1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
|
/*
* QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
*
* Copyright (c) 2020 Wind River Systems, Inc.
*
* Author:
* Bin Meng <bin.meng@windriver.com>
*
* Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
*
* 0) CLINT (Core Level Interruptor)
* 1) PLIC (Platform Level Interrupt Controller)
* 2) eNVM (Embedded Non-Volatile Memory)
* 3) MMUARTs (Multi-Mode UART)
* 4) Cadence eMMC/SDHC controller and an SD card connected to it
* 5) SiFive Platform DMA (Direct Memory Access Controller)
* 6) GEM (Gigabit Ethernet MAC Controller)
* 7) DMC (DDR Memory Controller)
* 8) IOSCB modules
*
* This board currently generates devicetree dynamically that indicates at least
* two harts and up to five harts.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "qemu/units.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/irq.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "chardev/char.h"
#include "hw/cpu/cluster.h"
#include "target/riscv/cpu.h"
#include "hw/misc/unimp.h"
#include "hw/riscv/boot.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/riscv/microchip_pfsoc.h"
#include "hw/intc/sifive_clint.h"
#include "hw/intc/sifive_plic.h"
#include "sysemu/sysemu.h"
/*
* The BIOS image used by this machine is called Hart Software Services (HSS).
* See https://github.com/polarfire-soc/hart-software-services
*/
#define BIOS_FILENAME "hss.bin"
#define RESET_VECTOR 0x20220000
/* CLINT timebase frequency */
#define CLINT_TIMEBASE_FREQ 1000000
/* GEM version */
#define GEM_REVISION 0x0107010c
/*
* The complete description of the whole PolarFire SoC memory map is scattered
* in different documents. There are several places to look at for memory maps:
*
* 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
* Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
* https://www.microsemi.com/document-portal/doc_download/
* 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
* describes the whole picture of the PolarFire SoC memory map.
*
* 2 A zip file for PolarFire soC memory map, which can be downloaded from
* https://www.microsemi.com/document-portal/doc_download/
* 1244581-polarfire-soc-register-map, contains the following 2 major parts:
* - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
* describes the complete integrated peripherals memory map
* - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
* describes the complete IOSCB modules memory maps
*/
static const struct MemmapEntry {
hwaddr base;
hwaddr size;
} microchip_pfsoc_memmap[] = {
[MICROCHIP_PFSOC_RSVD0] = { 0x0, 0x100 },
[MICROCHIP_PFSOC_DEBUG] = { 0x100, 0xf00 },
[MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 },
[MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 },
[MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 },
[MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 },
[MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 },
[MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 },
[MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 },
[MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 },
[MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 },
[MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 },
[MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 },
[MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 },
[MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 },
[MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 },
[MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 },
[MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 },
[MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 },
[MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 },
[MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 },
[MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 },
[MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 },
[MICROCHIP_PFSOC_I2C1] = { 0x2010b000, 0x1000 },
[MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 },
[MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 },
[MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 },
[MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 },
[MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 },
[MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 },
[MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 },
[MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 },
[MICROCHIP_PFSOC_DRAM_LO] = { 0x80000000, 0x40000000 },
[MICROCHIP_PFSOC_DRAM_LO_ALIAS] = { 0xc0000000, 0x40000000 },
[MICROCHIP_PFSOC_DRAM_HI] = { 0x1000000000, 0x0 },
[MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000, 0x0 },
};
static void microchip_pfsoc_soc_instance_init(Object *obj)
{
MachineState *ms = MACHINE(qdev_get_machine());
MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
TYPE_RISCV_HART_ARRAY);
qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
TYPE_RISCV_CPU_SIFIVE_E51);
qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
TYPE_RISCV_HART_ARRAY);
qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
TYPE_RISCV_CPU_SIFIVE_U54);
qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
object_initialize_child(obj, "dma-controller", &s->dma,
TYPE_SIFIVE_PDMA);
object_initialize_child(obj, "sysreg", &s->sysreg,
TYPE_MCHP_PFSOC_SYSREG);
object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
TYPE_MCHP_PFSOC_DDR_CFG);
object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
object_initialize_child(obj, "sd-controller", &s->sdhci,
TYPE_CADENCE_SDHCI);
object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
}
static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
{
MachineState *ms = MACHINE(qdev_get_machine());
MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
const struct MemmapEntry *memmap = microchip_pfsoc_memmap;
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
MemoryRegion *envm_data = g_new(MemoryRegion, 1);
char *plic_hart_config;
size_t plic_hart_config_len;
NICInfo *nd;
int i;
sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
/*
* The cluster must be realized after the RISC-V hart array container,
* as the container's CPU object is only created on realize, and the
* CPU must exist and have been parented into the cluster before the
* cluster is realized.
*/
qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
/* Reserved Memory at address 0 */
memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_RSVD0].base,
rsvd0_mem);
/* E51 DTIM */
memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_E51_DTIM].base,
e51_dtim_mem);
/* Bus Error Units */
create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
/* CLINT */
sifive_clint_create(memmap[MICROCHIP_PFSOC_CLINT].base,
memmap[MICROCHIP_PFSOC_CLINT].size, 0, ms->smp.cpus,
SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
CLINT_TIMEBASE_FREQ, false);
/* L2 cache controller */
create_unimplemented_device("microchip.pfsoc.l2cc",
memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
/*
* Add L2-LIM at reset size.
* This should be reduced in size as the L2 Cache Controller WayEnable
* register is incremented. Unfortunately I don't see a nice (or any) way
* to handle reducing or blocking out the L2 LIM while still allowing it
* be re returned to all enabled after a reset. For the time being, just
* leave it enabled all the time. This won't break anything, but will be
* too generous to misbehaving guests.
*/
memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_L2LIM].base,
l2lim_mem);
/* create PLIC hart topology configuration string */
plic_hart_config_len = (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1) *
ms->smp.cpus;
plic_hart_config = g_malloc0(plic_hart_config_len);
for (i = 0; i < ms->smp.cpus; i++) {
if (i != 0) {
strncat(plic_hart_config, "," MICROCHIP_PFSOC_PLIC_HART_CONFIG,
plic_hart_config_len);
} else {
strncat(plic_hart_config, "M", plic_hart_config_len);
}
plic_hart_config_len -= (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1);
}
/* PLIC */
s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
plic_hart_config, 0,
MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
MICROCHIP_PFSOC_PLIC_PENDING_BASE,
MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
memmap[MICROCHIP_PFSOC_PLIC].size);
g_free(plic_hart_config);
/* DMA */
sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
memmap[MICROCHIP_PFSOC_DMA].base);
for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
qdev_get_gpio_in(DEVICE(s->plic),
MICROCHIP_PFSOC_DMA_IRQ0 + i));
}
/* SYSREG */
sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
memmap[MICROCHIP_PFSOC_SYSREG].base);
/* MPUCFG */
create_unimplemented_device("microchip.pfsoc.mpucfg",
memmap[MICROCHIP_PFSOC_MPUCFG].base,
memmap[MICROCHIP_PFSOC_MPUCFG].size);
/* DDR SGMII PHY */
sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
/* DDR CFG */
sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
memmap[MICROCHIP_PFSOC_DDR_CFG].base);
/* SDHCI */
sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
memmap[MICROCHIP_PFSOC_EMMC_SD].base);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
/* MMUARTs */
s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART0].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
serial_hd(0));
s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART1].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
serial_hd(1));
s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART2].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
serial_hd(2));
s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART3].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
serial_hd(3));
s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART4].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
serial_hd(4));
/* I2C1 */
create_unimplemented_device("microchip.pfsoc.i2c1",
memmap[MICROCHIP_PFSOC_I2C1].base,
memmap[MICROCHIP_PFSOC_I2C1].size);
/* GEMs */
nd = &nd_table[0];
if (nd->used) {
qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
qdev_set_nic_properties(DEVICE(&s->gem0), nd);
}
nd = &nd_table[1];
if (nd->used) {
qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
qdev_set_nic_properties(DEVICE(&s->gem1), nd);
}
object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
memmap[MICROCHIP_PFSOC_GEM0].base);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
memmap[MICROCHIP_PFSOC_GEM1].base);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
/* GPIOs */
create_unimplemented_device("microchip.pfsoc.gpio0",
memmap[MICROCHIP_PFSOC_GPIO0].base,
memmap[MICROCHIP_PFSOC_GPIO0].size);
create_unimplemented_device("microchip.pfsoc.gpio1",
memmap[MICROCHIP_PFSOC_GPIO1].base,
memmap[MICROCHIP_PFSOC_GPIO1].size);
create_unimplemented_device("microchip.pfsoc.gpio2",
memmap[MICROCHIP_PFSOC_GPIO2].base,
memmap[MICROCHIP_PFSOC_GPIO2].size);
/* eNVM */
memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
&error_fatal);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
envm_data);
/* IOSCB */
sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
memmap[MICROCHIP_PFSOC_IOSCB].base);
}
static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = microchip_pfsoc_soc_realize;
/* Reason: Uses serial_hds in realize function, thus can't be used twice */
dc->user_creatable = false;
}
static const TypeInfo microchip_pfsoc_soc_type_info = {
.name = TYPE_MICROCHIP_PFSOC,
.parent = TYPE_DEVICE,
.instance_size = sizeof(MicrochipPFSoCState),
.instance_init = microchip_pfsoc_soc_instance_init,
.class_init = microchip_pfsoc_soc_class_init,
};
static void microchip_pfsoc_soc_register_types(void)
{
type_register_static(µchip_pfsoc_soc_type_info);
}
type_init(microchip_pfsoc_soc_register_types)
static void microchip_icicle_kit_machine_init(MachineState *machine)
{
MachineClass *mc = MACHINE_GET_CLASS(machine);
const struct MemmapEntry *memmap = microchip_pfsoc_memmap;
MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *mem_low = g_new(MemoryRegion, 1);
MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
MemoryRegion *mem_high = g_new(MemoryRegion, 1);
MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
uint64_t mem_high_size;
DriveInfo *dinfo = drive_get_next(IF_SD);
/* Sanity check on RAM size */
if (machine->ram_size < mc->default_ram_size) {
char *sz = size_to_str(mc->default_ram_size);
error_report("Invalid RAM size, should be bigger than %s", sz);
g_free(sz);
exit(EXIT_FAILURE);
}
/* Initialize SoC */
object_initialize_child(OBJECT(machine), "soc", &s->soc,
TYPE_MICROCHIP_PFSOC);
qdev_realize(DEVICE(&s->soc), NULL, &error_abort);
/* Register RAM */
memory_region_init_ram(mem_low, NULL, "microchip.icicle.kit.ram_low",
memmap[MICROCHIP_PFSOC_DRAM_LO].size,
&error_fatal);
memory_region_init_alias(mem_low_alias, NULL,
"microchip.icicle.kit.ram_low.alias",
mem_low, 0,
memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].size);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_DRAM_LO].base,
mem_low);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
mem_low_alias);
mem_high_size = machine->ram_size - 1 * GiB;
memory_region_init_ram(mem_high, NULL, "microchip.icicle.kit.ram_high",
mem_high_size, &error_fatal);
memory_region_init_alias(mem_high_alias, NULL,
"microchip.icicle.kit.ram_high.alias",
mem_high, 0, mem_high_size);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_DRAM_HI].base,
mem_high);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
mem_high_alias);
/* Load the firmware */
riscv_find_and_load_firmware(machine, BIOS_FILENAME, RESET_VECTOR, NULL);
/* Attach an SD card */
if (dinfo) {
CadenceSDHCIState *sdhci = &(s->soc.sdhci);
DeviceState *card = qdev_new(TYPE_SD_CARD);
qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
&error_fatal);
qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
}
}
static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Microchip PolarFire SoC Icicle Kit";
mc->init = microchip_icicle_kit_machine_init;
mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
mc->default_cpus = mc->min_cpus;
/*
* Map 513 MiB high memory, the mimimum required high memory size, because
* HSS will do memory test against the high memory address range regardless
* of physical memory installed.
*
* See memory_tests() in mss_ddr.c in the HSS source code.
*/
mc->default_ram_size = 1537 * MiB;
}
static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
.name = MACHINE_TYPE_NAME("microchip-icicle-kit"),
.parent = TYPE_MACHINE,
.class_init = microchip_icicle_kit_machine_class_init,
.instance_size = sizeof(MicrochipIcicleKitState),
};
static void microchip_icicle_kit_machine_init_register_types(void)
{
type_register_static(µchip_icicle_kit_machine_typeinfo);
}
type_init(microchip_icicle_kit_machine_init_register_types)
|