 21, 1)
/* For M profile only, whether we should generate stack-limit checks */
FIELD(TBFLAG_A32, STACKCHECK, 22, 1)

/* Bit usage when in AArch64 state */
FIELD(TBFLAG_A64, TBII, 0, 2)
FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
FIELD(TBFLAG_A64, BT, 9, 1)
FIELD(TBFLAG_A64, BTYPE, 10, 2)
FIELD(TBFLAG_A64, TBID, 12, 2)

static inline bool bswap_code(bool sctlr_b)
{
#ifdef CONFIG_USER_ONLY
    /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
     * would also end up as a mixed-endian mode with BE code, LE data.
     */
    return
#ifdef TARGET_WORDS_BIGENDIAN
        1 ^
#endif
        sctlr_b;
#else
    /* All code access in ARM is little endian, and there are no loaders
     * doing swaps that need to be reversed
     */
    return 0;
#endif
}

#ifdef CONFIG_USER_ONLY
static inline bool arm_cpu_bswap_data(CPUARMState *env)
{
    return
#ifdef TARGET_WORDS_BIGENDIAN
       1 ^
#endif
       arm_cpu_data_is_big_endian(env);
}
#endif

void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
                          target_ulong *cs_base, uint32_t *flags);

enum {
    QEMU_PSCI_CONDUIT_DISABLED = 0,
    QEMU_PSCI_CONDUIT_SMC = 1,
    QEMU_PSCI_CONDUIT_HVC = 2,
};

#ifndef CONFIG_USER_ONLY
/* Return the address space index to use for a memory access */
static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
{
    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
}

/* Return the AddressSpace to use for a memory access
 * (which depends on whether the access is S or NS, and whether
 * the board gave us a separate AddressSpace for S accesses).
 */
static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
{
    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
}
#endif

/**
 * arm_register_pre_el_change_hook:
 * Register a hook function which will be called immediately before this
 * CPU changes exception level or mode. The hook function will be
 * passed a pointer to the ARMCPU and the opaque data pointer passed
 * to this function when the hook was registered.
 *
 * Note that if a pre-change hook is called, any registered post-change hooks
 * are guaranteed to subsequently be called.
 */
void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
                                 void *opaque);
/**
 * arm_register_el_change_hook:
 * Register a hook function which will be called immediately after this
 * CPU changes exception level or mode. The hook function will be
 * passed a pointer to the ARMCPU and the opaque data pointer passed
 * to this function when the hook was registered.
 *
 * Note that any registered hooks registered here are guaranteed to be called
 * if pre-change hooks have been.
 */
void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
        *opaque);

/**
 * aa32_vfp_dreg:
 * Return a pointer to the Dn register within env in 32-bit mode.
 */
static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
{
    return &env->vfp.zregs[regno >> 1].d[regno & 1];
}

/**
 * aa32_vfp_qreg:
 * Return a pointer to the Qn register within env in 32-bit mode.
 */
static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
{
    return &env->vfp.zregs[regno].d[0];
}

/**
 * aa64_vfp_qreg:
 * Return a pointer to the Qn register within env in 64-bit mode.
 */
static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
{
    return &env->vfp.zregs[regno].d[0];
}

/* Shared between translate-sve.c and sve_helper.c.  */
extern const uint64_t pred_esz_masks[4];

/*
 * 32-bit feature tests via id registers.
 */
static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
}

static inline bool isar_feature_arm_div(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
}

static inline bool isar_feature_jazelle(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
}

static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
}

static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
}

static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
}

static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
}

static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
}

static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
}

static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
}

static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
}

static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
}

static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
}

static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
}

static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
{
    return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
}

static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
{
    /*
     * This is a placeholder for use by VCMA until the rest of
     * the ARMv8.2-FP16 extension is implemented for aa32 mode.
     * At which point we can properly set and check MVFR1.FPHP.
     */
    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
}

static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
{
    /* Return true if D16-D31 are implemented */
    return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
}

static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
{
    return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
}

static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id)
{
    /* Return true if CPU supports double precision floating point */
    return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0;
}

/*
 * We always set the FP and SIMD FP16 fields to indicate identical
 * levels of support (assuming SIMD is implemented at all), so
 * we only need one set of accessors.
 */
static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
{
    return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
}

static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
{
    return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
}

static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
{
    return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
}

static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
{
    return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
}

static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
{
    return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
}

static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
{
    return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
}

/*
 * 64-bit feature tests via id registers.
 */
static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
}

static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
}

static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
}

static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
}

static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
}

static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
}

static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
}

static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
}

static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
}

static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
}

static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
}

static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
}

static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
}

static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
}

static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
}

static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
}

static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
}

static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
}

static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
{
    /*
     * Note that while QEMU will only implement the architected algorithm
     * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
     * defined algorithms, and thus API+GPI, and this predicate controls
     * migration of the 128-bit keys.
     */
    return (id->id_aa64isar1 &
            (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
             FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
             FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
             FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
}

static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
}

static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
}

static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
}

static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
{
    /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
}

static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
}

static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
}

static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
}

static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
{
    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
}

/*
 * Forward to the above feature tests given an ARMCPU pointer.
 */
#define cpu_isar_feature(name, cpu) \
    ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })

#endif