1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
|
/*
* Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Open Source and Linux Lab nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#include "sysemu/sysemu.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "elf.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "hw/char/serial.h"
#include "net/net.h"
#include "hw/sysbus.h"
#include "hw/block/flash.h"
#include "sysemu/block-backend.h"
#include "chardev/char.h"
#include "sysemu/device_tree.h"
#include "qemu/error-report.h"
#include "qemu/option.h"
#include "bootparam.h"
#include "xtensa_memory.h"
typedef struct XtfpgaFlashDesc {
hwaddr base;
size_t size;
size_t boot_base;
size_t sector_size;
} XtfpgaFlashDesc;
typedef struct XtfpgaBoardDesc {
const XtfpgaFlashDesc *flash;
size_t sram_size;
const hwaddr *io;
} XtfpgaBoardDesc;
typedef struct XtfpgaFpgaState {
MemoryRegion iomem;
uint32_t leds;
uint32_t switches;
} XtfpgaFpgaState;
static void xtfpga_fpga_reset(void *opaque)
{
XtfpgaFpgaState *s = opaque;
s->leds = 0;
s->switches = 0;
}
static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
unsigned size)
{
XtfpgaFpgaState *s = opaque;
switch (addr) {
case 0x0: /*build date code*/
return 0x09272011;
case 0x4: /*processor clock frequency, Hz*/
return 10000000;
case 0x8: /*LEDs (off = 0, on = 1)*/
return s->leds;
case 0xc: /*DIP switches (off = 0, on = 1)*/
return s->switches;
}
return 0;
}
static void xtfpga_fpga_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
XtfpgaFpgaState *s = opaque;
switch (addr) {
case 0x8: /*LEDs (off = 0, on = 1)*/
s->leds = val;
break;
case 0x10: /*board reset*/
if (val == 0xdead) {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
break;
}
}
static const MemoryRegionOps xtfpga_fpga_ops = {
.read = xtfpga_fpga_read,
.write = xtfpga_fpga_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
hwaddr base)
{
XtfpgaFpgaState *s = g_malloc(sizeof(XtfpgaFpgaState));
memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
"xtfpga.fpga", 0x10000);
memory_region_add_subregion(address_space, base, &s->iomem);
xtfpga_fpga_reset(s);
qemu_register_reset(xtfpga_fpga_reset, s);
return s;
}
static void xtfpga_net_init(MemoryRegion *address_space,
hwaddr base,
hwaddr descriptors,
hwaddr buffers,
qemu_irq irq, NICInfo *nd)
{
DeviceState *dev;
SysBusDevice *s;
MemoryRegion *ram;
dev = qdev_create(NULL, "open_eth");
qdev_set_nic_properties(dev, nd);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, irq);
memory_region_add_subregion(address_space, base,
sysbus_mmio_get_region(s, 0));
memory_region_add_subregion(address_space, descriptors,
sysbus_mmio_get_region(s, 1));
ram = g_malloc(sizeof(*ram));
memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16384,
&error_fatal);
vmstate_register_ram_global(ram);
memory_region_add_subregion(address_space, buffers, ram);
}
static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
const XtfpgaBoardDesc *board,
DriveInfo *dinfo, int be)
{
SysBusDevice *s;
DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
&error_abort);
qdev_prop_set_uint32(dev, "num-blocks",
board->flash->size / board->flash->sector_size);
qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
qdev_prop_set_uint8(dev, "width", 2);
qdev_prop_set_bit(dev, "big-endian", be);
qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
memory_region_add_subregion(address_space, board->flash->base,
sysbus_mmio_get_region(s, 0));
return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
}
static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
{
XtensaCPU *cpu = opaque;
return cpu_get_phys_page_debug(CPU(cpu), addr);
}
static void xtfpga_reset(void *opaque)
{
XtensaCPU *cpu = opaque;
cpu_reset(CPU(cpu));
}
static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
unsigned size)
{
return 0;
}
static void xtfpga_io_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
}
static const MemoryRegionOps xtfpga_io_ops = {
.read = xtfpga_io_read,
.write = xtfpga_io_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
{
#ifdef TARGET_WORDS_BIGENDIAN
int be = 1;
#else
int be = 0;
#endif
MemoryRegion *system_memory = get_system_memory();
XtensaCPU *cpu = NULL;
CPUXtensaState *env = NULL;
MemoryRegion *system_io;
DriveInfo *dinfo;
pflash_t *flash = NULL;
QemuOpts *machine_opts = qemu_get_machine_opts();
const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
const unsigned system_io_size = 224 * 1024 * 1024;
int n;
for (n = 0; n < smp_cpus; n++) {
cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
env = &cpu->env;
env->sregs[PRID] = n;
qemu_register_reset(xtfpga_reset, cpu);
/* Need MMU initialized prior to ELF loading,
* so that ELF gets loaded into virtual addresses
*/
cpu_reset(CPU(cpu));
}
if (env) {
XtensaMemory sysram = env->config->sysram;
sysram.location[0].size = machine->ram_size;
xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
system_memory);
xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
system_memory);
xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
system_memory);
xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
system_memory);
xtensa_create_memory_regions(&sysram, "xtensa.sysram",
system_memory);
}
system_io = g_malloc(sizeof(*system_io));
memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
system_io_size);
memory_region_add_subregion(system_memory, board->io[0], system_io);
if (board->io[1]) {
MemoryRegion *io = g_malloc(sizeof(*io));
memory_region_init_alias(io, NULL, "xtfpga.io.cached",
system_io, 0, system_io_size);
memory_region_add_subregion(system_memory, board->io[1], io);
}
xtfpga_fpga_init(system_io, 0x0d020000);
if (nd_table[0].used) {
xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
xtensa_get_extint(env, 1), nd_table);
}
serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
dinfo = drive_get(IF_PFLASH, 0, 0);
if (dinfo) {
flash = xtfpga_flash_init(system_io, board, dinfo, be);
}
/* Use presence of kernel file name as 'boot from SRAM' switch. */
if (kernel_filename) {
uint32_t entry_point = env->pc;
size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
uint32_t tagptr = env->config->sysrom.location[0].addr +
board->sram_size;
uint32_t cur_tagptr;
BpMemInfo memory_location = {
.type = tswap32(MEMORY_TYPE_CONVENTIONAL),
.start = tswap32(env->config->sysram.location[0].addr),
.end = tswap32(env->config->sysram.location[0].addr +
machine->ram_size),
};
uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
machine->ram_size : 0x08000000;
uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
lowmem_end += env->config->sysram.location[0].addr;
cur_lowmem += env->config->sysram.location[0].addr;
xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
system_memory);
if (kernel_cmdline) {
bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
}
if (dtb_filename) {
bp_size += get_tag_size(sizeof(uint32_t));
}
if (initrd_filename) {
bp_size += get_tag_size(sizeof(BpMemInfo));
}
/* Put kernel bootparameters to the end of that SRAM */
tagptr = (tagptr - bp_size) & ~0xff;
cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
sizeof(memory_location), &memory_location);
if (kernel_cmdline) {
cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
strlen(kernel_cmdline) + 1, kernel_cmdline);
}
#ifdef CONFIG_FDT
if (dtb_filename) {
int fdt_size;
void *fdt = load_device_tree(dtb_filename, &fdt_size);
uint32_t dtb_addr = tswap32(cur_lowmem);
if (!fdt) {
error_report("could not load DTB '%s'", dtb_filename);
exit(EXIT_FAILURE);
}
cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
sizeof(dtb_addr), &dtb_addr);
cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
}
#else
if (dtb_filename) {
error_report("could not load DTB '%s': "
"FDT support is not configured in QEMU",
dtb_filename);
exit(EXIT_FAILURE);
}
#endif
if (initrd_filename) {
BpMemInfo initrd_location = { 0 };
int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
lowmem_end - cur_lowmem);
if (initrd_size < 0) {
initrd_size = load_image_targphys(initrd_filename,
cur_lowmem,
lowmem_end - cur_lowmem);
}
if (initrd_size < 0) {
error_report("could not load initrd '%s'", initrd_filename);
exit(EXIT_FAILURE);
}
initrd_location.start = tswap32(cur_lowmem);
initrd_location.end = tswap32(cur_lowmem + initrd_size);
cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
sizeof(initrd_location), &initrd_location);
cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
}
cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
env->regs[2] = tagptr;
uint64_t elf_entry;
uint64_t elf_lowaddr;
int success = load_elf(kernel_filename, translate_phys_addr, cpu,
&elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
if (success > 0) {
entry_point = elf_entry;
} else {
hwaddr ep;
int is_linux;
success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
translate_phys_addr, cpu);
if (success > 0 && is_linux) {
entry_point = ep;
} else {
error_report("could not load kernel '%s'",
kernel_filename);
exit(EXIT_FAILURE);
}
}
if (entry_point != env->pc) {
uint8_t boot[] = {
#ifdef TARGET_WORDS_BIGENDIAN
0x60, 0x00, 0x08, /* j 1f */
0x00, /* .literal_position */
0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
/* 1: */
0x10, 0xff, 0xfe, /* l32r a0, entry_pc */
0x12, 0xff, 0xfe, /* l32r a2, entry_a2 */
0x0a, 0x00, 0x00, /* jx a0 */
#else
0x06, 0x02, 0x00, /* j 1f */
0x00, /* .literal_position */
0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
/* 1: */
0x01, 0xfe, 0xff, /* l32r a0, entry_pc */
0x21, 0xfe, 0xff, /* l32r a2, entry_a2 */
0xa0, 0x00, 0x00, /* jx a0 */
#endif
};
uint32_t entry_pc = tswap32(entry_point);
uint32_t entry_a2 = tswap32(tagptr);
memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
cpu_physical_memory_write(env->pc, boot, sizeof(boot));
}
} else {
if (flash) {
MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
uint32_t size = env->config->sysrom.location[0].size;
if (board->flash->size - board->flash->boot_base < size) {
size = board->flash->size - board->flash->boot_base;
}
memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
flash_mr, board->flash->boot_base, size);
memory_region_add_subregion(system_memory,
env->config->sysrom.location[0].addr,
flash_io);
} else {
xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
system_memory);
}
}
}
static const hwaddr xtfpga_mmu_io[2] = {
0xf0000000,
};
static const hwaddr xtfpga_nommu_io[2] = {
0x90000000,
0x70000000,
};
static const XtfpgaFlashDesc lx60_flash = {
.base = 0x08000000,
.size = 0x00400000,
.sector_size = 0x10000,
};
static void xtfpga_lx60_init(MachineState *machine)
{
static const XtfpgaBoardDesc lx60_board = {
.flash = &lx60_flash,
.sram_size = 0x20000,
.io = xtfpga_mmu_io,
};
xtfpga_init(&lx60_board, machine);
}
static void xtfpga_lx60_nommu_init(MachineState *machine)
{
static const XtfpgaBoardDesc lx60_board = {
.flash = &lx60_flash,
.sram_size = 0x20000,
.io = xtfpga_nommu_io,
};
xtfpga_init(&lx60_board, machine);
}
static const XtfpgaFlashDesc lx200_flash = {
.base = 0x08000000,
.size = 0x01000000,
.sector_size = 0x20000,
};
static void xtfpga_lx200_init(MachineState *machine)
{
static const XtfpgaBoardDesc lx200_board = {
.flash = &lx200_flash,
.sram_size = 0x2000000,
.io = xtfpga_mmu_io,
};
xtfpga_init(&lx200_board, machine);
}
static void xtfpga_lx200_nommu_init(MachineState *machine)
{
static const XtfpgaBoardDesc lx200_board = {
.flash = &lx200_flash,
.sram_size = 0x2000000,
.io = xtfpga_nommu_io,
};
xtfpga_init(&lx200_board, machine);
}
static const XtfpgaFlashDesc ml605_flash = {
.base = 0x08000000,
.size = 0x01000000,
.sector_size = 0x20000,
};
static void xtfpga_ml605_init(MachineState *machine)
{
static const XtfpgaBoardDesc ml605_board = {
.flash = &ml605_flash,
.sram_size = 0x2000000,
.io = xtfpga_mmu_io,
};
xtfpga_init(&ml605_board, machine);
}
static void xtfpga_ml605_nommu_init(MachineState *machine)
{
static const XtfpgaBoardDesc ml605_board = {
.flash = &ml605_flash,
.sram_size = 0x2000000,
.io = xtfpga_nommu_io,
};
xtfpga_init(&ml605_board, machine);
}
static const XtfpgaFlashDesc kc705_flash = {
.base = 0x00000000,
.size = 0x08000000,
.boot_base = 0x06000000,
.sector_size = 0x20000,
};
static void xtfpga_kc705_init(MachineState *machine)
{
static const XtfpgaBoardDesc kc705_board = {
.flash = &kc705_flash,
.sram_size = 0x2000000,
.io = xtfpga_mmu_io,
};
xtfpga_init(&kc705_board, machine);
}
static void xtfpga_kc705_nommu_init(MachineState *machine)
{
static const XtfpgaBoardDesc kc705_board = {
.flash = &kc705_flash,
.sram_size = 0x2000000,
.io = xtfpga_nommu_io,
};
xtfpga_init(&kc705_board, machine);
}
static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
mc->init = xtfpga_lx60_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
}
static const TypeInfo xtfpga_lx60_type = {
.name = MACHINE_TYPE_NAME("lx60"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_lx60_class_init,
};
static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
mc->init = xtfpga_lx60_nommu_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
}
static const TypeInfo xtfpga_lx60_nommu_type = {
.name = MACHINE_TYPE_NAME("lx60-nommu"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_lx60_nommu_class_init,
};
static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
mc->init = xtfpga_lx200_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
}
static const TypeInfo xtfpga_lx200_type = {
.name = MACHINE_TYPE_NAME("lx200"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_lx200_class_init,
};
static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
mc->init = xtfpga_lx200_nommu_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
}
static const TypeInfo xtfpga_lx200_nommu_type = {
.name = MACHINE_TYPE_NAME("lx200-nommu"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_lx200_nommu_class_init,
};
static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
mc->init = xtfpga_ml605_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
}
static const TypeInfo xtfpga_ml605_type = {
.name = MACHINE_TYPE_NAME("ml605"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_ml605_class_init,
};
static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
mc->init = xtfpga_ml605_nommu_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
}
static const TypeInfo xtfpga_ml605_nommu_type = {
.name = MACHINE_TYPE_NAME("ml605-nommu"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_ml605_nommu_class_init,
};
static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
mc->init = xtfpga_kc705_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
}
static const TypeInfo xtfpga_kc705_type = {
.name = MACHINE_TYPE_NAME("kc705"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_kc705_class_init,
};
static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
mc->init = xtfpga_kc705_nommu_init;
mc->max_cpus = 4;
mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
}
static const TypeInfo xtfpga_kc705_nommu_type = {
.name = MACHINE_TYPE_NAME("kc705-nommu"),
.parent = TYPE_MACHINE,
.class_init = xtfpga_kc705_nommu_class_init,
};
static void xtfpga_machines_init(void)
{
type_register_static(&xtfpga_lx60_type);
type_register_static(&xtfpga_lx200_type);
type_register_static(&xtfpga_ml605_type);
type_register_static(&xtfpga_kc705_type);
type_register_static(&xtfpga_lx60_nommu_type);
type_register_static(&xtfpga_lx200_nommu_type);
type_register_static(&xtfpga_ml605_nommu_type);
type_register_static(&xtfpga_kc705_nommu_type);
}
type_init(xtfpga_machines_init)
|