summaryrefslogtreecommitdiff
path: root/hw/riscv/spike.c
blob: ed4ca9808e1121dfe02fa345756e81c07280454d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
/*
 * QEMU RISC-V Spike Board
 *
 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
 * Copyright (c) 2017-2018 SiFive, Inc.
 *
 * This provides a RISC-V Board with the following devices:
 *
 * 0) HTIF Console and Poweroff
 * 1) CLINT (Timer and IPI)
 * 2) PLIC (Platform Level Interrupt Controller)
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2 or later, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "target/riscv/cpu.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/riscv/spike.h"
#include "hw/riscv/boot.h"
#include "hw/riscv/numa.h"
#include "hw/char/riscv_htif.h"
#include "hw/intc/sifive_clint.h"
#include "chardev/char.h"
#include "sysemu/arch_init.h"
#include "sysemu/device_tree.h"
#include "sysemu/qtest.h"
#include "sysemu/sysemu.h"

static const MemMapEntry spike_memmap[] = {
    [SPIKE_MROM] =     {     0x1000,     0xf000 },
    [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
    [SPIKE_DRAM] =     { 0x80000000,        0x0 },
};

static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
                       uint64_t mem_size, const char *cmdline, bool is_32_bit)
{
    void *fdt;
    uint64_t addr, size;
    unsigned long clint_addr;
    int cpu, socket;
    MachineState *mc = MACHINE(s);
    uint32_t *clint_cells;
    uint32_t cpu_phandle, intc_phandle, phandle = 1;
    char *name, *mem_name, *clint_name, *clust_name;
    char *core_name, *cpu_name, *intc_name;

    fdt = s->fdt = create_device_tree(&s->fdt_size);
    if (!fdt) {
        error_report("create_device_tree() failed");
        exit(1);
    }

    qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
    qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);

    qemu_fdt_add_subnode(fdt, "/htif");
    qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");

    qemu_fdt_add_subnode(fdt, "/soc");
    qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
    qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
    qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
    qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);

    qemu_fdt_add_subnode(fdt, "/cpus");
    qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
        SIFIVE_CLINT_TIMEBASE_FREQ);
    qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
    qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
    qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");

    for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
        clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
        qemu_fdt_add_subnode(fdt, clust_name);

        clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);

        for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
            cpu_phandle = phandle++;

            cpu_name = g_strdup_printf("/cpus/cpu@%d",
                s->soc[socket].hartid_base + cpu);
            qemu_fdt_add_subnode(fdt, cpu_name);
            if (is_32_bit) {
                qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
            } else {
                qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
            }
            name = riscv_isa_string(&s->soc[socket].harts[cpu]);
            qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
            g_free(name);
            qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
            qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
            qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
                s->soc[socket].hartid_base + cpu);
            qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
            riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
            qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);

            intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
            qemu_fdt_add_subnode(fdt, intc_name);
            intc_phandle = phandle++;
            qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
            qemu_fdt_setprop_string(fdt, intc_name, "compatible",
                "riscv,cpu-intc");
            qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
            qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);

            clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
            clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
            clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
            clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);

            core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
            qemu_fdt_add_subnode(fdt, core_name);
            qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);

            g_free(core_name);
            g_free(intc_name);
            g_free(cpu_name);
        }

        addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
        size = riscv_socket_mem_size(mc, socket);
        mem_name = g_strdup_printf("/memory@%lx", (long)addr);
        qemu_fdt_add_subnode(fdt, mem_name);
        qemu_fdt_setprop_cells(fdt, mem_name, "reg",
            addr >> 32, addr, size >> 32, size);
        qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
        riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
        g_free(mem_name);

        clint_addr = memmap[SPIKE_CLINT].base +
            (memmap[SPIKE_CLINT].size * socket);
        clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
        qemu_fdt_add_subnode(fdt, clint_name);
        qemu_fdt_setprop_string(fdt, clint_name, "compatible", "riscv,clint0");
        qemu_fdt_setprop_cells(fdt, clint_name, "reg",
            0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
        qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
            clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
        riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);

        g_free(clint_name);
        g_free(clint_cells);
        g_free(clust_name);
    }

    riscv_socket_fdt_write_distance_matrix(mc, fdt);

    if (cmdline) {
        qemu_fdt_add_subnode(fdt, "/chosen");
        qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
    }
}

static void spike_board_init(MachineState *machine)
{
    const MemMapEntry *memmap = spike_memmap;
    SpikeState *s = SPIKE_MACHINE(machine);
    MemoryRegion *system_memory = get_system_memory();
    MemoryRegion *main_mem = g_new(MemoryRegion, 1);
    MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
    target_ulong firmware_end_addr, kernel_start_addr;
    uint32_t fdt_load_addr;
    uint64_t kernel_entry;
    char *soc_name;
    int i, base_hartid, hart_count;

    /* Check socket count limit */
    if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
        error_report("number of sockets/nodes should be less than %d",
            SPIKE_SOCKETS_MAX);
        exit(1);
    }

    /* Initialize sockets */
    for (i = 0; i < riscv_socket_count(machine); i++) {
        if (!riscv_socket_check_hartids(machine, i)) {
            error_report("discontinuous hartids in socket%d", i);
            exit(1);
        }

        base_hartid = riscv_socket_first_hartid(machine, i);
        if (base_hartid < 0) {
            error_report("can't find hartid base for socket%d", i);
            exit(1);
        }

        hart_count = riscv_socket_hart_count(machine, i);
        if (hart_count < 0) {
            error_report("can't find hart count for socket%d", i);
            exit(1);
        }

        soc_name = g_strdup_printf("soc%d", i);
        object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
                                TYPE_RISCV_HART_ARRAY);
        g_free(soc_name);
        object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
                                machine->cpu_type, &error_abort);
        object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
                                base_hartid, &error_abort);
        object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
                                hart_count, &error_abort);
        sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);

        /* Core Local Interruptor (timer and IPI) for each socket */
        sifive_clint_create(
            memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
            memmap[SPIKE_CLINT].size, base_hartid, hart_count,
            SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
            SIFIVE_CLINT_TIMEBASE_FREQ, false);
    }

    /* register system main memory (actual RAM) */
    memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
                           machine->ram_size, &error_fatal);
    memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
        main_mem);

    /* create device tree */
    create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
               riscv_is_32bit(&s->soc[0]));

    /* boot rom */
    memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
                           memmap[SPIKE_MROM].size, &error_fatal);
    memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
                                mask_rom);

    /*
     * Not like other RISC-V machines that use plain binary bios images,
     * keeping ELF files here was intentional because BIN files don't work
     * for the Spike machine as HTIF emulation depends on ELF parsing.
     */
    if (riscv_is_32bit(&s->soc[0])) {
        firmware_end_addr = riscv_find_and_load_firmware(machine,
                                    "opensbi-riscv32-generic-fw_dynamic.elf",
                                    memmap[SPIKE_DRAM].base,
                                    htif_symbol_callback);
    } else {
        firmware_end_addr = riscv_find_and_load_firmware(machine,
                                    "opensbi-riscv64-generic-fw_dynamic.elf",
                                    memmap[SPIKE_DRAM].base,
                                    htif_symbol_callback);
    }

    if (machine->kernel_filename) {
        kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
                                                         firmware_end_addr);

        kernel_entry = riscv_load_kernel(machine->kernel_filename,
                                         kernel_start_addr,
                                         htif_symbol_callback);

        if (machine->initrd_filename) {
            hwaddr start;
            hwaddr end = riscv_load_initrd(machine->initrd_filename,
                                           machine->ram_size, kernel_entry,
                                           &start);
            qemu_fdt_setprop_cell(s->fdt, "/chosen",
                                  "linux,initrd-start", start);
            qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
                                  end);
        }
    } else {
       /*
        * If dynamic firmware is used, it doesn't know where is the next mode
        * if kernel argument is not set.
        */
        kernel_entry = 0;
    }

    /* Compute the fdt load address in dram */
    fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
                                   machine->ram_size, s->fdt);
    /* load the reset vector */
    riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
                              memmap[SPIKE_MROM].base,
                              memmap[SPIKE_MROM].size, kernel_entry,
                              fdt_load_addr, s->fdt);

    /* initialize HTIF using symbols found in load_kernel */
    htif_mm_init(system_memory, mask_rom,
                 &s->soc[0].harts[0].env, serial_hd(0));
}

static void spike_machine_instance_init(Object *obj)
{
}

static void spike_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->desc = "RISC-V Spike board";
    mc->init = spike_board_init;
    mc->max_cpus = SPIKE_CPUS_MAX;
    mc->is_default = true;
    mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
    mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
    mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
    mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
    mc->numa_mem_supported = true;
}

static const TypeInfo spike_machine_typeinfo = {
    .name       = MACHINE_TYPE_NAME("spike"),
    .parent     = TYPE_MACHINE,
    .class_init = spike_machine_class_init,
    .instance_init = spike_machine_instance_init,
    .instance_size = sizeof(SpikeState),
};

static void spike_machine_init_register_types(void)
{
    type_register_static(&spike_machine_typeinfo);
}

type_init(spike_machine_init_register_types)