1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
#!/usr/bin/env python
#
# Simple benchmarking framework
#
# Copyright (c) 2019 Virtuozzo International GmbH.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
def bench_one(test_func, test_env, test_case, count=5, initial_run=True):
"""Benchmark one test-case
test_func -- benchmarking function with prototype
test_func(env, case), which takes test_env and test_case
arguments and returns {'seconds': int} (which is benchmark
result) on success and {'error': str} on error. Returned
dict may contain any other additional fields.
test_env -- test environment - opaque first argument for test_func
test_case -- test case - opaque second argument for test_func
count -- how many times to call test_func, to calculate average
initial_run -- do initial run of test_func, which don't get into result
Returns dict with the following fields:
'runs': list of test_func results
'average': average seconds per run (exists only if at least one run
succeeded)
'delta': maximum delta between test_func result and the average
(exists only if at least one run succeeded)
'n-failed': number of failed runs (exists only if at least one run
failed)
"""
if initial_run:
print(' #initial run:')
print(' ', test_func(test_env, test_case))
runs = []
for i in range(count):
print(' #run {}'.format(i+1))
res = test_func(test_env, test_case)
print(' ', res)
runs.append(res)
result = {'runs': runs}
successed = [r for r in runs if ('seconds' in r)]
if successed:
avg = sum(r['seconds'] for r in successed) / len(successed)
result['average'] = avg
result['delta'] = max(abs(r['seconds'] - avg) for r in successed)
if len(successed) < count:
result['n-failed'] = count - len(successed)
return result
def ascii_one(result):
"""Return ASCII representation of bench_one() returned dict."""
if 'average' in result:
s = '{:.2f} +- {:.2f}'.format(result['average'], result['delta'])
if 'n-failed' in result:
s += '\n({} failed)'.format(result['n-failed'])
return s
else:
return 'FAILED'
def bench(test_func, test_envs, test_cases, *args, **vargs):
"""Fill benchmark table
test_func -- benchmarking function, see bench_one for description
test_envs -- list of test environments, see bench_one
test_cases -- list of test cases, see bench_one
args, vargs -- additional arguments for bench_one
Returns dict with the following fields:
'envs': test_envs
'cases': test_cases
'tab': filled 2D array, where cell [i][j] is bench_one result for
test_cases[i] for test_envs[j] (i.e., rows are test cases and
columns are test environments)
"""
tab = {}
results = {
'envs': test_envs,
'cases': test_cases,
'tab': tab
}
n = 1
n_tests = len(test_envs) * len(test_cases)
for env in test_envs:
for case in test_cases:
print('Testing {}/{}: {} :: {}'.format(n, n_tests,
env['id'], case['id']))
if case['id'] not in tab:
tab[case['id']] = {}
tab[case['id']][env['id']] = bench_one(test_func, env, case,
*args, **vargs)
n += 1
print('Done')
return results
def ascii(results):
"""Return ASCII representation of bench() returned dict."""
from tabulate import tabulate
tab = [[""] + [c['id'] for c in results['envs']]]
for case in results['cases']:
row = [case['id']]
for env in results['envs']:
row.append(ascii_one(results['tab'][case['id']][env['id']]))
tab.append(row)
return tabulate(tab)
|