1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
/*
* Hardware Clocks
*
* Copyright GreenSocs 2016-2020
*
* Authors:
* Frederic Konrad
* Damien Hedde
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#ifndef QEMU_HW_CLOCK_H
#define QEMU_HW_CLOCK_H
#include "qom/object.h"
#include "qemu/queue.h"
#include "qemu/host-utils.h"
#include "qemu/bitops.h"
#define TYPE_CLOCK "clock"
OBJECT_DECLARE_SIMPLE_TYPE(Clock, CLOCK)
/*
* Argument to ClockCallback functions indicating why the callback
* has been called. A mask of these values logically ORed together
* is used to specify which events are interesting when the callback
* is registered, so these values must all be different bit values.
*/
typedef enum ClockEvent {
ClockUpdate = 1, /* Clock period has just updated */
ClockPreUpdate = 2, /* Clock period is about to update */
} ClockEvent;
typedef void ClockCallback(void *opaque, ClockEvent event);
/*
* clock store a value representing the clock's period in 2^-32ns unit.
* It can represent:
* + periods from 2^-32ns up to 4seconds
* + frequency from ~0.25Hz 2e10Ghz
* Resolution of frequency representation decreases with frequency:
* + at 100MHz, resolution is ~2mHz
* + at 1Ghz, resolution is ~0.2Hz
* + at 10Ghz, resolution is ~20Hz
*/
#define CLOCK_PERIOD_1SEC (1000000000llu << 32)
/*
* macro helpers to convert to hertz / nanosecond
*/
#define CLOCK_PERIOD_FROM_NS(ns) ((ns) * (CLOCK_PERIOD_1SEC / 1000000000llu))
#define CLOCK_PERIOD_FROM_HZ(hz) (((hz) != 0) ? CLOCK_PERIOD_1SEC / (hz) : 0u)
#define CLOCK_PERIOD_TO_HZ(per) (((per) != 0) ? CLOCK_PERIOD_1SEC / (per) : 0u)
/**
* Clock:
* @parent_obj: parent class
* @period: unsigned integer representing the period of the clock
* @canonical_path: clock path string cache (used for trace purpose)
* @callback: called when clock changes
* @callback_opaque: argument for @callback
* @callback_events: mask of events when callback should be called
* @source: source (or parent in clock tree) of the clock
* @children: list of clocks connected to this one (it is their source)
* @sibling: structure used to form a clock list
*/
struct Clock {
/*< private >*/
Object parent_obj;
/* all fields are private and should not be modified directly */
/* fields */
uint64_t period;
char *canonical_path;
ClockCallback *callback;
void *callback_opaque;
unsigned int callback_events;
/* Clocks are organized in a clock tree */
Clock *source;
QLIST_HEAD(, Clock) children;
QLIST_ENTRY(Clock) sibling;
};
/*
* vmstate description entry to be added in device vmsd.
*/
extern const VMStateDescription vmstate_clock;
#define VMSTATE_CLOCK(field, state) \
VMSTATE_CLOCK_V(field, state, 0)
#define VMSTATE_CLOCK_V(field, state, version) \
VMSTATE_STRUCT_POINTER_V(field, state, version, vmstate_clock, Clock)
#define VMSTATE_ARRAY_CLOCK(field, state, num) \
VMSTATE_ARRAY_CLOCK_V(field, state, num, 0)
#define VMSTATE_ARRAY_CLOCK_V(field, state, num, version) \
VMSTATE_ARRAY_OF_POINTER_TO_STRUCT(field, state, num, version, \
vmstate_clock, Clock)
/**
* clock_setup_canonical_path:
* @clk: clock
*
* compute the canonical path of the clock (used by log messages)
*/
void clock_setup_canonical_path(Clock *clk);
/**
* clock_new:
* @parent: the clock parent
* @name: the clock object name
*
* Helper function to create a new clock and parent it to @parent. There is no
* need to call clock_setup_canonical_path on the returned clock as it is done
* by this function.
*
* @return the newly created clock
*/
Clock *clock_new(Object *parent, const char *name);
/**
* clock_set_callback:
* @clk: the clock to register the callback into
* @cb: the callback function
* @opaque: the argument to the callback
* @events: the events the callback should be called for
* (logical OR of ClockEvent enum values)
*
* Register a callback called on every clock update.
* Note that a clock has only one callback: you cannot register
* different callback functions for different events.
*/
void clock_set_callback(Clock *clk, ClockCallback *cb,
void *opaque, unsigned int events);
/**
* clock_clear_callback:
* @clk: the clock to delete the callback from
*
* Unregister the callback registered with clock_set_callback.
*/
void clock_clear_callback(Clock *clk);
/**
* clock_set_source:
* @clk: the clock.
* @src: the source clock
*
* Setup @src as the clock source of @clk. The current @src period
* value is also copied to @clk and its subtree but no callback is
* called.
* Further @src update will be propagated to @clk and its subtree.
*/
void clock_set_source(Clock *clk, Clock *src);
/**
* clock_has_source:
* @clk: the clock
*
* Returns true if the clock has a source clock connected to it.
* This is useful for devices which have input clocks which must
* be connected by the board/SoC code which creates them. The
* device code can use this to check in its realize method that
* the clock has been connected.
*/
static inline bool clock_has_source(const Clock *clk)
{
return clk->source != NULL;
}
/**
* clock_set:
* @clk: the clock to initialize.
* @value: the clock's value, 0 means unclocked
*
* Set the local cached period value of @clk to @value.
*
* @return: true if the clock is changed.
*/
bool clock_set(Clock *clk, uint64_t value);
static inline bool clock_set_hz(Clock *clk, unsigned hz)
{
return clock_set(clk, CLOCK_PERIOD_FROM_HZ(hz));
}
static inline bool clock_set_ns(Clock *clk, unsigned ns)
{
return clock_set(clk, CLOCK_PERIOD_FROM_NS(ns));
}
/**
* clock_propagate:
* @clk: the clock
*
* Propagate the clock period that has been previously configured using
* @clock_set(). This will update recursively all connected clocks.
* It is an error to call this function on a clock which has a source.
* Note: this function must not be called during device inititialization
* or migration.
*/
void clock_propagate(Clock *clk);
/**
* clock_update:
* @clk: the clock to update.
* @value: the new clock's value, 0 means unclocked
*
* Update the @clk to the new @value. All connected clocks will be informed
* of this update. This is equivalent to call @clock_set() then
* @clock_propagate().
*/
static inline void clock_update(Clock *clk, uint64_t value)
{
if (clock_set(clk, value)) {
clock_propagate(clk);
}
}
static inline void clock_update_hz(Clock *clk, unsigned hz)
{
clock_update(clk, CLOCK_PERIOD_FROM_HZ(hz));
}
static inline void clock_update_ns(Clock *clk, unsigned ns)
{
clock_update(clk, CLOCK_PERIOD_FROM_NS(ns));
}
/**
* clock_get:
* @clk: the clk to fetch the clock
*
* @return: the current period.
*/
static inline uint64_t clock_get(const Clock *clk)
{
return clk->period;
}
static inline unsigned clock_get_hz(Clock *clk)
{
return CLOCK_PERIOD_TO_HZ(clock_get(clk));
}
/**
* clock_ticks_to_ns:
* @clk: the clock to query
* @ticks: number of ticks
*
* Returns the length of time in nanoseconds for this clock
* to tick @ticks times. Because a clock can have a period
* which is not a whole number of nanoseconds, it is important
* to use this function when calculating things like timer
* expiry deadlines, rather than attempting to obtain a "period
* in nanoseconds" value and then multiplying that by a number
* of ticks.
*
* The result could in theory be too large to fit in a 64-bit
* value if the number of ticks and the clock period are both
* large; to avoid overflow the result will be saturated to INT64_MAX
* (because this is the largest valid input to the QEMUTimer APIs).
* Since INT64_MAX nanoseconds is almost 300 years, anything with
* an expiry later than that is in the "will never happen" category
* and callers can reasonably not special-case the saturated result.
*/
static inline uint64_t clock_ticks_to_ns(const Clock *clk, uint64_t ticks)
{
uint64_t ns_low, ns_high;
/*
* clk->period is the period in units of 2^-32 ns, so
* (clk->period * ticks) is the required length of time in those
* units, and we can convert to nanoseconds by multiplying by
* 2^32, which is the same as shifting the 128-bit multiplication
* result right by 32.
*/
mulu64(&ns_low, &ns_high, clk->period, ticks);
if (ns_high & MAKE_64BIT_MASK(31, 33)) {
return INT64_MAX;
}
return ns_low >> 32 | ns_high << 32;
}
/**
* clock_ns_to_ticks:
* @clk: the clock to query
* @ns: duration in nanoseconds
*
* Returns the number of ticks this clock would make in the given
* number of nanoseconds. Because a clock can have a period which
* is not a whole number of nanoseconds, it is important to use this
* function rather than attempting to obtain a "period in nanoseconds"
* value and then dividing the duration by that value.
*
* If the clock is stopped (ie it has period zero), returns 0.
*
* For some inputs the result could overflow a 64-bit value (because
* the clock's period is short and the duration is long). In these
* cases we truncate the result to a 64-bit value. This is on the
* assumption that generally the result is going to be used to report
* a 32-bit or 64-bit guest register value, so wrapping either cannot
* happen or is the desired behaviour.
*/
static inline uint64_t clock_ns_to_ticks(const Clock *clk, uint64_t ns)
{
/*
* ticks = duration_in_ns / period_in_ns
* = ns / (period / 2^32)
* = (ns * 2^32) / period
* The hi, lo inputs to divu128() are (ns << 32) as a 128 bit value.
*/
uint64_t lo = ns << 32;
uint64_t hi = ns >> 32;
if (clk->period == 0) {
return 0;
}
/*
* Ignore divu128() return value as we've caught div-by-zero and don't
* need different behaviour for overflow.
*/
divu128(&lo, &hi, clk->period);
return lo;
}
/**
* clock_is_enabled:
* @clk: a clock
*
* @return: true if the clock is running.
*/
static inline bool clock_is_enabled(const Clock *clk)
{
return clock_get(clk) != 0;
}
/**
* clock_display_freq: return human-readable representation of clock frequency
* @clk: clock
*
* Return a string which has a human-readable representation of the
* clock's frequency, e.g. "33.3 MHz". This is intended for debug
* and display purposes.
*
* The caller is responsible for freeing the string with g_free().
*/
char *clock_display_freq(Clock *clk);
#endif /* QEMU_HW_CLOCK_H */
|