summaryrefslogtreecommitdiff
path: root/target/arm/arm-powerctl.c
blob: f77a950db67276513977af686aa948a1f5a604fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
/*
 * QEMU support -- ARM Power Control specific functions.
 *
 * Copyright (c) 2016 Jean-Christophe Dubois
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "cpu-qom.h"
#include "internals.h"
#include "arm-powerctl.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"

#ifndef DEBUG_ARM_POWERCTL
#define DEBUG_ARM_POWERCTL 0
#endif

#define DPRINTF(fmt, args...) \
    do { \
        if (DEBUG_ARM_POWERCTL) { \
            fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
        } \
    } while (0)

CPUState *arm_get_cpu_by_id(uint64_t id)
{
    CPUState *cpu;

    DPRINTF("cpu %" PRId64 "\n", id);

    CPU_FOREACH(cpu) {
        ARMCPU *armcpu = ARM_CPU(cpu);

        if (armcpu->mp_affinity == id) {
            return cpu;
        }
    }

    qemu_log_mask(LOG_GUEST_ERROR,
                  "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
                  __func__, id);

    return NULL;
}

struct CpuOnInfo {
    uint64_t entry;
    uint64_t context_id;
    uint32_t target_el;
    bool target_aa64;
};


static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
                                      run_on_cpu_data data)
{
    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
    struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;

    /* Initialize the cpu we are turning on */
    cpu_reset(target_cpu_state);
    target_cpu_state->halted = 0;

    if (info->target_aa64) {
        if ((info->target_el < 3) && arm_feature(&target_cpu->env,
                                                 ARM_FEATURE_EL3)) {
            /*
             * As target mode is AArch64, we need to set lower
             * exception level (the requested level 2) to AArch64
             */
            target_cpu->env.cp15.scr_el3 |= SCR_RW;
        }

        if ((info->target_el < 2) && arm_feature(&target_cpu->env,
                                                 ARM_FEATURE_EL2)) {
            /*
             * As target mode is AArch64, we need to set lower
             * exception level (the requested level 1) to AArch64
             */
            target_cpu->env.cp15.hcr_el2 |= HCR_RW;
        }

        target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
    } else {
        /* We are requested to boot in AArch32 mode */
        static const uint32_t mode_for_el[] = { 0,
                                                ARM_CPU_MODE_SVC,
                                                ARM_CPU_MODE_HYP,
                                                ARM_CPU_MODE_SVC };

        cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
                   CPSRWriteRaw);
    }

    if (info->target_el == 3) {
        /* Processor is in secure mode */
        target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
    } else {
        /* Processor is not in secure mode */
        target_cpu->env.cp15.scr_el3 |= SCR_NS;

        /*
         * If QEMU is providing the equivalent of EL3 firmware, then we need
         * to make sure a CPU targeting EL2 comes out of reset with a
         * functional HVC insn.
         */
        if (arm_feature(&target_cpu->env, ARM_FEATURE_EL3)
            && info->target_el == 2) {
            target_cpu->env.cp15.scr_el3 |= SCR_HCE;
        }
    }

    /* We check if the started CPU is now at the correct level */
    assert(info->target_el == arm_current_el(&target_cpu->env));

    if (info->target_aa64) {
        target_cpu->env.xregs[0] = info->context_id;
    } else {
        target_cpu->env.regs[0] = info->context_id;
    }

    /* Start the new CPU at the requested address */
    cpu_set_pc(target_cpu_state, info->entry);

    g_free(info);

    /* Finally set the power status */
    assert(qemu_mutex_iothread_locked());
    target_cpu->power_state = PSCI_ON;
}

int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
                   uint32_t target_el, bool target_aa64)
{
    CPUState *target_cpu_state;
    ARMCPU *target_cpu;
    struct CpuOnInfo *info;

    assert(qemu_mutex_iothread_locked());

    DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
            "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
            context_id);

    /* requested EL level need to be in the 1 to 3 range */
    assert((target_el > 0) && (target_el < 4));

    if (target_aa64 && (entry & 3)) {
        /*
         * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
         * aligned.
         */
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }

    /* Retrieve the cpu we are powering up */
    target_cpu_state = arm_get_cpu_by_id(cpuid);
    if (!target_cpu_state) {
        /* The cpu was not found */
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }

    target_cpu = ARM_CPU(target_cpu_state);
    if (target_cpu->power_state == PSCI_ON) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "[ARM]%s: CPU %" PRId64 " is already on\n",
                      __func__, cpuid);
        return QEMU_ARM_POWERCTL_ALREADY_ON;
    }

    /*
     * The newly brought CPU is requested to enter the exception level
     * "target_el" and be in the requested mode (AArch64 or AArch32).
     */

    if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
        ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
        /*
         * The CPU does not support requested level
         */
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }

    if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
        /*
         * For now we don't support booting an AArch64 CPU in AArch32 mode
         * TODO: We should add this support later
         */
        qemu_log_mask(LOG_UNIMP,
                      "[ARM]%s: Starting AArch64 CPU %" PRId64
                      " in AArch32 mode is not supported yet\n",
                      __func__, cpuid);
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }

    /*
     * If another CPU has powered the target on we are in the state
     * ON_PENDING and additional attempts to power on the CPU should
     * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
     * spec)
     */
    if (target_cpu->power_state == PSCI_ON_PENDING) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "[ARM]%s: CPU %" PRId64 " is already powering on\n",
                      __func__, cpuid);
        return QEMU_ARM_POWERCTL_ON_PENDING;
    }

    /* To avoid racing with a CPU we are just kicking off we do the
     * final bit of preparation for the work in the target CPUs
     * context.
     */
    info = g_new(struct CpuOnInfo, 1);
    info->entry = entry;
    info->context_id = context_id;
    info->target_el = target_el;
    info->target_aa64 = target_aa64;

    async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
                     RUN_ON_CPU_HOST_PTR(info));

    /* We are good to go */
    return QEMU_ARM_POWERCTL_RET_SUCCESS;
}

static void arm_set_cpu_on_and_reset_async_work(CPUState *target_cpu_state,
                                                run_on_cpu_data data)
{
    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);

    /* Initialize the cpu we are turning on */
    cpu_reset(target_cpu_state);
    target_cpu_state->halted = 0;

    /* Finally set the power status */
    assert(qemu_mutex_iothread_locked());
    target_cpu->power_state = PSCI_ON;
}

int arm_set_cpu_on_and_reset(uint64_t cpuid)
{
    CPUState *target_cpu_state;
    ARMCPU *target_cpu;

    assert(qemu_mutex_iothread_locked());

    /* Retrieve the cpu we are powering up */
    target_cpu_state = arm_get_cpu_by_id(cpuid);
    if (!target_cpu_state) {
        /* The cpu was not found */
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }

    target_cpu = ARM_CPU(target_cpu_state);
    if (target_cpu->power_state == PSCI_ON) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "[ARM]%s: CPU %" PRId64 " is already on\n",
                      __func__, cpuid);
        return QEMU_ARM_POWERCTL_ALREADY_ON;
    }

    /*
     * If another CPU has powered the target on we are in the state
     * ON_PENDING and additional attempts to power on the CPU should
     * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
     * spec)
     */
    if (target_cpu->power_state == PSCI_ON_PENDING) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "[ARM]%s: CPU %" PRId64 " is already powering on\n",
                      __func__, cpuid);
        return QEMU_ARM_POWERCTL_ON_PENDING;
    }

    async_run_on_cpu(target_cpu_state, arm_set_cpu_on_and_reset_async_work,
                     RUN_ON_CPU_NULL);

    /* We are good to go */
    return QEMU_ARM_POWERCTL_RET_SUCCESS;
}

static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
                                       run_on_cpu_data data)
{
    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);

    assert(qemu_mutex_iothread_locked());
    target_cpu->power_state = PSCI_OFF;
    target_cpu_state->halted = 1;
    target_cpu_state->exception_index = EXCP_HLT;
}

int arm_set_cpu_off(uint64_t cpuid)
{
    CPUState *target_cpu_state;
    ARMCPU *target_cpu;

    assert(qemu_mutex_iothread_locked());

    DPRINTF("cpu %" PRId64 "\n", cpuid);

    /* change to the cpu we are powering up */
    target_cpu_state = arm_get_cpu_by_id(cpuid);
    if (!target_cpu_state) {
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }
    target_cpu = ARM_CPU(target_cpu_state);
    if (target_cpu->power_state == PSCI_OFF) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "[ARM]%s: CPU %" PRId64 " is already off\n",
                      __func__, cpuid);
        return QEMU_ARM_POWERCTL_IS_OFF;
    }

    /* Queue work to run under the target vCPUs context */
    async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
                     RUN_ON_CPU_NULL);

    return QEMU_ARM_POWERCTL_RET_SUCCESS;
}

static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
                                     run_on_cpu_data data)
{
    /* Reset the cpu */
    cpu_reset(target_cpu_state);
}

int arm_reset_cpu(uint64_t cpuid)
{
    CPUState *target_cpu_state;
    ARMCPU *target_cpu;

    assert(qemu_mutex_iothread_locked());

    DPRINTF("cpu %" PRId64 "\n", cpuid);

    /* change to the cpu we are resetting */
    target_cpu_state = arm_get_cpu_by_id(cpuid);
    if (!target_cpu_state) {
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }
    target_cpu = ARM_CPU(target_cpu_state);

    if (target_cpu->power_state == PSCI_OFF) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "[ARM]%s: CPU %" PRId64 " is off\n",
                      __func__, cpuid);
        return QEMU_ARM_POWERCTL_IS_OFF;
    }

    /* Queue work to run under the target vCPUs context */
    async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
                     RUN_ON_CPU_NULL);

    return QEMU_ARM_POWERCTL_RET_SUCCESS;
}